Sistem Pentautan Citra Udara Menggunakan Algoritme SURF dan Metode Reduksi Data
Zaki Hamizan(1*), Raden Sumiharto(2)
(1) 
(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author
Abstract
One of the algorithm for aerial image stitching system is SURF (Speeded Up Robust Features). It is a robust algorithm which is invariant to image scale, rotation, blurring, illumination, and affine transformation. Although SURF has good performance, some of the detected keypoints are not always considered as necessary keypoints . As a result, these unnecessary keypoints are needed to be eliminated to decrease computation time.
The proposed system uses SURF detector in the detection process. The data reduction method will eliminate couple of keypoints which have near distance each other. Next, the keypoints will be described by SURF descriptor.The description Results further matched using FLANN. The next step is the search pattern with RANSAC homography matrix and stitch the picture to accumulate keypoints using warpPerpective.
Stitching system are tested with some variations, such as scale variations, rotation variations, and overlap variations on the image. Based on the result, the proposed Data Reduction method has optimum value of minimal radius from 40 pixels to 100 pixels. The stitching process is still working with up to 90% keypoint number reduction. Average computation time using data reduction method are 39,41% faster than without data reduction method.
Keywords
Full Text:
PDFReferences
[1]Wirawan, S., 2014, Sistem Citra Udara Pesawat Tanpa Awak dengan Pentautan Citra, Skripsi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Yogyakarta.
[2]Dewanti, F., 2015, Purwarupa Sistem Pentautan Citra Udara Pada UAV Menggunakan Algoritme SURF (Speeded-Up Robust Features), Skripsi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Yogyakarta.
[3]Sardi, I. L., 2012, Analisis Implementasi Fast Corner Detector pada Image Stitching dalam Pembentuk Citra, Institut Teknologi Telkom, Bandung.
[4]Bay, H., Ess, A., Tuytelaars, T., dan Gool, L. V., 2006, SURF : Speeded-UP Robust Features. Proceeding of 9th European Conference on Computer Vision, Graz, Austria, May 7-13.
[5]Pedersen, J. ,2011, Study Group SURF : Feature Detection & Description, Aarhus University, Denmark.
[6]Wang, Z.-l., Yan, F.-h., dan Zheng, Y.-y., 2013, An Adaptive Uniform Distribution SURF for Image Stitching, Proceeding of 6th International Congress on Image and Signal Processing (CISP 2013), Hangzhou, December 16-18.
[7]Sukrawan, I., 2008, Pengembangan DSMAC menggunakan Metoda SURF pada Sistem Peluru Kendali dan Komputer, Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung, Bandung.
[8] Tania, K. D. dan Arymurthy, A. M., 2010, Tattoo Recognition Based on Speeded Up Robust Features (SURF), University of Sriwijaya, Palembang.
[9] Darajati, Aisah., 2012, Implementasi dan Analisis Citra Mosaik Berbasis Fitur dengan Metode Global Alignment untuk Pembentukan Citra Panorama pada Android, Universitas Telkom, Bandung.
[10]Astuti, R.D., 2011, Sistem Pentautan Foto Udara Menggunakan Deteksi Fiture Algoritma Oriented FAST And Rotated BRIEF, Skripsi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Yogyakarta.
DOI: https://doi.org/10.22146/ijeis.18240
Article Metrics
Abstract views : 3477 | views : 3157Refbacks
- There are currently no refbacks.
Copyright (c) 2017 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1