Prediksi Diabetes Berdasarkan Pengukuran Mean Amplitude Glycemic Excursion (MAGE) Menggunakan Naïve Bayes

https://doi.org/10.22146/ijeis.72608

M Syaiful Ma’arif(1), Lailis Syafa’ah(2), amrul faruq(3*)

(1) Fakultas Teknik, Universitas Muhammadiyah Malang
(2) Fakultas Teknik, Universitas Muhammadiyah Malang
(3) Fakultas Teknik, Universitas Muhammadiyah Malang
(*) Corresponding Author

Abstract


The mean amplitude of glycemic excursions (MAGE) merupakan indikator penting dalam penilaian variabilitas glikemik (GV) yang digunakan sebagai referensi untuk mengontrol glukosa darah secata terus menerus. Dalam hal tersebut, pertimbangan kuantitatif  dalam monitoring gula darah pada diabetes sangat penting untuk diagnosis lalu dilanjutkan dengan perawatan klinis. Penelitian ini lebih memfokuskan pada penguatan sistem pengolahan data training dan testing serta mengurangi variable independent yang terjadi saat proses klasifikasi. Untuk mendukung tujuan tersebut, penelitian ini menggunakan Cross Validation sebagai pengolahan data training dan testing dengan jumlah K-Fold yaitu 10 dan Naïve Bayes sebagai metode klasifikasi. Akurasi yang dihasilkan yaitu 93% yang meningkat dari penelitian sebelumnya dengan nilai RMSE (nilai error) sebesar 0.267. Disimpulkan bahwa pasien pada golongan pra-diabetes dan diabetes cenderung memiliki nilai glukosa darah yang lebih bervariasi dibandingkan pasien dari kelas normal.


Keywords


Diabetes, Variabelitas Glikemik, Cross Validation, Naïve Bayes, Machine Learning

Full Text:

PDF


References

D. O. F. Diabetes, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 33, no. SUPPL. 1, 2010.

T. A. Peyser, A. K. Balo, B. A. Buckingham, I. B. Hirsch, and A. Garcia, “Glycemic Variability Percentage: A Novel Method for Assessing Glycemic Variability from Continuous Glucose Monitor Data,” Diabetes Technol. Ther., vol. 20, no. 1, pp. 6–16, 2018, [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/29227755/. [Accessed: 16-Aug-2020]

X. Yu et al., “Calculating the Mean Amplitude of Glycemic Excursions from Continuous Glucose Data Using an Open-Code Programmable Algorithm Based on the Integer Nonlinear Method,” Comput. Math. Methods Med., vol. 2018, 2018, [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/29707038/ [Accessed: 16-Aug-2020]

L. Syafa ’ah, A. Tjokroprawiro, M. Rasad Indra, D. Sargowo, and 5 Muladi, “Expert System for Blood Glucose Fluctuations Measurement Based on MAGE (Mean Amplitude of Glycemic Excursion) and HbA1c On Diabetic Using K-NN (Nearest Neighbor),” J. Basic. Appl. Sci. Res, vol. 4, no. 12, pp. 135–141, 2014 [Online]. Available:http://research-report.umm.ac.id/index.php/research-report/article/viewFile/904/1111 [Accessed: 10-Jul-2020]

P. A. Baghurst, “Calculating the mean amplitude of glycemic excursion from continuous glucose monitoring data: An automated algorithm,” Diabetes Technol. Ther., vol. 13, no. 3, pp. 296–302, 2011, [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/21291334/ [Accessed: 13-Aug-2020]

G. Fritzsche, K. D. Kohnert, P. Heinke, L. Vogt, and E. Salzsieder, “The use of a computer program to calculate the mean amplitude of glycemic excursions,” Diabetes Technol. Ther., vol. 13, no. 3, pp. 319–325, 2011, [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/21291337/ [Accessed: 16-Aug-2020]

J. Ker, L. Wang, J. Rao, and T. Lim, “Deep Learning Applications in Medical Image Analysis,” IEEE Access, vol. 6, no. May 2018, pp. 9375–9379, 2017, [Online]. Available: https://ieeexplore.ieee.org/document/8241753 [Accessed: 17-Aug-2020]

I. N. T. Wirawan and I. Eksistyanto, “Penerapan Naive Bayes Pada Intrusion Detection System Dengan Diskritisasi Variabel,” JUTI J. Ilm. Teknol. Inf., vol. 13, no. 2, p. 182, 2015, [Online]. Available: http://juti.if.its.ac.id/index.php/juti/article/view/487/301 [Accessed: 16-Aug-2020]

D. Xhemali, C. J. Hinde, and R. G. Stone, “Naive Bayes vs. Decision Trees vs. Neural Networks in the Classification of Training Web Pages,” Int. J. Comput. Sci., vol. 4, no. 1, pp. 16–23, 2009. [Online]. Available: https://www.researchgate.net/publication/41392270/ [Accessed: 16-Aug-2020]

L. Syafa’ah, M. H. Purnomo, and S. Basuki, “Discrete mean amplitude of glycemic excursion (MAGE) measurement on diabetics with spline interpolation method,” Int. J. Electr. Eng. Informatics, vol. 10, no. 2, pp. 259–270, 2018, [Online]. Available: http://research-report.umm.ac.id/index.php/research-report/article/viewFile/904/1111 [Accessed: 16-Aug-2020]

L. Syafaah, S. Basuki, F. Dwi, and S. Sumadi, “Study on Diabetes Prediction Based on Discrete and Continuous Mean Amplitude of Glycemic Excursions ( MAGE ) using Machine Learning Methods,” vol. 8, no. 4, 2019, [Online]. Available: https://beei.org/index.php/EEI/article/view/2387 [Accessed: 21-Aug-2020]

J. H. DeVries, “Glucose variability: Where it is important and how to measure it,” Diabetes, vol. 62, no. 5, pp. 1405–1408, 2013, [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/23613566/ [Accessed: 16-Aug-2020]

M. Heller, P. Edelstein, and M. Mayer, “Membrane-bound enzymes. III. Protease activity in leucocytes in relation to erythrocyte membranes,” BBA - Biomembr., vol. 413, no. 3, pp. 472–482, 1975, [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/92/ [Accessed: 16-Aug-2020]

F. Cavalot, “Do data in the literature indicate that glycaemic variability is a clinical problem? Glycaemic variability and vascular complications of diabetes,” Diabetes, Obes. Metab., vol. 15, no. S2, pp. 3–8, 2013, [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/24034513/ [Accessed: 1-Sep-2020]

A. A. Kazi and L. Blonde, Classification of diabetes mellitus, vol. 21, no. 1. 2001.

S. Suh and J. H. Kim, “Glycemic variability: How do we measure it and why is it important?,” Diabetes Metab. J., vol. 39, no. 4, pp. 273–282, 2015, [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4543190/ [Accessed: 16-Aug-2020]

J. Wadén, C. Forsblom, L. M. Thorn, D. Gordin, M. Saraheimo, and P. H. Groop, “A1C variability predicts incident cardiovascular events, microalbuminuria, and overt diabetic nephropathy in patients with type 1 diabetes,” Diabetes, vol. 58, no. 11, pp. 2649–2655, 2009, [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/19651819/ [Accessed: 16-Aug-2020]

F. J. Service, G. D. Molnar, J. W. Rosevear, E. Ackerman, L. C. Gatewood, and W. F. Taylor, “Mean amplitude of glycemic excursions, a measure of diabetic instability.,” Diabetes, vol. 19, no. 9, pp. 644–655, 1970, [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/5469118/ [Accessed: 16-Aug-2020]

D. V. Griffiths and I. M. Smith, “Numerical methods for engineers, second edition,” Numer. Methods Eng. Second Ed., pp. 1–475, 2006.

M. Irfan, W. Uriawan, O. T. Kurahman, M. A. Ramdhani, and I. A. Dahlia, “Comparison of Naive Bayes and K-Nearest Neighbor methods to predict divorce issues,” IOP Conf. Ser. Mater. Sci. Eng., vol. 434, no. 1, 2018, [Online]. Available: https://www.proquest.com/docview/2557157531 [Accessed: 16-Aug-2020]

Bustami, “Penerapan Algoritma Naive Bayes untuk Mengklasifikasi Data Nasabah,” TECHSI J. Penelit. Tek. Inform., vol. 4, pp. 127–146, 2010. [Online]. Available: http://journal.uad.ac.id/index.php/jifo/article/view/2086 [Accessed: 16-Aug-2020]

K. Chai, H. T. Hn, and H. L. Cheiu, “Naive-Bayes Classification Algorithm,” Proc. 25th Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 97–104, 2002,

H. Rosdianto and M. Toifur, “Implementasi Teori Distribusi Probabilitas Gaussian Pada Kualitas Rangkaian Penyearah Gelombang Penuh,” Spektra J. Fis. dan Apl., vol. 2, no. 1, pp. 83–90, 2017, [Online]. Available: https://www.researchgate.net/publication/316596344/ [Accessed: 16-Aug-2020]

C. R. Wilson Van Voorhis and B. L. Morgan, “Understanding Power and Rules of Thumb for Determining Sample Sizes,” Tutor. Quant. Methods Psychol., vol. 3, no. 2, pp. 43–50, 2007, [Online]. Available: https://www.tqmp.org/RegularArticles/vol03-2/p043/p043.pdf [Accessed: 16-Aug-2020]



DOI: https://doi.org/10.22146/ijeis.72608

Article Metrics

Abstract views : 166 | views : 167

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJEIS (Indonesian Journal of Electronics and Instrumentations Systems)
ISSN 2088-3714 (print); ISSN 2460-7681 (online)
is a scientific journal the results of Electronics
and Instrumentations Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijeis.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijeis



View My Stats1
View My Stats2