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Abstract. The issue of air pollution, particularly that of particulate matter (PM2.5), has recently garnered 
significant global attention. However, the implementation of effective air quality management is frequently 
impeded by a dearth of adequate monitoring and measurement equipment. In Yogyakarta City and its 
surrounding areas, monitoring ambient air concentration, particularly PM2.5, remains difficult due to the 
limitations of monitoring tools such as Air Quality Monitoring System (AQMS). These tools are costly to 
operate, which further worsens the challenges. Therefore, this research aimed to design Internet of Things 
(IoT)-based Low-Cost Sensor (LCS) as an economical and reliable alternative to PM2.5 monitoring tools. 
Research and Development method was used with Plomp development model, which included investigation, 
design, calibration, as well as implementation. The results showed that IoT-based LCS followed the SNI 9178: 
2023 standard with precision (SD 0.659 µg/m³; CV 23.59%), bias (slope 0.94; intercept 0.65 µg/m³), linearity 
(R² = 0.9), and RMSE 1.43 µg/m³. Moreover, the regression relationship between IoT-based LCS and AQMS 
was shown by the equation Y = 0.8633X + 2.7604, signifying a strong correlation between the two tools. During 
the analysis, IoT-based LCS appeared to be a promising solution for air quality monitoring, offering both 
effectiveness and affordability, with real-time data relevant to environmental management.. The IoT-based LCS 
has been designed simply, meets the calibration standards of SNI 9178:2023, and can be applied in suburban 
areas.
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Abstract. Flood is one of the disasters that often hit various regions in Indonesia, specifically in West Kalimantan. 
The floods in Nanga Pinoh District, Melawi Regency, submerged 18 villages and thousands of houses. Therefore, 
this study aimed to map flood risk areas in Nanga Pinoh and their environmental impact. Secondary data on 
the slope, total rainfall, flow density, soil type, and land cover analyzed with the multi-criteria GIS analysis 
were used. The results showed that the location had low, medium, and high risks. It was found that areas with 
high, prone, medium, and low risk class are 1,515.95 ha, 30,194.92 ha, 21,953.80 ha, and 3.14 ha, respectively. 
These findings implied that the GIS approach and multi-criteria analysis are effective tools for flood risk maps 
and helpful in anticipating greater losses and mitigating the disasters.
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1. Introductin
Floods occur when a river exceeds its storage capacity, 

forcing the excess water to overflow the banks and fill the 
adjacent low-lying lands. This phenomenon represents the 
most frequent disasters affecting a majority of countries 
worldwide (Rincón et al., 2018; Zwenzner & Voigt, 2009), 
specifically Indonesia. Flooding is one of the most devastating 
disasters that yearly damage natural and man-made features 
(Du et al., 2013; Falguni & Singh, 2020; Tehrany et al., 2013; 
Youssef et al., 2011).

There are flood risks in many regions resulting in great 
damage (Alfieri et al., 2016; Mahmoud & Gan, 2018) with 
significant social, economic, and environmental impacts 
(Falguni & Singh, 2020; Geographic, 2019; Komolafe et al., 
2020; Rincón et al., 2018; Skilodimou et al., 2019). The effects 
include loss of human life, adverse impacts on the population, 
damage to the infrastructure, essential services, crops, and 
animals, the spread of diseases, and water contamination 
(Rincón et al., 2018).

Food accounts for 34% and 40% of global natural disasters 
in quantity and losses, respectively (Lyu et al., 2019; Petit-
Boix et al., 2017), with the occurrence increasing significantly 
worldwide in the last three decades (Komolafe et al., 2020; 
Rozalis et al., 2010). The factors causing floods include 
climate change (Ozkan & Tarhan, 2016; Zhou et al., 2021), 
land structure (Jha et al., 2011; Zwenzner & Voigt, 2009), and 
vegetation, inclination, and humans (Curebal et al., 2016). 
Other causes are land-use change, such as deforestation and 
urbanization (Huong & Pathirana, 2013; Rincón et al., 2018; 
N. Zhang et al., 2018; Zhou et al., 2021).

The high rainfall in the last few months has caused much 
flooding in the sub-districts of the West Kalimantan region. 
Thousands of houses in 18 villages in Melawi Regency have 
been flooded in the past week due to increased rainfall 

intensity in the upstream areas of West Kalimantan. This 
occurred within the Nanga Pinoh Police jurisdiction, including 
Tanjung Lay Village, Tembawang Panjang, Pal Village, Tanjung 
Niaga, Kenual, Baru and Sidomulyo Village in Nanga Pinoh 
Spectacle, Melawi Regency (Supriyadi, 2020).

The flood disaster in Melawi Regency should be mitigated 
to minimize future consequences by mapping the risk. 
Various technologies such as Remote Sensing and Geographic 
Information Systems have been developed for monitoring flood 
disasters. This technology has significantly contributed to flood 
monitoring and damage assessment helpful for the disaster 
management authorities (Biswajeet & Mardiana, 2009; Haq 
et al., 2012; Pradhan et al., 2009). Furthermore, techniques 
have been developed to map flood vulnerability and extent 
and assess the damage. These techniques guide the operation 
of Remote Sensing (RS) and Geographic Information Systems 
(GIS) to improve the efficiency of monitoring and managing 
flood disasters (Haq et al., 2012).

In the age of modern technology, integrating information 
extracted through Geographical Information System (GIS) and 
Remote Sensing (RS) into other datasets provides tremendous 
potential for identifying, monitoring, and assessing flood 
disasters (Biswajeet & Mardiana, 2009; Haq et al., 2012; 
Pradhan et al., 2009). Understanding the causes of flooding 
is essential in making a comprehensive mitigation model. 
Different flood hazard prevention strategies have been 
developed, such as risk mapping to identify vulnerable areas’ 
flooding risk. These mapping processes are important for the 
early warning systems, emergency services, preventing and 
mitigating future floods, and implementing flood management 
strategies (Bubeck et al., 2012; Falguni & Singh, 2020; Mandal 
& Chakrabarty, 2016; Shafapour Tehrany et al., 2017).

GIS and remote sensing technologies map the spatial 
variability of flooding events and the resulting hazards 
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1.	 Introduction
Air pollution is constituting a persistent environmental 

problem and concern globally (Adedeji et al., 2016; Suresh & 
Palaniraj, 2018, Nicolaou & Checkley, 2021; Ahmed, 2024). 
Research of 1,600 cities across 91 countries showed that 
approximately 90% of urban residents were exposed to air 
quality, failing to meet established health-based standards 
(Mayor, 2016; Rentschler & Leonova, 2023). Therefore, further 
research is necessary to understand the full scope of this 
problem. Half of the global population has been exposed to 
levels of air pollution that exceed the established air quality 
standards by a factor of 2.5 (Nazarenko et al., 2021; Shaddick 
et al., 2020). Relating to this discussion, particulate is defined 
as a pollutant in the form of complex mixtures of particles in 
the air, including smoke, dust, dirt, and liquids with tiny sizes 
(Asif et al., 2022). Particulate matter 2.5 (PM2.5) can traverse 
the deepest parts of lungs and enter bloodstream (Falcon-
Rodriguez et al., 2016; Thangavel et al., 2022). Research on 
PM2.5, PM with a dimension of less than 2.5 µm, has seen a 
marked increase in recent years (Santoso et al., 2024; Yan et 
al., 2024). 

The presence of PM2.5 has been connected to adverse 
health outcomes, including acute respiratory infections 

(ARI), lung cancer, chronic obstructive pulmonary 
disease, cardiovascular disorders, and premature death 
(Cheepsattayakorn & Cheepsattayakorn, 2019; Chen & Hoek, 
2020; Larson et al., 2022; Nan et al., 2023; Thangavel et al., 
2022). These pollutants have been shown to avoid respiratory 
defense mechanisms and bind to blood components through 
air exchange process in the lung alveolus (Anggraeni & Lestari, 
2023; Yang et al., 2020). Moreover, the deposition of PM2.5 
in respiratory tract transpires through physical mechanisms 
such as sedimentation, interception, impaction, diffusion, and 
electronic precipitation (Darquenne, 2020). 

The accelerated development in Yogyakarta City and 
its surrounding areas has advanced the imminent threat of 
environmental concerns, one of which is air pollution (Irsyada 
& Oktapatika, 2023). This predicament is further worsened by 
substantial annual surge in motorized vehicles. According to 
data from Yogyakarta Special Region (DIY) Transportation 
Office and Indonesian National Police (Polri), the number of 
vehicles in 2020-2024 was 1.4; 1.5; 1.6; and 1.7 million units, 
respectively. Motorized vehicles are predominant source of 
air pollution emissions in Yogyakarta City and its environs 
(Akbar, 2023). 
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Floods occur when a river exceeds its storage capacity, 

forcing the excess water to overflow the banks and fill the 
adjacent low-lying lands. This phenomenon represents the 
most frequent disasters affecting a majority of countries 
worldwide (Rincón et al., 2018; Zwenzner & Voigt, 2009), 
specifically Indonesia. Flooding is one of the most devastating 
disasters that yearly damage natural and man-made features 
(Du et al., 2013; Falguni & Singh, 2020; Tehrany et al., 2013; 
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(Rincón et al., 2018).
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worldwide in the last three decades (Komolafe et al., 2020; 
Rozalis et al., 2010). The factors causing floods include 
climate change (Ozkan & Tarhan, 2016; Zhou et al., 2021), 
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urbanization (Huong & Pathirana, 2013; Rincón et al., 2018; 
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The high rainfall in the last few months has caused much 
flooding in the sub-districts of the West Kalimantan region. 
Thousands of houses in 18 villages in Melawi Regency have 
been flooded in the past week due to increased rainfall 

intensity in the upstream areas of West Kalimantan. This 
occurred within the Nanga Pinoh Police jurisdiction, including 
Tanjung Lay Village, Tembawang Panjang, Pal Village, Tanjung 
Niaga, Kenual, Baru and Sidomulyo Village in Nanga Pinoh 
Spectacle, Melawi Regency (Supriyadi, 2020).

The flood disaster in Melawi Regency should be mitigated 
to minimize future consequences by mapping the risk. 
Various technologies such as Remote Sensing and Geographic 
Information Systems have been developed for monitoring flood 
disasters. This technology has significantly contributed to flood 
monitoring and damage assessment helpful for the disaster 
management authorities (Biswajeet & Mardiana, 2009; Haq 
et al., 2012; Pradhan et al., 2009). Furthermore, techniques 
have been developed to map flood vulnerability and extent 
and assess the damage. These techniques guide the operation 
of Remote Sensing (RS) and Geographic Information Systems 
(GIS) to improve the efficiency of monitoring and managing 
flood disasters (Haq et al., 2012).

In the age of modern technology, integrating information 
extracted through Geographical Information System (GIS) and 
Remote Sensing (RS) into other datasets provides tremendous 
potential for identifying, monitoring, and assessing flood 
disasters (Biswajeet & Mardiana, 2009; Haq et al., 2012; 
Pradhan et al., 2009). Understanding the causes of flooding 
is essential in making a comprehensive mitigation model. 
Different flood hazard prevention strategies have been 
developed, such as risk mapping to identify vulnerable areas’ 
flooding risk. These mapping processes are important for the 
early warning systems, emergency services, preventing and 
mitigating future floods, and implementing flood management 
strategies (Bubeck et al., 2012; Falguni & Singh, 2020; Mandal 
& Chakrabarty, 2016; Shafapour Tehrany et al., 2017).

GIS and remote sensing technologies map the spatial 
variability of flooding events and the resulting hazards 
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AQMS was deployed in Yogyakarta in 2020; however, 
measurements were not feasible during 2020-2021 owing 
to the Covid-19 pandemic. Measurements commenced in 
2022, revealing that the PM₂,₅ pollutant parameter exhibited 
a moderate trend from April to September 2022. In the dry 
season, particularly from April to September, elevated PM₂.₅ 
concentrations are affected by arid air conditions, resulting in 
the suspension of solid PM₂.₅ pollutants in the atmosphere. 
In 2023, the concentration of PM₂.₅ is often lower during 
the rainy months than in the dry months. The arid months 
transpire in July, August, and September. The maximum 
PM₂.₅ concentration recorded was 29.64 μg/m³ in August, and 
the minimum was 14.79 μg/m³ in January. The results serve 
as data for the annual report in the region, where the AQMS 
readings are said to represent the entirety of Yogyakarta City.

This occurs primarily due to the limitations of AQMS, 
which is equipped with a single tool despite the extensive 
coverage area. Despite the system is capable of identifying 
concentration in a 5-kilometer radius, the variability in 
ambient air quality is influenced by numerous factors, 
including meteorological conditions, infrastructure, altitude, 
and environmental factors (Hou & Xu, 2022; Swamy et al., 
2020; Tatavarti, 2021). This difference between ideal and 
actual AQMS results can be attributed to the influence of 
these confounding variables, as evidenced by investigations 
according to Aboosaedi et al. (2023). A significant lacuna 
in this result is the absence of an ideal amount of PM2.5 
monitoring equipment. Moreover, the lack of the equipment 
can shortens the scope of data recorded and has the potential 
to hinder the efficacy of air quality management initiatives in 
the research area.

The expansion of AQMS is not a judicious solution 
due to its cost, specifically in instrument procurement and 
maintenance (Asim et al., 2018). Following the discussion, the 
use of manual reference tools, such as HVAS, is recommended. 
HVAS is considered suboptimal (Sugita et al., 2019), and its 
implementation may lead to increased air quality control 

expenditures. This research proposes a solution in the form 
of a cost-effective air quality monitoring tool LCS (Low-Cost 
Sensor) based on Internet of Things (IoT) (Ali et al., 2021). 
The tool can be reproduced and placed in various monitoring 
locations according to the purpose, providing maximum data 
for a specific area. Additionally, the model can be accessed in 
real time, at several moments, and from any location (Zakaria 
et al., 2018). The objectives of this study include the following 
1).  The design of an alternative air quality monitoring device 
for PM2.5 parameters in the form of an Internet of Things 
(IoT)-based Low-Cost Sensor (LCS), 2). The calibration of the 
IoT-based LCS PM2.5 measurement device, 3). The analysis 
of air quality conditions, particularly PM2.5 parameters, using 
the IoT-based LCS in the study area.

2.	 Methods
This research was conducted in Yogyakarta City and 

its surrounding areas as shown in Figure 1. This city and the 
southern part of Sleman Regency were located in Special 
Region of Yogyakarta, Indonesia. The geographical location of 
Yogyakarta City was defined by latitudes of approximately 7° 
47′-7° 52′ S and longitudes of 110° 20′-110° 25′ E. Moreover, 
southern part of Sleman Regency had latitudes of approximately 
7° 42′-7° 47′ S and longitudes of 110° 20′-110° 30′ E. The area 
was part of Yogyakarta urban agglomeration, situated near 
southern slopes of Mount Merapi, part of the most active 
volcanoes in the world, and close to Indian Ocean to the south.

The tropical monsoon climate of the area was marked 
by distinct wet and dry seasons, while the topography was 
predominantly flat to slightly undulating. The total area of 
Yogyakarta City was approximately 32.5 square kilometers, 
but Sleman Regency included a significantly larger area of 
approximately 574.82 square kilometers. The southern portion 
of Regency included densely populated urban areas and some 
agricultural land. In addition, the historical, cultural, and 
educational significance of the area rendered it a central hub 
for tourism as well as academic activities.

Figure1. Map of the research area and sample placement location with IoT-based LCS
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Calibration test was conducted at DLH Office of 

Yogyakarta City, where PM2.5 monitoring was conducted 
for 2 weeks, starting on November 26 and concluding on 
December 10, 2024. The data used in this research consisted 
of PM2.5 concentration data from LCS and AQMS. Moreover, 
IoT-based LCS instrument comprised NodeMCU ESP32, 
PMS5003 Sensor, and Web Thingspeak. The research 
method used during this investigation was the research and 
development method (Mesra et al., 2023). The characteristics 
of PMS5003 are presented in Table 1.

This process was a necessity for air quality information and 
applying sensors assembled in the form of software, allowing 
the effectiveness of the product and application of information 
to user for testing. This present research was designed using 
development model of Plomp (Estuhono et al., 2019), which 
comprised several phases, including (1) initial investigation, 
(2) design, (3) calibration, and (4) implementation phase.

As shown in Figure 2, the process of reading and recording 
PM2.5 data is carried out as input through the PM2.5 sensor 
and then processed by the microcontroller. The data is 
forwarded via the Internet and stored on the cloud server. The 
data stored on the cloud server can then be accessed through 
the web Thingspeak as output. 

The data calibration method on IoT-based LCS was 
conducted using a collocation method based on SNI 
9178, 2023—Ambient air—Performance test of air quality 
monitoring devices using LCS. The calibration process 
included the following steps. Initially, three IoT-based LCS 
instruments were installed at a distance of approximately 10 
meters and a height of roughly 2 meters from AQMS tool. This 
is in accordance with SNI9178:2023, which states that low-cost 
sensors must be tested at a minimum height of 1.5 m above 
ground level and at a minimum horizontal distance of 1 m and 
a maximum horizontal distance of 10 m from the reference 

Table 1. The characteristics of PMS5003
Parameter Index Unit

Particle Range of measurement 0.3~1.0; 1.0~2.5; 2.5~10 Micrometer (μm)

Particle Counting Efficiency
50%@0.3um  
98%@≥0.5μm  

Particle Effective Range (PM2.5 standard) 0~500 μg/m³
Particle Maximum Range (PM2.5 standard) * ≥1000 μg/m³
Particle Resolution 1 μg/m³

Particle Maximum Consistency Error (PM2.5 
standard data)*

±10%@100~500μg/m3  
±10μg/m3@0~100μg/m3 μg/m³

Particle Standard Volume 0.1 Litre (L)
Single Response Time <1 Second (s)
Total Response Time <10 Second (s)
DC Power Supply Typ: 5.0 Min:4.5 Max:5.5 Volt (V)
Active Current ≤100 Milliampere (mA)
Standby Current ≤10 Milliampere (mA)
Interface Level L<0.8 @3.3 H>2.7@3.3 Volt (V)
Working Temperature Range -10~+60 °C
Working Humidity Range 0~99  %
Storage Temperature Range -40~+80 °C
MTTF ≥3 Year
Physical Size 50mm×38mm×21mm mm

Sources: Plantower.com

Figure 2. Flowchart of IoT-based LCS Instrument System for Monitoring PM2.5 Air Quality
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measuring device sampling channel. Fi devices and servers 
were then installed, with this phase taking approximately 
1-2 weeks. Following the process, recording phase lasted for 
approximately 1-2 weeks, and finally, data analysis phase used 
a collocation system.

The results of PM2.5 measurements via LCS IoT 
and AQMS were statistically analyzed to determine the 
precision, bias, linearity and error values with the acceptance 
requirements shown in Table 2. 

The implementation of PM2.5 monitoring from IoT-
based LCS devices was conducted in various locations 
categorized by distinct land use types, including residential, 
green open space, education, industry, and trade. The data 
collection period spanned 24 hours, comprising both working 
days and holidays. Additionally, the recorded data passed 
through spatial analysis using Inverse Distance Weighting 
(IDW) kriging method, a process of visualizing data in two 
dimensions (Sejati, 2019; Shukla et al., 2019).

3. 	 Results and Discussions
3.1. IoT-based LCS Tool Design 

The operational framework of IoT-based LCS Instrument 
for air quality monitoring was initiated by data collection stage, 
where the primary sensors namely, temperature, humidity, and 
PM2.5 sensors operated in real-time to capture environmental 
parameters. Subsequently, the data from these three sensors 
was transmitted to processing unit, where it experienced 
formatting and consolidation into a unified, structured data 
packet. Following this process, the subsequent stage was 
data visualization and storage. The processed data was then 
presented to the user through a visual interface, taking the 
form of a real-time graph, enabling direct monitoring of 
environmental conditions. Figures 2, 3, 4, 5, 6, and 7 showed 
the visualization of materials and ingredients in IoT-based 
LCS design.

The objective of this IoT-based LCS system was to 
monitor air quality using temperature, humidity, and PM2.5 

Table 2. Acceptance Requirements for LCS Performance Test Particulate Parameters

No Collocation performance test criteria in the field Acceptability requirements
1. Precision a. Standard Deviation (SD) ≤ 5 μg/m³

  b. Coefficient of Variation (CV) ≤ 30%
2. Bias a. Slope 1,0 ± 0,35

  b. Intercept . -5≤ b ≤ 5μg/m³
3. Linearity Coefficient of determination (R²) ≥ 0,70
4. Error Root Mean Square Error (RMSE) RMSE ≤ 7 μg/m³

Sources: SNI 9178:2023

2). 3). 4). 

5). 6). 7). 
Figure 2. NodeMCU ESP32 Front Part, 3. NodeMCU ESP32 Back Part 4. Sensor and mitrocontroller circuit 5. PMS7003 PM2.5 

Sensor Tower Plan, 6. IoT-based LCS setting process, 7. IoT-based  LCS access appearance using device.
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sensors. During the research, MQTT communication protocol 
was used to facilitate collection of data from each sensor, 
enabling the transmission of real-time data to primary system. 
The data flow diagram showed that each data type, including 
temperature, humidity, and PM2.5, was retrieved from a 
distinct MQTT topic. Specifically, the data was retrieved as 
follows, including “airquality/temperature” for temperature, 
“airquality/humidity” for humidity, and “airquality/PM2.5” for 
PM2.5 particle concentration, respectively. The present study 
places greater emphasis on PM2.5 data. The process is simply 
shown in Figure 8.

3.2.  Calibration of IoT-Based LCS Instrument
PM2.5 measurement data recorded from IoT-based LCS 

was not considered valid due to the absence of calibration of 
the system. Calibration served to standardize the measurement 
value produced by LCS instrument following the national 
reference standard tool.

A tool was selected to test the calibration for comparison 
according to the reference standard, namely AQMS, which was 
managed by Ministry of Environment and Forestry (KLHK) 
and DLH Yogyakarta City. The implementation of IoT-based 
LCS calibration was achieved through the use of an alternative 
standard instrument, namely AQMS, as shown in Figure 9. 
Moreover, the calibration process included the collection of 
measurement as well as AQMS data, followed by mapping of 
data into curves and determination of equations. Figure 10 
showed that three IoT-based LCSs were installed close to the 
system. The equations used for this process included linear and 
exponential regression, as reviewed in the work of Chen, H. Y., 
& Chen, C. (2022). Relating to this discussion, the resulting 
equations were then subjected to confirmation. Validation was 
defined as a test of the equations determined by varying the 
true value that was different from the previous true value (Ufe 
et al., 2023).

The results of IoT-based LCS calibration, using AQMS as 
the reference measuring instrument were shown in Figure 11. 

Figure 8. Flow data from sensors on an IoT-based LCS

Figure 9. Air Quality Monitoring System installed at DLH Yogyakarta City as a reference 
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Figure 11 showed that the variation of PM2.5 concentration 
(in µg/m³) measured by three low-cost air monitors (LCS) 
over 14 days was identified. During the analysis, the daily 
average value showed significant fluctuations, with PM2.5 
concentration ranging from 4.57 µg/m³ on day 3 to 21.60 µg/
m³ on day 10. A substantial body of research has demonstrated 
that the Birmingham (UK) study exhibited a relatively robust 
average correlation between the sensor and the reference 
instrument, with an r2 value of approximately 0.7 for 
PM2.5(Cowell et al., 2022). In Salt Lake Valley, the correlation 
of this sensor was found to be moderate to low (R2 < 0.49) for 
PM10, with a tendency for the sensor to underestimate larger 
particle concentrations(Masic et al., 2020). The PMS5003 

sensor has an approximate limit of detection (LoD) of 1.6–4.75 
µg/m3. Following the implementation of calibration correction, 
the Pearson r value demonstrated a notable increase, ranging 
from 0.73–0.85 (raw) to 0.81–0.91. The R-squared value for 
PM10 in some studies reached 0.86–0.94 after calibration 
(Rabuan et al., 2023). The analysis implied that each LCS 
device presented a relatively consistent measurement pattern, 
with minor variations observed among the devices. However, 
individual results did signify slight variations, and the daily 
averages showed a trend of increasing this concentration on 
specific days (e.g., day 7 to day 10) followed by a subsequent 
decrease on the succeeding days.

Figure 10. Installation of Iot-based LCS next to AQMS for calibration 

Figure 11. Comparison graph of PM2.5 value of LCS1, LCS 2, LCS 3 sensors 
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Figure 12 showed a comparison was made between PM2.5 

concentration measured by IoT-based LCS and standard 
AQMS. The graph signified the trend of data over a period 
of 14 days, with this concentration measured in µg/m3.  It is 
probable that the elevated PM2.5 concentration on the initial 
day was a result of the limited dispersion of pollutants and the 
increased human activities and meteorological conditions.  
The minimal amounts observed on the 3rd and 14th days 
were likely attributable to advantageous weather conditions, 
like vigourous winds or precipitation, which facilitated air 
purification, coupled with diminished pollution sources.  
The same pattern noted between the LCS IoT sensor and 
the AQMS reference instrument suggests that these trends 
represent genuine environmental conditions rather than 
sensor inaccuracies. A general observation of the patterns of 
PM2.5 concentration fluctuations from both devices showed 
similarities, although there were differences in value at specific 
measurement points, especially on certain days, such as days 
2, 3, and 14. These discrepancies implied that IoT-based LCS 
device had minor deviations relative to AQMS standard device. 
Potential causes of these deviations included differences 
in device sensitivity or calibration factors. However, the 
parallelism in the trends showed by both devices signified the 
potential of IoT-based LCS device as a cost-effective alternative 
for air quality monitoring, particularly in scenarios where the 
deployment of AQMS device was impractical. LCS has been 

shown to incur significantly lower investment costs (Capex), 
typically ranging from tens to hundreds of US dollars, in 
comparison to AQMS, which can reach tens to hundreds of 
thousands of US dollars per unit. In regard to operational 
expenditures, LCS demonstrates enhanced cost-effectiveness 
due to its low power requirements, minimal maintenance 
needs, and straightforward calibration procedures. In contrast, 
AQMS requires periodic maintenance and costly professional 
calibrations, resulting in higher operational expenses. 
However, AQMS has been shown to offer higher accuracy and 
reliability, leading to its frequent use as a reference tool. LCS 
is a viable option for large-scale monitoring due to its cost-
effectiveness, though it is noted that its precision is inferior to 
that of AQMS.

During the analysis, CV value ranged from 0.29% to 
62.07%, signifying significant fluctuations between days. 
On day 5, the value reached maximum of 62.07%, while on 
day 14, it reached minimum of 0.29%. These fluctuations 
indicated variations in the measurement consistency of LCS 
tool, which was influenced by environmental factors, tool 
performance, or other variables. Generally, higher CV value 
showed unreliability in measurements on specific days, while 
lower value on other days implied more stable measurements. 
This observation signified the necessity for further evaluation 
to ensure the reliability of LCS tool.

Figure 12. Comparison graph of PM2.5 value between LCS and AQMS 

Figure 13. Linear regression graph of PM2.5 concentration data from AQMS and IoT-based LCS
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Figure 13 showed the relationship between PM2.5 

concentration measured by IoT-based LCS (x-axis) and AQMS 
(y-axis) over 14 days. The graph showed a robust positive 
linear relationship between the two devices. This relationship 
was quantitatively characterized by linear regression equation 
Y = 0.8633x + 2.7604, where y represented the concentration 
as measured by AQMS and x was PM2.5 concentration 
as measured by IoT-based LCS. In addition, coefficient of 
determination (R²) was a measure of how well the regression 
model explained the variability of PM2.5 concentration on 
AQMS. The regression model showed 83.7% of the variability 
of this concentration on AQMS based on the data generated 
by IoT-based LCS. This result signified a strong correlation 
between the measurements obtained from the two devices.

The gradient of the regression equation was 0.8633, 
which was less than 1. This result signified that IoT-based 
LCS measurements tended to show slightly lower PM2.5 
concentration compared to those measured by AQMS for 
equivalent concentration. Moreover, the intercept of 2.7604 
showed the presence of a fixed bias in the measurement 
outcomes, where AQMS consistently produced a higher value 
of approximately 2.76 PM2.5 units, even when IoT-based 
LCS measurement approached zero. This discrepancy was 
attributable to variations in sensor sensitivity or calibration 
methods used by the two instruments. Recalibration with a 
more large and varied set of reference data helps the PMS5003 
(LCS) sensor to have higher precision.  Sophisticated calibration 
models—including non-linear regression and machine 
learning approaches—can help to capture measurement 
variability related to environmental influences.  To guarantee 
the consistency and dependability of the experimental 
outcomes, it is absolutely necessary to include environmental 
variables such temperature and humidity.  Furthermore, basic 
maintenance and calibration processes on a regular basis are 
essential to guarantee the ongoing operation of instruments.  
At last, field validation using colocation testing with an AQMS 
will assist to improve the calibration technique and find 
measurement biases.

The distribution of data points on the graph signified that 
the majority of data points were focused close to regression 
line, implying a consistent relationship between IoT-based 
LCS and AQMS measurements. However, certain data points 
deviated from the regression line, showing the presence of 
outliers or discrepancies in the measurement process. These 
disparities were attributed to various factors, including 
environmental disturbances, variations in atmospheric 
conditions, or differences in sensor sensitivity. The primary 
factors contributing to measurement variations in IoT-based 
Low-Cost Sensors (LCS) for PM2.5 include sensor calibration, 
sensitivity variations among sensor units, ambient conditions 

such as temperature and humidity, and the employed 
calibration models.  Raysoni et al. (2023) assert that the most 
significant aspect is accurate calibration, which is coupled with 
sophisticated calibration models such as non-linear regression 
or machine learning to manage atmospheric variability.  
Moreover, as emphasised by Raheja et al. (2023), ambient 
circumstances exert a significant influence on sensor bias.  As 
emphasised by Miskell et al. (2019), sensor degradation and 
drift are pivotal factors that induce performance deterioration 
over time. This underscores the necessity for periodic 
recalibration and maintenance procedures to ensure optimal 
functionality.  In addition, Giordano et al. (2021)enhanced 
calibration techniques have been shown to reduce biases. 
These techniques include the measurement of particle size and 
composition, as well as spatial and data-driven algorithms.

During the analysis, the graph showed the relationship 
over 14 days. The representativeness of these results depended 
on the concentration variation during this time. When PM2.5 
concentration over 14 days remained relatively stable, the 
relationship was considered fairly representative. However, 
substantial fluctuations in PM2.5 concentration caused by 
meteorological shifts, anthropogenic activities, or variations 
in emission sources, required further scrutiny to evaluate the 
reliability of correlation between the two instruments under 
more dynamic conditions.

Table 3 showed that the results of the tool calibration 
process were contingent upon the criteria for collocation 
performance tests in the field, comprising precision, bias, 
linearity, and error. In terms of precision, the tool met SD ≤ 
5 µg/m³ with a value of 0.659 and CV ≤ 30% having a value 
of 23.59%. Concerning bias, the device showed a slope of 0.94 
(falling in the range of 1.0 ± 0.35) and an intercept of 0.65 
(ranging between -5 to 5 µg/m³). During the analysis, R² for 
linearity was found to be 0.9, which exceeded the minimum 
requirement of ≥ 0.70, signifying a strong relationship 
between device and reference. However, RMSE value of 1.43 
µg/m³ remained in the required RMSE ≤ 7 µg/m³ range. The 
calibration results signified that the tool met all performance 
test criteria, implying it possessed acceptable accuracy and 
consistency in the field.

IoT-based LCS during the research showed a strong 
correlation with AQMS in measuring PM2.5 concentration. 
Despite the presence of biases and discrepancies in the results, 
IoT-based LCS tool was used as a PM2.5 m. A strong association 
is demonstrated between the Internet of Things (IoT)-based 
Air Quality Monitoring System with Low-Cost Sensors 
(LCS) and AQMS; however, there are numerous significant 
shortcomings.  One such element is measurement bias, which 
is affected by environmental elements including temperature 
and humidity, as well as variances in sensor sensitivity amongst 

Table 3. Calibration Results Based on Colloquy Performance Test Criteria in the Field

No Collocation performance test criteria in the field Acceptability 
requirements

Calibration 
result Description

1 Precision a. Standard Deviation (SD) ≤ 5 μg/m³ 0.659 accepted
  b. Coefficient of Variation (CV) ≤ 30% 23,59% accepted

2 Bias a. Slope 1,0 ± 0,35 0,94 accepted
  b. Intercept . -5≤ b ≤ 5μg/m³ 0,65 accepted

3 Linearity Coefficient of determination (R²) ≥ 0,70 0,9 accepted

4 Error Root Mean Square Error (RMSE) RMSE ≤ 7 μg/m³ 1.43 µg/m³ accepted
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units.  In addition, LCS sensors are susceptible to drift and 
accuracy degradation over time in the absence of regular 
maintenance and calibration.  Furthermore, fundamental 
calibration techniques frequently prove ineffective in 
addressing the intricacies inherent to atmospheric condition 
fluctuations, resulting in data anomalies.  It is therefore 
evident that LCS requires more sophisticated calibration 
techniques and consistent maintenance in order to guarantee 
higher dependability, despite the fact that its efficiency and 
cost-effectiveness are impressive monitoring alternative, 
particularly given its simplicity as well as cost-effectiveness. 

3.3.	 The Ambient Air Concentration Value of PM 2.5 is 
derived from IoT-based LCS
The calibrated IoT-based LCS was used to monitor 

PM2.5 ambient air quality in the designated research area. The 
recorded value from IoT-based LCS were then processed and 
analyzed through calibration using the previously obtained 
equation Y = 0.8633x + 2.7604, ensuring the proximity 
of the value to that of the standard tool. In this particular 
scenario, the installation of five IoT-based LCS devices was 
implemented. The selection of sites for the installation of these 
IoT-based LCS devices was informed by the variation in land 
use types, including education areas, residential zones, green 
open spaces, commercial areas, and rice fields (see Figure 14).

IoT-based LCS was designed to record real-time data every 
minute, which was monitored through a server on a cellphone 
or laptop. Data recording was conducted on weekdays and 
holidays for a duration of 24 hours each, thereby enabling 
the determination of variations in PM2.5 concentration value 
between these days. The collection of working-day data started 
on Monday, while holiday data collection resumed on Sunday. 
The temporal division of a day into morning, afternoon, and 
night periods was used to obtain more detailed information. 
The collected data was then grouped as well as averaged, 

and subsequently calibrated using the equation, which was 
presented in the following graph. 

PM2.5 measurement results on weekdays was shown 
in Figure 154. During daylight hours, PM2.5 concentration 
showed a downward trend across all land use categories, with 
settlements registering the lowest concentration of 9.980 µg/
m³. This decline was attributed to various factors, including 
the direction and velocity of the wind in the research area, as 
evidenced by the results of (Chen et al., 2020). Higher wind 
speeds during the day were shown to affect PM2.5 concentration 
(Xu et al., 2023). Consequently, the education sector showed 
the highest PM2.5 concentration during the day, reaching 
24,310 µg/m³, which was attributable to the substantial activity 
present in school or college environments. Nighttime signified 
an increase in this concentration across certain land use types. 
The education sector showed the highest PM2.5 concentration 
during nighttime hours, with a recorded value of 36,271 µg/
m³. Equally, permanent settlements signified the lowest 
concentration, with an average of 17.346 µg/m³.

The data showed that PM2.5 concentration fluctuated 
according to time of day and land use type. The highest 
concentration was recorded during the morning in industrial 
neighborhoods, while the lowest concentration was recorded 
in the afternoon in residential areas. The PM2.5 concentration 
in the industrial sampling area is about three times higher 
in the morning than in the afternoon primarily due to 
meteorological and anthropogenic factors. During the morning 
hours, a temperature inversion often occurs, where cooler 
air is trapped near the ground under a layer of warmer air, 
limiting vertical mixing and causing pollutants to accumulate 
near the surface. Additionally, wind speeds are generally 
lower in the morning, reducing the dispersion of particulate 
matter. Morning hours also coincide with increased industrial 
activities and heavy traffic as shifts start, contributing to higher 
emissions. Furthermore, limited sunlight in the early morning 

Figure 14. Map of PM2.5 measurement sampling locations using IoT-based LCS
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restricts photochemical reactions that would normally help 
break down and disperse pollutants. Together, these factors 
create conditions for significantly elevated PM2.5 levels in the 
morning compared to the afternoon in industrial areas. The 
data signified that weekend variations in PM2.5 concentration 
were influenced by both land use and the time of day. The 
highest recorded concentration (84.245 µg/m³) was observed 

in the industrial area during the morning hours. This outcome 
was attributable to the commencement of industrial activities 
during this period, leading to elevated levels of air pollution. 
Consequently, green open spaces (RTH) showed the lowest 
concentration, measuring at 32.520 µg/m³, signifying that 
these areas experienced more favorable air quality during 
morning hours.

Figure 15. Graph of PM2.5 Concentration on Weekdays 

Figure 16. PM2.5 Concentration Graph on Weekend 
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As the day progressed, a general trend of decreasing 

PM2.5 concentration was observed, consistent across all land 
use categories. This decline was attributed to factors such as 
improved wind speed. The lowest recorded concentration, 
10.623 µg/m³, was observed in the green open space category, 
signifying that this area maintained the highest air quality in 
the day. Equally, residential areas showed the second lowest 
concentration, registering at 14.955 µg/m3.

PM2.5 measurement results on weekend was shown in 
Figure 16. During nocturnal hours, the concentration signified 
an increase, although it was not pronounced as the rise observed 
in the morning. The maximum concentration recorded during 
the night was observed in the education sector, reaching 
46,233 µg/m³. This phenomenon was attributed to a decline in 
natural ventilation and nighttime activities, which contributed 
to elevated levels of air pollution. Green open spaces showed 
the lowest concentration, with an average of 17,757 µg/m³. 
Following the discussion, the comprehensive analysis signified 
that industrial areas showed the highest PM2.5 concentration 
during morning hours, while green open spaces implied the 
lowest concentration during daytime periods.

1.4.	 Spatial Condition of PM2.5 in the Suburbs of 
Yogyakarta City
The study area utilized IDW (inverse distance weighting) 

interpolation, employing three calibrated sensors initially. 
However, due to adjustments made to the area and land use 
characteristics, two additional sensors were incorporated, 

resulting in a total of five sensors being used. The grid size was 
selected based on the area, the number of sensors installed, 
and the balance between spatial resolution and interpolation 
reliability. Consequently, a grid size of approximately 300 m 
was selected.The installation of IoT-based LCS instruments 
was conducted in five locations, with the selection of these 
sites based on the specific land use characteristics of each 
area. The distribution was then subjected to analysis using 
IDW interpolation method in ArcGIS software, considering 
three distinct periods (morning, afternoon, and evening) and 
comparing weekdays as well as holidays. The visualization in 
Figure 18 showed the variation in air pollutant concentration 
influenced by human activities and environmental conditions. 

The outcome was observed that on holidays, PM2.5 
concentration tended to be higher in the morning, as 
evidenced by the predominance of red to orange colors on 
the map. This phenomenon, as postulated by Yan et al. (2020), 
was attributed to an increase in air pollution, potentially 
attributable to an augmentation in domestic activities and a 
concomitant rise in private transportation during weekends. 
Consequently, a significant decrease in PM2.5 concentration 
was observed during the daytime, as shown by the transition 
to a lighter yellow color on the map. This decline was attributed 
to the dispersion process of pollutants, which was facilitated 
by increased temperature and air circulation during daytime 
hours. At night, the concentration showed a slight increase, 
but remained lower than morning levels.

Figure17. Visualization of PM2.5 Coverage Map in Yogyakarta Suburbs by Time
Source: (Data analysis, 2024)
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During weekdays, PM2.5 concentration showed a 

more pronounced decrease compared to holiday periods. In 
morning hours, the concentration presented a more uniform 
distribution, characterized by a predominant yellow hue, 
signifying a greater degree of manageability concerning air 
pollution levels. These observations supported the results 
reported in the research by Kusuma (2024).

The phenomenon was attributed to the presence of more 
regular patterns of human activity and the control of emissions 
from industrial sources or public transportation. A more 
pronounced decrease in PM2.5 concentration was observed 
during the day, with a shift toward a green color, signifying 
improved air quality. Equally at night, the concentration 
remained low with an even distribution across the research 
area.

The spatial distribution of PM2.5 as shown in Figure 16 
showed that mornings signified the highest concentration in 
both day as well as night conditions (holidays and workdays, 
respectively), with holidays experiencing more significant 
spikes. This observation implied that weekend mornings 
experienced increased influence from more intensive human 
activities when compared to weekdays. IDW which was 
a geospatial interpolation method used in this research, 
facilitated the identification of areas with the highest PM2.5 
concentration, providing a foundation for the formulation of 
policies aimed at mitigating air pollution in the suburban areas 
of Yogyakarta. Consequently, efforts to improve air quality 
should prioritize the control of morning emission sources, 
particularly during weekends.

1.5.  Discussion and recommendations
This research produced research that could be 

recommended as an alternative air quality monitoring tool, 
although the investigation did not replace the main role of 
standard tools such as AQMS and HVAS, specifically on PM2.5 
parameters. The design of IoT-based LCS tools was conducted 
by previous research with various objectives. For instance, 
Glass et al. (2020) developed LCS to monitor air quality in 
highly polluted urban areas, while Ruiter et al. (2023) focused 
on LCS designed for industrial areas to assess exposure to flour 
dust. Moreover, Reddy et al. (2020) developed LCS aimed at 
improving spatial and temporal understanding of matter 
particles using IoT-based LCS. Alfano et al. (2020) conducted 
a review of various LCS that these technologies could assist in 
air pollution measurement in areas with limited monitoring 
coverage.

Previous research constructed LCS that used diverse 
sensor types, which led to disparate data recording outcomes. 
In the context of results from an investigation by Jiao et al. 
(2016), evaluating the performance of low-cost PM2.5 
sensors under various environmental conditions. The study 
demonstrates that by showing precision with a standard 
deviation (SD) of 0.659 µg/m1 and a coefficient of variation 
(CV) of 23.59%, the LCS IoT PM2.5 sensor satisfies the stated 
standards of SD < 5 µg/m1 and CV ≤ 30%.   Sensor bias is 
evidenced by a slope value of 0.94 and an intercept of 0.65 µg/
m¹ in line with the slope range of 1.0 ± 0.35 and an intercept 
between -5 and 5 µg/m¹.   A coefficient of determination (R²) of 
0.9 and a root mean square error (RMSE) of 1.43 µg/m³ show 
the linearity of the sensor, therefore indicating the accuracy 
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During weekdays, PM2.5 concentration showed a 

more pronounced decrease compared to holiday periods. In 
morning hours, the concentration presented a more uniform 
distribution, characterized by a predominant yellow hue, 
signifying a greater degree of manageability concerning air 
pollution levels. These observations supported the results 
reported in the research by Kusuma (2024).

The phenomenon was attributed to the presence of more 
regular patterns of human activity and the control of emissions 
from industrial sources or public transportation. A more 
pronounced decrease in PM2.5 concentration was observed 
during the day, with a shift toward a green color, signifying 
improved air quality. Equally at night, the concentration 
remained low with an even distribution across the research 
area.

The spatial distribution of PM2.5 as shown in Figure 16 
showed that mornings signified the highest concentration in 
both day as well as night conditions (holidays and workdays, 
respectively), with holidays experiencing more significant 
spikes. This observation implied that weekend mornings 
experienced increased influence from more intensive human 
activities when compared to weekdays. IDW which was 
a geospatial interpolation method used in this research, 
facilitated the identification of areas with the highest PM2.5 
concentration, providing a foundation for the formulation of 
policies aimed at mitigating air pollution in the suburban areas 
of Yogyakarta. Consequently, efforts to improve air quality 
should prioritize the control of morning emission sources, 
particularly during weekends.

1.5.  Discussion and recommendations
This research produced research that could be 

recommended as an alternative air quality monitoring tool, 
although the investigation did not replace the main role of 
standard tools such as AQMS and HVAS, specifically on PM2.5 
parameters. The design of IoT-based LCS tools was conducted 
by previous research with various objectives. For instance, 
Glass et al. (2020) developed LCS to monitor air quality in 
highly polluted urban areas, while Ruiter et al. (2023) focused 
on LCS designed for industrial areas to assess exposure to flour 
dust. Moreover, Reddy et al. (2020) developed LCS aimed at 
improving spatial and temporal understanding of matter 
particles using IoT-based LCS. Alfano et al. (2020) conducted 
a review of various LCS that these technologies could assist in 
air pollution measurement in areas with limited monitoring 
coverage.

Previous research constructed LCS that used diverse 
sensor types, which led to disparate data recording outcomes. 
In the context of results from an investigation by Jiao et al. 
(2016), evaluating the performance of low-cost PM2.5 
sensors under various environmental conditions. The study 
demonstrates that by showing precision with a standard 
deviation (SD) of 0.659 µg/m1 and a coefficient of variation 
(CV) of 23.59%, the LCS IoT PM2.5 sensor satisfies the stated 
standards of SD < 5 µg/m1 and CV ≤ 30%.   Sensor bias is 
evidenced by a slope value of 0.94 and an intercept of 0.65 µg/
m¹ in line with the slope range of 1.0 ± 0.35 and an intercept 
between -5 and 5 µg/m¹.   A coefficient of determination (R²) of 
0.9 and a root mean square error (RMSE) of 1.43 µg/m³ show 
the linearity of the sensor, therefore indicating the accuracy 
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and consistency of the measurements.  This falls also below the 
maximum RMSE threshold of 7 µg/m³.   Reporting calibration 
data for the PMS5003 sensor, Jiao et al. (2016) noted a minor 
intercept within the ±5 µg/m¹ range and a calibration slope 
between 0.85 and 1.1.  Complementing the standard deviation 
(SD) below 5 µg/m¹ and a coefficient of variation (CV) of 20–
25% the study also indicated equivalent sensor performance 
in urban environmental circumstances.   At the same time, 
research by Sousan et al. (2016) revealed low-cost sensor 
root mean square error (RMSE) values between 2.0 and 3.5 
µg/m1.   Although this spectrum surpasses the results of the 
current research, it stays within the reasonable boundaries for 
non-regulating uses.   Although the claimed accuracy and bias 
of the sensors were judged sufficient, it was underlined that 
regular calibration is absolutely necessary to guarantee the 
validity and dependability of the findings.

Developed IoT-based LCS successfully passed the 
calibration test using the collocation method as recommended 
by KLHK according to the Standard of Indonesia (SNI) 9178: 
2023. A salient benefit of IoT-based LCS included its capacity 
to provide real-time data with high temporal resolution. 
Moreover, the data recorded by microcontroller was stored in 
the cloud and could be accessed using a laptop or mobile device 
through an internet server, as shown in Figure 17. The tool was 
capable of recording data at one-minute intervals, both in the 
form of numbers and graphs, which could then be used for 
monitoring at various locations such as four-way intersections, 
shopping centers, and educational environments. This result 
supported the research by Reddy et al. (2020), which showed 
the significance of high-density air pollution monitoring 
using IoT-based LCS nodes. Research by Snyder et al. (2013) 
signified that the development of IoT-based sensors facilitated 
more incorporated monitoring with big data-based systems.

The implementation of PM2.5 concentration 
measurement using IoT-based LCS was conducted at five 
points with varying land use types. The results showed that 
green open space areas signified lower PM2.5 concentration 
levels compared to industrial, education, residential, and trade 
areas. This observation supported the results reported in the 
research by Badura et al. (2018), explaining that vegetation 
acted as a natural filter for airborne particles. However, other 
investigations such as Jin et al. (2014) produced contradictory 
results, signifying that PM2.5 concentration in areas with 
abundant vegetation were higher due to the influence of 
specific local activities. Sousan et al. (2016) also showed 
that air particle sensor performance varied depending on 
environmental conditions and calibration settings. 

Research findings indicate that sensors monitoring 
parameters critical to the Air Quality Index (AQI), such as 
PM10, NO2, SO2, CO, O3, and HC, should be incorporated 
into subsequent IoT-based LCS systems.   The objective of this 
study was to assess the reliability of PM2.5 sensor data over 
an extended period, with the aim of determining the optimal 
sensor replacement interval during operation. However, the 
implementation of IoT-based LCS had various limitations 
which included the necessity for regular recalibration as well as 
sensor maintenance and replacement under certain conditions 
(Badura et al., 2018). This research provided recommendations 
to interested parties to consider further development of IoT-
based LCS as an efficient and affordable air quality monitoring 
solution, specifically for PM2.25 parameters. This innovative 
approach also contributes to achieving SDG 11 (Sustainable 
Cities and Communities).

3.	 Conclusion
In conclusion, IoT-based LCS Design was implemented 

and could be used for air quality monitoring, particularly 
PM2.5 sensor. The outcome was shown by the calibration 
results with a standard or reference tool AQMS, which met 
the standards of SNI 9178: 2023—Ambient air—Performance 
test of air quality monitoring devices using LCS (SNI 9178, 
2023). Following this process, the precision value also met the 
standard as mentioned earlier. The collocation performance 
in the field met all accepted requirements, as shown by the 
calibration results. Precision with SD of 0.659 µg/m³ and CV 
of 23.59% satisfied the criteria of SD ≤ 5 µg/m³ as well as CV 
≤ 30%. The bias, signified by a slope of 0.94 and an intercept 
of 0.65 µg/m³, also satisfied the criteria of a slope of 1.0 ± 0.35 
as well as an intercept ranging from -5 to 5 µg/m³. Linearity, 
with R² of 0.9, met the criterion of ≥0.70, while the error with 
RMSE of 1.43 µg/m³ met the requirement of RMSE ≤7 µg/m³. 
This result implied that LCS showed reliable performance and 
was suitable for use in a field setting. IoT-based LCS could 
also be implemented for monitoring PM2.5 concentration 
in suburban areas, with results that varied according to time 
conditions and differences in variables affecting the models. 
The IoT-based LCS has been designed simply, meets the 
calibration standards of SNI 9178:2023, and can be applied in 
suburban areas.
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