Penerapan Kawat Litz Pada Motor BLDC Untuk Peningkatan Gaya Dorong Per Daya

Muhammad Syauqi Firdausi(1*), Tri Wahyu Supardi(2), Roghib Muhammad Hujja(3)

(1) Program Studi Elektronika dan Instrumentasi, DIKE, FMIPA, UGM, Yogyakarta
(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(3) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author


Copper loss can cause a decrease in performance in BLDC motors, so efforts will be made to reduce copper loss by using Litz wire. Additionally, there have been studies that simulate the performance of Litz wire, but they have not been directly applied, especially to propeller thrust. The objective of this research is to implement Litz wire in a BLDC motor and analyze its performance for an increase in propeller thrust per power.

 The BLDC motor is wound with single wire and Litz wire. The analysis conducted compares the resistance, copper loss, thrust force, and thrust-to-power ratio of the single wire and Litz wire with the same wire cross-sectional area. The BLDC motor is equipped with a propeller to measure the thrust force.

 The average resistance of the single wire is 0.43 Ohms, while the Litz wire is 0.38 Ohms. The copper loss of the Litz wire is 7% lower than a single wire. The Litz wire exhibits a 3% improvement in thrust force compared to the single wire in the testing. The thrust-to-power ratio of the Litz wire is also 3% better during the testing. 


Litz wire; thrust; thrust-to-power ratio; copper loss; BLDC motor

Full Text:



H. Sahin and T. Oktay, “POWERPLANT SYSTEM DESIGN FOR UNMANNED TRICOPTER,” Engineering and Science, 2017. [2] Haomiao Huang, G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin, “Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering,” in 2009 IEEE International Conference on Robotics and Automation, Kobe: IEEE, May 2009, pp. 3277–3282. doi: 10.1109/ROBOT.2009.5152561. [3] Liyi Li, Donghua Pan, and Xuzhen Huang, “Analysis and Optimization of Ironless Permanent-Magnet Linear Motor for Improving Thrust,” IEEE Trans. Plasma Sci., vol. 41, no. 5, pp. 1188–1192, May 2013, doi: 10.1109/TPS.2013.2245425. [4] R. Ilka, A. R. Tilaki, H. Asgharpour-Alamdari, and R. Baghipour, “Design Optimization of Permanent Magnet-Brushless DC Motor using Elitist Genetic Algorithm with Minimum loss and Maximum Power Density,” vol. 4, 2014. [5] D. Novianto, E. Zondra, and H. Yuvendius, “Analisis Efisiensi Motor Induksi Tiga Phasa Sebagai Penggerak Vacuum Di PT. Pindo Deli Perawang,” vol. 4, no. 2, 2022. [6] Y. Liang, F. Zhao, K. Xu, W. Wang, J. Liu, and P. Yang, “Analysis of Copper Loss of Permanent Magnet Synchronous Motor With Formed Transposition Winding,” IEEE Access, vol. 9, pp. 101105–101114, 2021, doi: 10.1109/ACCESS.2021.3094833. [7] X. Wang, Z. Wang, M. He, Q. Zhou, X. Liu, and X. Meng, “Fault-Tolerant Control of Dual Three-Phase PMSM Drives With Minimized Copper Loss,” IEEE Trans. Power Electron., vol. 36, no. 11, pp. 12938–12953, Nov. 2021, doi: 10.1109/TPEL.2021.3076509. [8] X. Nan and C. R. Sullivan, “An Equivalent Complex Permeability Model for Litz-Wire Windings,” IEEE Trans. on Ind. Applicat., vol. 45, no. 2, pp. 854–860, 2009, doi: 10.1109/TIA.2009.2013594. [9] T. Guillod, J. Huber, F. Krismer, and J. W. Kolar, “Litz wire losses: Effects of twisting imperfections,” in 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, CA, USA: IEEE, Jul. 2017, pp. 1–8. doi: 10.1109/COMPEL.2017.8013327. [10] A. Bardalai, X. Zhang, and T. Zou, “Comparative Analysis of AC losses with round magnet wire and Litz wire winding of a High – Speed PM Machine,” 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 2019, doi: [11] R. Yoshida et al., “Effect of Magnetic Properties of Magnetic Composite Tapes on Motor Losses,” Energies, vol. 15, no. 21, p. 7991, Oct. 2022, doi: 10.3390/en15217991. [12] T. Dimier, M. Cossale, and T. Wellerdieck, “Comparison of Stator Winding Technologies for High-Speed Motors in Electric Propulsion Systems,” in 2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden: IEEE, Aug. 2020, pp. 2406–2412. doi: 10.1109/ICEM49940.2020.9270943. [13] D. Golovanov, Z. Xu, D. Gerada, A. Page, and T. Sawata, “Designing an Advanced Electrical Motor for Propulsion of Electric Aircraft,” in AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN: American Institute of Aeronautics and Astronautics, Aug. 2019. doi: 10.2514/6.2019-4482. [14] R. F. Sibarani and I. S. Amien, “PENGARUH ARUS NETRAL TERHADAP RUGI-RUGI BEBAN PADA TRANSFORMATOR DISTRIBUSI PLN RAYON JOHOR MEDAN,” 2015. [15] L. Nagel, “How to Calculate Motor Poles & Motor Kv,”, 2021. [16] J. C. R. Sihaan, A. Munawir, and Z. Husin, “ANALISIS GAYA DORONG (THRUST) PROPELLER PADA PESAWAT MODEL REMOTE CONTROL (UAV),” JMKN, vol. 8, no. 1, p. 135, Jun. 2022, doi: 10.35308/jmkn.v8i1.5698.


Article Metrics

Abstract views : 548 | views : 172


  • There are currently no refbacks.

Copyright (c) 2023 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of :
IJEIS (Indonesian Journal of Electronics and Instrumentations Systems)
ISSN 2088-3714 (print); ISSN 2460-7681 (online)
is a scientific journal the results of Electronics
and Instrumentations Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133 |

View My Stats1
View My Stats2