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Abstract. The issue of air pollution, particularly that of particulate matter (PM2.5), has recently garnered
significant global attention. However, the implementation of effective air quality management is frequently
impeded by a dearth of adequate monitoring and measurement equipment. In Yogyakarta City and its
surrounding areas, monitoring ambient air concentration, particularly PM2.5, remains difficult due to the
limitations of monitoring tools such as Air Quality Monitoring System (AQMS). These tools are costly to
operate, which further worsens the challenges. Therefore, this research aimed to design Internet of Things
(IoT)-based Low-Cost Sensor (LCS) as an economical and reliable alternative to PM2.5 monitoring tools.
Research and Development method was used with Plomp development model, which included investigation,
design, calibration, as well as implementation. The results showed that IoT-based LCS followed the SNI 9178:
2023 standard with precision (SD 0.659 ug/m?* CV 23.59%), bias (slope 0.94; intercept 0.65 pg/m?), linearity
(R* = 0.9), and RMSE 1.43 pg/m®. Moreover, the regression relationship between IoT-based LCS and AQMS
was shown by the equation Y = 0.8633X + 2.7604, signifying a strong correlation between the two tools. During
the analysis, IoT-based LCS appeared to be a promising solution for air quality monitoring, offering both
effectiveness and affordability, with real-time data relevant to environmental management.. The IoT-based LCS
has been designed simply, meets the calibration standards of SNI 9178:2023, and can be applied in suburban

. areas.
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1. Introduction

Air pollution is constituting a persistent environmental
problem and concern globally (Adedeji et al., 2016; Suresh &
Palaniraj, 2018, Nicolaou & Checkley, 2021; Ahmed, 2024).
Research of 1,600 cities across 91 countries showed that
approximately 90% of urban residents were exposed to air
quality, failing to meet established health-based standards
(Mayor, 2016; Rentschler & Leonova, 2023). Therefore, further
research is necessary to understand the full scope of this
problem. Half of the global population has been exposed to
levels of air pollution that exceed the established air quality
standards by a factor of 2.5 (Nazarenko et al., 2021; Shaddick
et al,, 2020). Relating to this discussion, particulate is defined
as a pollutant in the form of complex mixtures of particles in
the air, including smoke, dust, dirt, and liquids with tiny sizes
(Asif et al., 2022). Particulate matter 2.5 (PM2.5) can traverse
the deepest parts of lungs and enter bloodstream (Falcon-
Rodriguez et al., 2016; Thangavel et al., 2022). Research on
PM2.5, PM with a dimension of less than 2.5 pum, has seen a
marked increase in recent years (Santoso et al., 2024; Yan et
al., 2024).

The presence of PM2.5 has been connected to adverse
health outcomes, including acute respiratory infections

(ARI), lung cancer, chronic obstructive pulmonary
disease, cardiovascular disorders, and premature death
(Cheepsattayakorn & Cheepsattayakorn, 2019; Chen & Hoek,
2020; Larson et al.,, 2022; Nan et al., 2023; Thangavel et al.,
2022). These pollutants have been shown to avoid respiratory
defense mechanisms and bind to blood components through
air exchange process in the lung alveolus (Anggraeni & Lestari,
2023; Yang et al., 2020). Moreover, the deposition of PM2.5
in respiratory tract transpires through physical mechanisms
such as sedimentation, interception, impaction, diffusion, and
electronic precipitation (Darquenne, 2020).

The accelerated development in Yogyakarta City and
its surrounding areas has advanced the imminent threat of
environmental concerns, one of which is air pollution (Irsyada
& Oktapatika, 2023). This predicament is further worsened by
substantial annual surge in motorized vehicles. According to
data from Yogyakarta Special Region (DIY) Transportation
Office and Indonesian National Police (Polri), the number of
vehicles in 2020-2024 was 1.4; 1.5; 1.6; and 1.7 million units,
respectively. Motorized vehicles are predominant source of
air pollution emissions in Yogyakarta City and its environs
(Akbar, 2023).
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AQMS was deployed in Yogyakarta in 2020; however,
measurements were not feasible during 2020-2021 owing
to the Covid-19 pandemic. Measurements commenced in
2022, revealing that the PM,,s pollutant parameter exhibited
a moderate trend from April to September 2022. In the dry
season, particularly from April to September, elevated PM;.5
concentrations are affected by arid air conditions, resulting in
the suspension of solid PM,.5 pollutants in the atmosphere.
In 2023, the concentration of PM,.5 is often lower during
the rainy months than in the dry months. The arid months
transpire in July, August, and September. The maximum
PM,.5 concentration recorded was 29.64 pg/m? in August, and
the minimum was 14.79 pg/m® in January. The results serve
as data for the annual report in the region, where the AQMS
readings are said to represent the entirety of Yogyakarta City.

This occurs primarily due to the limitations of AQMS,
which is equipped with a single tool despite the extensive
coverage area. Despite the system is capable of identifying
concentration in a 5-kilometer radius, the variability in
ambient air quality is influenced by numerous factors,
including meteorological conditions, infrastructure, altitude,
and environmental factors (Hou & Xu, 2022; Swamy et al.,
2020; Tatavarti, 2021). This difference between ideal and
actual AQMS results can be attributed to the influence of
these confounding variables, as evidenced by investigations
according to Aboosaedi et al. (2023). A significant lacuna
in this result is the absence of an ideal amount of PM2.5
monitoring equipment. Moreover, the lack of the equipment
can shortens the scope of data recorded and has the potential
to hinder the efficacy of air quality management initiatives in
the research area.

The expansion of AQMS is not a judicious solution
due to its cost, specifically in instrument procurement and
maintenance (Asim et al., 2018). Following the discussion, the
use of manual reference tools, such as HVAS, is recommended.
HVAS is considered suboptimal (Sugita et al., 2019), and its
implementation may lead to increased air quality control

420000 uuqf;mAZS'OOO 430I()00
1

\m'zlru‘435'000

expenditures. This research proposes a solution in the form
of a cost-effective air quality monitoring tool LCS (Low-Cost
Sensor) based on Internet of Things (IoT) (Ali et al., 2021).
The tool can be reproduced and placed in various monitoring
locations according to the purpose, providing maximum data
for a specific area. Additionally, the model can be accessed in
real time, at several moments, and from any location (Zakaria
et al,, 2018). The objectives of this study include the following
1). The design of an alternative air quality monitoring device
for PM2.5 parameters in the form of an Internet of Things
(IoT)-based Low-Cost Sensor (LCS), 2). The calibration of the
IoT-based LCS PM2.5 measurement device, 3). The analysis
of air quality conditions, particularly PM2.5 parameters, using
the IoT-based LCS in the study area.

2. Methods

This research was conducted in Yogyakarta City and
its surrounding areas as shown in Figure 1. This city and the
southern part of Sleman Regency were located in Special
Region of Yogyakarta, Indonesia. The geographical location of
Yogyakarta City was defined by latitudes of approximately 7°
47'-7° 52" S and longitudes of 110° 20’-110° 25" E. Moreover,
southern part of Sleman Regency had latitudes of approximately
7° 42'-7° 47" S and longitudes of 110° 20’-110° 30" E. The area
was part of Yogyakarta urban agglomeration, situated near
southern slopes of Mount Merapi, part of the most active
volcanoes in the world, and close to Indian Ocean to the south.

The tropical monsoon climate of the area was marked
by distinct wet and dry seasons, while the topography was
predominantly flat to slightly undulating. The total area of
Yogyakarta City was approximately 32.5 square kilometers,
but Sleman Regency included a significantly larger area of
approximately 574.82 square kilometers. The southern portion
of Regency included densely populated urban areas and some
agricultural land. In addition, the historical, cultural, and
educational significance of the area rendered it a central hub
for tourism as well as academic activities.
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Figurel. Map of the research area and sample placement location with IoT-based LCS
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Calibration test was conducted at DLH Office of
Yogyakarta City, where PM2.5 monitoring was conducted
for 2 weeks, starting on November 26 and concluding on
December 10, 2024. The data used in this research consisted
of PM2.5 concentration data from LCS and AQMS. Moreover,
IoT-based LCS instrument comprised NodeMCU ESP32,
PMS5003 Sensor, and Web Thingspeak. The research
method used during this investigation was the research and
development method (Mesra et al., 2023). The characteristics
of PMS5003 are presented in Table 1.

This process was a necessity for air quality information and
applying sensors assembled in the form of software, allowing
the effectiveness of the product and application of information
to user for testing. This present research was designed using
development model of Plomp (Estuhono et al., 2019), which
comprised several phases, including (1) initial investigation,
(2) design, (3) calibration, and (4) implementation phase.

As shown in Figure 2, the process of reading and recording
PM2.5 data is carried out as input through the PM2.5 sensor
and then processed by the microcontroller. The data is
forwarded via the Internet and stored on the cloud server. The
data stored on the cloud server can then be accessed through
the web Thingspeak as output.

The data calibration method on IoT-based LCS was
conducted using a collocation method based on SNI
9178, 2023—Ambient air—Performance test of air quality
monitoring devices using LCS. The calibration process
included the following steps. Initially, three IoT-based LCS
instruments were installed at a distance of approximately 10
meters and a height of roughly 2 meters from AQMS tool. This
is in accordance with SNI9178:2023, which states that low-cost
sensors must be tested at a minimum height of 1.5 m above
ground level and at a minimum horizontal distance of 1 m and
a maximum horizontal distance of 10 m from the reference

Table 1. The characteristics of PMS5003

Parameter Index Unit
Particle Range of measurement 0.3~1.0; 1.0~2.5; 2.5~10 Micrometer (pum)
50%@0.3um
Particle Counting Efficiency 98%@=0.5um
Particle Effective Range (PM2.5 standard) 0~500 pg/m?®
Particle Maximum Range (PM2.5 standard) * ~ >1000 pg/m?
Particle Resolution 1 pg/m?’
Particle Maximum Consistency Error (PM2.5  +£10%@100~500pg/m3
standard data)* +10pg/m3@0~100pg/m3  pg/m’
Particle Standard Volume 0.1 Litre (L)
Single Response Time <1 Second (s)
Total Response Time <10 Second (s)
DC Power Supply Typ: 5.0 Min:4.5 Max:5.5  Volt (V)
Active Current <100 Milliampere (mA)
Standby Current <10 Milliampere (mA)
Interface Level 1L<0.8 @3.3 H>2.7@3.3 Volt (V)
Working Temperature Range -10~+60 °C
Working Humidity Range 0~99 %
Storage Temperature Range -40~+80 °C
MTTF >3 Year
Physical Size 50mmx38mmx21lmm mm

Sources: Plantower.com
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Figure 2. Flowchart of IoT-based LCS Instrument System for Monitoring PM2.5 Air Quality
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measuring device sampling channel. Fi devices and servers
were then installed, with this phase taking approximately
1-2 weeks. Following the process, recording phase lasted for
approximately 1-2 weeks, and finally, data analysis phase used
a collocation system.

The results of PM2.5 measurements via LCS IoT
and AQMS were statistically analyzed to determine the
precision, bias, linearity and error values with the acceptance
requirements shown in Table 2.

The implementation of PM2.5 monitoring from IoT-
based LCS devices was conducted in various locations
categorized by distinct land use types, including residential,
green open space, education, industry, and trade. The data
collection period spanned 24 hours, comprising both working
days and holidays. Additionally, the recorded data passed
through spatial analysis using Inverse Distance Weighting
(IDW) kriging method, a process of visualizing data in two
dimensions (Sejati, 2019; Shukla et al., 2019).

3. Results and Discussions
3.1. IoT-based LCS Tool Design

The operational framework of IoT-based LCS Instrument
for air quality monitoring was initiated by data collection stage,
where the primary sensors namely, temperature, humidity, and
PM2.5 sensors operated in real-time to capture environmental
parameters. Subsequently, the data from these three sensors
was transmitted to processing unit, where it experienced
formatting and consolidation into a unified, structured data
packet. Following this process, the subsequent stage was
data visualization and storage. The processed data was then
presented to the user through a visual interface, taking the
form of a real-time graph, enabling direct monitoring of
environmental conditions. Figures 2, 3, 4, 5, 6, and 7 showed
the visualization of materials and ingredients in IoT-based
LCS design.

The objective of this IoT-based LCS system was to
monitor air quality using temperature, humidity, and PM2.5

Table 2. Acceptance Requirements for LCS Performance Test Particulate Parameters

No

Collocation performance test criteria in the field

Acceptability requirements

L. Precision a. Standard Deviation (SD) <5 pg/m’
b. Coeflicient of Variation (CV) < 30%
2. Bias a. Slope 1,0 £ 0,35
b. Intercept -5<b < 5pg/m’
Linearity Coeflicient of determination (R?) >0,70
4.  Error Root Mean Square Error (RMSE) RMSE < 7 pug/m’

Sources: SNI 9178:2023

2).

6).

5).

7).

Figure 2. NodeMCU ESP32 Front Part, 3. NodeMCU ESP32 Back Part 4. Sensor and mitrocontroller circuit 5. PMS7003 PM2.5
Sensor Tower Plan, 6. IoT-based LCS setting process, 7. IoT-based LCS access appearance using device.
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Figure 8. Flow data from sensors on an IoT-based LCS

Figure 9. Air Quality Monitoring System installed at DLH Yogyakarta City as a reference

sensors. During the research, MQTT communication protocol
was used to facilitate collection of data from each sensor,
enabling the transmission of real-time data to primary system.
The data flow diagram showed that each data type, including
temperature, humidity, and PM2.5, was retrieved from a
distinct MQT'T topic. Specifically, the data was retrieved as
follows, including “airquality/temperature” for temperature,
“airquality/humidity” for humidity, and “airquality/PM2.5” for
PM2.5 particle concentration, respectively. The present study
places greater emphasis on PM2.5 data. The process is simply
shown in Figure 8.

3.2. Calibration of IoT-Based LCS Instrument

PM2.5 measurement data recorded from IoT-based LCS
was not considered valid due to the absence of calibration of
the system. Calibration served to standardize the measurement
value produced by LCS instrument following the national
reference standard tool.

412

A tool was selected to test the calibration for comparison
according to the reference standard, namely AQMS, which was
managed by Ministry of Environment and Forestry (KLHK)
and DLH Yogyakarta City. The implementation of IoT-based
LCS calibration was achieved through the use of an alternative
standard instrument, namely AQMS, as shown in Figure 9.
Moreover, the calibration process included the collection of
measurement as well as AQMS data, followed by mapping of
data into curves and determination of equations. Figure 10
showed that three IoT-based LCSs were installed close to the
system. The equations used for this process included linear and
exponential regression, as reviewed in the work of Chen, H. Y,
& Chen, C. (2022). Relating to this discussion, the resulting
equations were then subjected to confirmation. Validation was
defined as a test of the equations determined by varying the
true value that was different from the previous true value (Ufe
et al., 2023).

The results of IoT-based LCS calibration, using AQMS as
the reference measuring instrument were shown in Figure 11.
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i

Figure 10. Installation of Iot-based LCS next to AQMS for calibration
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Figure 11. Comparison graph of PM2.5 value of LCS1, LCS 2, LCS 3 sensors

Figure 11 showed that the variation of PM2.5 concentration
(in pg/m®) measured by three low-cost air monitors (LCS)
over 14 days was identified. During the analysis, the daily
average value showed significant fluctuations, with PM2.5
concentration ranging from 4.57 ug/m? on day 3 to 21.60 pg/
m® on day 10. A substantial body of research has demonstrated
that the Birmingham (UK) study exhibited a relatively robust
average correlation between the sensor and the reference
instrument, with an r2 value of approximately 0.7 for
PM2.5(Cowell et al., 2022). In Salt Lake Valley, the correlation
of this sensor was found to be moderate to low (R2 < 0.49) for
PM10, with a tendency for the sensor to underestimate larger
particle concentrations(Masic et al., 2020). The PMS5003
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sensor has an approximate limit of detection (LoD) of 1.6-4.75
ug/ma3. Following the implementation of calibration correction,
the Pearson r value demonstrated a notable increase, ranging
from 0.73-0.85 (raw) to 0.81-0.91. The R-squared value for
PM10 in some studies reached 0.86-0.94 after calibration
(Rabuan et al., 2023). The analysis implied that each LCS
device presented a relatively consistent measurement pattern,
with minor variations observed among the devices. However,
individual results did signify slight variations, and the daily
averages showed a trend of increasing this concentration on
specific days (e.g., day 7 to day 10) followed by a subsequent
decrease on the succeeding days.
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Figure 12 showed a comparison was made between PM2.5
concentration measured by IoT-based LCS and standard
AQMS. The graph signified the trend of data over a period
of 14 days, with this concentration measured in pg/m’. It is
probable that the elevated PM2.5 concentration on the initial
day was a result of the limited dispersion of pollutants and the
increased human activities and meteorological conditions.
The minimal amounts observed on the 3™ and 14" days
were likely attributable to advantageous weather conditions,
like vigourous winds or precipitation, which facilitated air
purification, coupled with diminished pollution sources.
The same pattern noted between the LCS IoT sensor and
the AQMS reference instrument suggests that these trends
represent genuine environmental conditions rather than
sensor inaccuracies. A general observation of the patterns of
PM2.5 concentration fluctuations from both devices showed
similarities, although there were differences in value at specific
measurement points, especially on certain days, such as days
2, 3, and 14. These discrepancies implied that IoT-based LCS
device had minor deviations relative to AQMS standard device.
Potential causes of these deviations included differences
in device sensitivity or calibration factors. However, the
parallelism in the trends showed by both devices signified the
potential of IoT-based LCS device as a cost-effective alternative
for air quality monitoring, particularly in scenarios where the
deployment of AQMS device was impractical. LCS has been
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shown to incur significantly lower investment costs (Capex),
typically ranging from tens to hundreds of US dollars, in
comparison to AQMS, which can reach tens to hundreds of
thousands of US dollars per unit. In regard to operational
expenditures, LCS demonstrates enhanced cost-effectiveness
due to its low power requirements, minimal maintenance
needs, and straightforward calibration procedures. In contrast,
AQMS requires periodic maintenance and costly professional
calibrations, resulting in higher operational expenses.
However, AQMS has been shown to offer higher accuracy and
reliability, leading to its frequent use as a reference tool. LCS
is a viable option for large-scale monitoring due to its cost-
effectiveness, though it is noted that its precision is inferior to
that of AQMS.

During the analysis, CV value ranged from 0.29% to
62.07%, signifying significant fluctuations between days.
On day 5, the value reached maximum of 62.07%, while on
day 14, it reached minimum of 0.29%. These fluctuations
indicated variations in the measurement consistency of LCS
tool, which was influenced by environmental factors, tool
performance, or other variables. Generally, higher CV value
showed unreliability in measurements on specific days, while
lower value on other days implied more stable measurements.
This observation signified the necessity for further evaluation
to ensure the reliability of LCS tool.
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Figure 12. Comparison graph of PM2.5 value between LCS and AQMS
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Figure 13. Linear regression graph of PM2.5 concentration data from AQMS and IoT-based LCS
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Figure 13 showed the relationship between PM2.5
concentration measured by IoT-based LCS (x-axis) and AQMS
(y-axis) over 14 days. The graph showed a robust positive
linear relationship between the two devices. This relationship
was quantitatively characterized by linear regression equation
Y = 0.8633x + 2.7604, where y represented the concentration
as measured by AQMS and x was PM2.5 concentration
as measured by IoT-based LCS. In addition, coefficient of
determination (R*) was a measure of how well the regression
model explained the variability of PM2.5 concentration on
AQMS. The regression model showed 83.7% of the variability
of this concentration on AQMS based on the data generated
by IoT-based LCS. This result signified a strong correlation
between the measurements obtained from the two devices.

The gradient of the regression equation was 0.8633,
which was less than 1. This result signified that IoT-based
LCS measurements tended to show slightly lower PM2.5
concentration compared to those measured by AQMS for
equivalent concentration. Moreover, the intercept of 2.7604
showed the presence of a fixed bias in the measurement
outcomes, where AQMS consistently produced a higher value
of approximately 2.76 PM2.5 units, even when IoT-based
LCS measurement approached zero. This discrepancy was
attributable to variations in sensor sensitivity or calibration
methods used by the two instruments. Recalibration with a
more large and varied set of reference data helps the PMS5003
(LCS) sensor to have higher precision. Sophisticated calibration
models—including non-linear regression and machine
learning approaches—can help to capture measurement
variability related to environmental influences. To guarantee
the consistency and dependability of the experimental
outcomes, it is absolutely necessary to include environmental
varijables such temperature and humidity. Furthermore, basic
maintenance and calibration processes on a regular basis are
essential to guarantee the ongoing operation of instruments.
At last, field validation using colocation testing with an AQMS
will assist to improve the calibration technique and find
measurement biases.

The distribution of data points on the graph signified that
the majority of data points were focused close to regression
line, implying a consistent relationship between IoT-based
LCS and AQMS measurements. However, certain data points
deviated from the regression line, showing the presence of
outliers or discrepancies in the measurement process. These
disparities were attributed to various factors, including
environmental disturbances, variations in atmospheric
conditions, or differences in sensor sensitivity. The primary
factors contributing to measurement variations in IoT-based
Low-Cost Sensors (LCS) for PM2.5 include sensor calibration,
sensitivity variations among sensor units, ambient conditions

such as temperature and humidity, and the employed
calibration models. Raysoni et al. (2023) assert that the most
significant aspect is accurate calibration, which is coupled with
sophisticated calibration models such as non-linear regression
or machine learning to manage atmospheric variability.
Moreover, as emphasised by Raheja et al. (2023), ambient
circumstances exert a significant influence on sensor bias. As
emphasised by Miskell et al. (2019), sensor degradation and
drift are pivotal factors that induce performance deterioration
over time. This underscores the necessity for periodic
recalibration and maintenance procedures to ensure optimal
functionality. In addition, Giordano et al. (2021)enhanced
calibration techniques have been shown to reduce biases.
These techniques include the measurement of particle size and
composition, as well as spatial and data-driven algorithms.

During the analysis, the graph showed the relationship
over 14 days. The representativeness of these results depended
on the concentration variation during this time. When PM2.5
concentration over 14 days remained relatively stable, the
relationship was considered fairly representative. However,
substantial fluctuations in PM2.5 concentration caused by
meteorological shifts, anthropogenic activities, or variations
in emission sources, required further scrutiny to evaluate the
reliability of correlation between the two instruments under
more dynamic conditions.

Table 3 showed that the results of the tool calibration
process were contingent upon the criteria for collocation
performance tests in the field, comprising precision, bias,
linearity, and error. In terms of precision, the tool met SD <
5 pg/m’ with a value of 0.659 and CV < 30% having a value
of 23.59%. Concerning bias, the device showed a slope of 0.94
(falling in the range of 1.0 + 0.35) and an intercept of 0.65
(ranging between -5 to 5 pug/m®). During the analysis, R* for
linearity was found to be 0.9, which exceeded the minimum
requirement of > 0.70, signifying a strong relationship
between device and reference. However, RMSE value of 1.43
pg/m’ remained in the required RMSE < 7 ug/m® range. The
calibration results signified that the tool met all performance
test criteria, implying it possessed acceptable accuracy and
consistency in the field.

IoT-based LCS during the research showed a strong
correlation with AQMS in measuring PM2.5 concentration.
Despite the presence of biases and discrepancies in the results,
IoT-based LCS tool was used asa PM2.5 m. A strong association
is demonstrated between the Internet of Things (IoT)-based
Air Quality Monitoring System with Low-Cost Sensors
(LCS) and AQMS; however, there are numerous significant
shortcomings. One such element is measurement bias, which
is affected by environmental elements including temperature
and humidity, as well as variances in sensor sensitivity amongst

Table 3. Calibration Results Based on Colloquy Performance Test Criteria in the Field

No Collocation performance test criteria in the field ;:i;fl[; t;ll:lel:t}; Calrl:;:lttwn Description
1 Precision a. Standard Deviation (SD) <5 ug/m’ 0.659 accepted
b. Coefhicient of Variation (CV) <30% 23,59% accepted
2 Bias a. Slope 1,0 + 0,35 0,94 accepted
b. Intercept -5< b < 5pg/m’® 0,65 accepted
3 Linearity Coefficient of determination (R?) >0,70 0,9 accepted
4  Error Root Mean Square Error (RMSE) RMSE < 7 pg/m? 1.43 ug/m*®  accepted
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units. In addition, LCS sensors are susceptible to drift and
accuracy degradation over time in the absence of regular
maintenance and calibration. Furthermore, fundamental
calibration techniques frequently prove ineffective in
addressing the intricacies inherent to atmospheric condition
fluctuations, resulting in data anomalies. It is therefore
evident that LCS requires more sophisticated calibration
techniques and consistent maintenance in order to guarantee
higher dependability, despite the fact that its efficiency and
cost-effectiveness are impressive monitoring alternative,
particularly given its simplicity as well as cost-effectiveness.

3.3. The Ambient Air Concentration Value of PM 2.5 is

derived from IoT-based LCS

The calibrated IoT-based LCS was used to monitor
PM2.5 ambient air quality in the designated research area. The
recorded value from IoT-based LCS were then processed and
analyzed through calibration using the previously obtained
equation Y = 0.8633x + 2.7604, ensuring the proximity
of the value to that of the standard tool. In this particular
scenario, the installation of five IoT-based LCS devices was
implemented. The selection of sites for the installation of these
IoT-based LCS devices was informed by the variation in land
use types, including education areas, residential zones, green
open spaces, commercial areas, and rice fields (see Figure 14).

IoT-based LCS was designed to record real-time data every
minute, which was monitored through a server on a cellphone
or laptop. Data recording was conducted on weekdays and
holidays for a duration of 24 hours each, thereby enabling
the determination of variations in PM2.5 concentration value
between these days. The collection of working-day data started
on Monday, while holiday data collection resumed on Sunday.
The temporal division of a day into morning, afternoon, and
night periods was used to obtain more detailed information.
The collected data was then grouped as well as averaged,

420000 |m~u|;'3a's425|000 430I000
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110'2Ia'0“|?135|000

and subsequently calibrated using the equation, which was
presented in the following graph.

PM2.5 measurement results on weekdays was shown
in Figure 154. During daylight hours, PM2.5 concentration
showed a downward trend across all land use categories, with
settlements registering the lowest concentration of 9.980 pg/
m®. This decline was attributed to various factors, including
the direction and velocity of the wind in the research area, as
evidenced by the results of (Chen et al., 2020). Higher wind
speeds during the day were shown to affect PM2.5 concentration
(Xu et al., 2023). Consequently, the education sector showed
the highest PM2.5 concentration during the day, reaching
24,310 pg/m’, which was attributable to the substantial activity
present in school or college environments. Nighttime signified
an increase in this concentration across certain land use types.
The education sector showed the highest PM2.5 concentration
during nighttime hours, with a recorded value of 36,271 ug/
m?®. Equally, permanent settlements signified the lowest
concentration, with an average of 17.346 ug/m>.

The data showed that PM2.5 concentration fluctuated
according to time of day and land use type. The highest
concentration was recorded during the morning in industrial
neighborhoods, while the lowest concentration was recorded
in the afternoon in residential areas. The PM2.5 concentration
in the industrial sampling area is about three times higher
in the morning than in the afternoon primarily due to
meteorological and anthropogenic factors. During the morning
hours, a temperature inversion often occurs, where cooler
air is trapped near the ground under a layer of warmer air,
limiting vertical mixing and causing pollutants to accumulate
near the surface. Additionally, wind speeds are generally
lower in the morning, reducing the dispersion of particulate
matter. Morning hours also coincide with increased industrial
activities and heavy traffic as shifts start, contributing to higher
emissions. Furthermore, limited sunlight in the early morning
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Figure 16. PM2.5 Concentration Graph on Weekend

restricts photochemical reactions that would normally help
break down and disperse pollutants. Together, these factors
create conditions for significantly elevated PM2.5 levels in the
morning compared to the afternoon in industrial areas. The
data signified that weekend variations in PM2.5 concentration
were influenced by both land use and the time of day. The
highest recorded concentration (84.245 pg/m®) was observed
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in the industrial area during the morning hours. This outcome
was attributable to the commencement of industrial activities
during this period, leading to elevated levels of air pollution.
Consequently, green open spaces (RTH) showed the lowest
concentration, measuring at 32.520 pg/m®, signifying that
these areas experienced more favorable air quality during
morning hours.
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As the day progressed, a general trend of decreasing
PM2.5 concentration was observed, consistent across all land
use categories. This decline was attributed to factors such as
improved wind speed. The lowest recorded concentration,
10.623 pg/m?, was observed in the green open space category,
signifying that this area maintained the highest air quality in
the day. Equally, residential areas showed the second lowest
concentration, registering at 14.955 pg/m?>.

PM2.5 measurement results on weekend was shown in
Figure 16. During nocturnal hours, the concentration signified
anincrease, although it was not pronounced as the rise observed
in the morning. The maximum concentration recorded during
the night was observed in the education sector, reaching
46,233 pug/m?>. This phenomenon was attributed to a decline in
natural ventilation and nighttime activities, which contributed
to elevated levels of air pollution. Green open spaces showed
the lowest concentration, with an average of 17,757 pg/m®.
Following the discussion, the comprehensive analysis signified
that industrial areas showed the highest PM2.5 concentration
during morning hours, while green open spaces implied the
lowest concentration during daytime periods.

1.4. Spatial Condition of PM2.5 in the Suburbs of
Yogyakarta City
The study area utilized IDW (inverse distance weighting)
interpolation, employing three calibrated sensors initially.
However, due to adjustments made to the area and land use
characteristics, two additional sensors were incorporated,

resulting in a total of five sensors being used. The grid size was
selected based on the area, the number of sensors installed,
and the balance between spatial resolution and interpolation
reliability. Consequently, a grid size of approximately 300 m
was selected.The installation of IoT-based LCS instruments
was conducted in five locations, with the selection of these
sites based on the specific land use characteristics of each
area. The distribution was then subjected to analysis using
IDW interpolation method in ArcGIS software, considering
three distinct periods (morning, afternoon, and evening) and
comparing weekdays as well as holidays. The visualization in
Figure 18 showed the variation in air pollutant concentration
influenced by human activities and environmental conditions.

The outcome was observed that on holidays, PM2.5
concentration tended to be higher in the morning, as
evidenced by the predominance of red to orange colors on
the map. This phenomenon, as postulated by Yan et al. (2020),
was attributed to an increase in air pollution, potentially
attributable to an augmentation in domestic activities and a
concomitant rise in private transportation during weekends.
Consequently, a significant decrease in PM2.5 concentration
was observed during the daytime, as shown by the transition
to a lighter yellow color on the map. This decline was attributed
to the dispersion process of pollutants, which was facilitated
by increased temperature and air circulation during daytime
hours. At night, the concentration showed a slight increase,
but remained lower than morning levels.
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During weekdays, PM2.5 concentration showed a
more pronounced decrease compared to holiday periods. In
morning hours, the concentration presented a more uniform
distribution, characterized by a predominant yellow hue,
signifying a greater degree of manageability concerning air
pollution levels. These observations supported the results
reported in the research by Kusuma (2024).

The phenomenon was attributed to the presence of more
regular patterns of human activity and the control of emissions
from industrial sources or public transportation. A more
pronounced decrease in PM2.5 concentration was observed
during the day, with a shift toward a green color, signifying
improved air quality. Equally at night, the concentration
remained low with an even distribution across the research
area.

The spatial distribution of PM2.5 as shown in Figure 16
showed that mornings signified the highest concentration in
both day as well as night conditions (holidays and workdays,
respectively), with holidays experiencing more significant
spikes. This observation implied that weekend mornings
experienced increased influence from more intensive human
activities when compared to weekdays. IDW which was
a geospatial interpolation method used in this research,
facilitated the identification of areas with the highest PM2.5
concentration, providing a foundation for the formulation of
policies aimed at mitigating air pollution in the suburban areas
of Yogyakarta. Consequently, efforts to improve air quality
should prioritize the control of morning emission sources,
particularly during weekends.
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1.5. Discussion and recommendations

This research produced research that could be
recommended as an alternative air quality monitoring tool,
although the investigation did not replace the main role of
standard tools such as AQMS and HVAS, specifically on PM2.5
parameters. The design of IoT-based LCS tools was conducted
by previous research with various objectives. For instance,
Glass et al. (2020) developed LCS to monitor air quality in
highly polluted urban areas, while Ruiter et al. (2023) focused
on LCS designed for industrial areas to assess exposure to flour
dust. Moreover, Reddy et al. (2020) developed LCS aimed at
improving spatial and temporal understanding of matter
particles using IoT-based LCS. Alfano et al. (2020) conducted
a review of various LCS that these technologies could assist in
air pollution measurement in areas with limited monitoring
coverage.

Previous research constructed LCS that used diverse
sensor types, which led to disparate data recording outcomes.
In the context of results from an investigation by Jiao et al.
(2016), evaluating the performance of low-cost PM2.5
sensors under various environmental conditions. The study
demonstrates that by showing precision with a standard
deviation (SD) of 0.659 pg/m1 and a coeflicient of variation
(CV) of 23.59%, the LCS IoT PM2.5 sensor satisfies the stated
standards of SD < 5 pug/m1 and CV < 30%. Sensor bias is
evidenced by a slope value of 0.94 and an intercept of 0.65 pg/
m" in line with the slope range of 1.0 + 0.35 and an intercept
between -5 and 5 ug/m'. A coefficient of determination (R?) of
0.9 and a root mean square error (RMSE) of 1.43 pg/m® show
the linearity of the sensor, therefore indicating the accuracy
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Figure 17. ThingSpeak Dashboard Air Quality Monitoring using IoT
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and consistency of the measurements. This falls also below the
maximum RMSE threshold of 7 pg/m®. Reporting calibration
data for the PMS5003 sensor, Jiao et al. (2016) noted a minor
intercept within the +5 pg/m' range and a calibration slope
between 0.85 and 1.1. Complementing the standard deviation
(SD) below 5 pg/m" and a coefficient of variation (CV) of 20-
25% the study also indicated equivalent sensor performance
in urban environmental circumstances. At the same time,
research by Sousan et al. (2016) revealed low-cost sensor
root mean square error (RMSE) values between 2.0 and 3.5
pug/ml. Although this spectrum surpasses the results of the
current research, it stays within the reasonable boundaries for
non-regulating uses. Although the claimed accuracy and bias
of the sensors were judged sufficient, it was underlined that
regular calibration is absolutely necessary to guarantee the
validity and dependability of the findings.

Developed IoT-based LCS successfully passed the
calibration test using the collocation method as recommended
by KLHK according to the Standard of Indonesia (SNI) 9178:
2023. A salient benefit of IoT-based LCS included its capacity
to provide real-time data with high temporal resolution.
Moreover, the data recorded by microcontroller was stored in
the cloud and could be accessed using a laptop or mobile device
through an internet server, as shown in Figure 17. The tool was
capable of recording data at one-minute intervals, both in the
form of numbers and graphs, which could then be used for
monitoring at various locations such as four-way intersections,
shopping centers, and educational environments. This result
supported the research by Reddy et al. (2020), which showed
the significance of high-density air pollution monitoring
using IoT-based LCS nodes. Research by Snyder et al. (2013)
signified that the development of IoT-based sensors facilitated
more incorporated monitoring with big data-based systems.

The implementation of PM2.5  concentration
measurement using IoT-based LCS was conducted at five
points with varying land use types. The results showed that
green open space areas signified lower PM2.5 concentration
levels compared to industrial, education, residential, and trade
areas. This observation supported the results reported in the
research by Badura et al. (2018), explaining that vegetation
acted as a natural filter for airborne particles. However, other
investigations such as Jin et al. (2014) produced contradictory
results, signifying that PM2.5 concentration in areas with
abundant vegetation were higher due to the influence of
specific local activities. Sousan et al. (2016) also showed
that air particle sensor performance varied depending on
environmental conditions and calibration settings.

Research findings indicate that sensors monitoring
parameters critical to the Air Quality Index (AQI), such as
PM10, NO2, SO2, CO, O3, and HC, should be incorporated
into subsequent IoT-based LCS systems. The objective of this
study was to assess the reliability of PM2.5 sensor data over
an extended period, with the aim of determining the optimal
sensor replacement interval during operation. However, the
implementation of IoT-based LCS had various limitations
which included the necessity for regular recalibration as well as
sensor maintenance and replacement under certain conditions
(Badura etal., 2018). This research provided recommendations
to interested parties to consider further development of IoT-
based LCS as an efficient and affordable air quality monitoring
solution, specifically for PM2.25 parameters. This innovative
approach also contributes to achieving SDG 11 (Sustainable
Cities and Communities).
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3. Conclusion

In conclusion, IoT-based LCS Design was implemented
and could be used for air quality monitoring, particularly
PM2.5 sensor. The outcome was shown by the calibration
results with a standard or reference tool AQMS, which met
the standards of SNI 9178: 2023— Ambient air—Performance
test of air quality monitoring devices using LCS (SNI 9178,
2023). Following this process, the precision value also met the
standard as mentioned earlier. The collocation performance
in the field met all accepted requirements, as shown by the
calibration results. Precision with SD of 0.659 pg/m* and CV
of 23.59% satisfied the criteria of SD < 5 pg/m® as well as CV
< 30%. The bias, signified by a slope of 0.94 and an intercept
of 0.65 pg/m?, also satisfied the criteria of a slope of 1.0 + 0.35
as well as an intercept ranging from -5 to 5 pug/m?®. Linearity,
with R? of 0.9, met the criterion of 20.70, while the error with
RMSE of 1.43 pg/m® met the requirement of RMSE <7 ug/m>.
This result implied that LCS showed reliable performance and
was suitable for use in a field setting. IoT-based LCS could
also be implemented for monitoring PM2.5 concentration
in suburban areas, with results that varied according to time
conditions and differences in variables affecting the models.
The IoT-based LCS has been designed simply, meets the
calibration standards of SNI 9178:2023, and can be applied in
suburban areas.

Acknowledgments

The authors would like to express their gratitude to the
Indonesian Education Scholarship (BPI), the Center for Higher
Education Funding and Assessment (PPAPT) under the
Ministry of Higher Education, Science, and Technology of the
Republic of Indonesia, and the Indonesian Endowment Fund
for Education (LPDP) for their individual contributions and
educational funding provided for this research. The authors
also express their gratitude to Gadjah Mada University for the
Doctoral Program in Environmental Science at the Graduate
School, which facilitated academic exploration and research.

References

Aboosaedi, Z., Naddafi, K., Nodehi, R. N., Hassanvand, M. S., Faridi,
S., & Aliannejad, R. (2023). Investigating the performance of
urban air quality monitoring station in measuring PM2.5 and
PM10: A case study in Tehran, Iran. Environmental Health
Engineering and Management, 10(4), 451-458. https://doi.
org/10.34172/EHEM.2023.48

Adedeji, O. H., Oluwafunmilayo, O., & Oluwaseun, T. A. O. (2016).
Mapping of traffic-related air pollution using GIS techniques in
Ijebu-Ode, Nigeria. The Indonesian Journal of Geography, 48(1),
73. https://doi.org/10.22146/ijg.12488

Ahmed, S. (2024). Environmental Pollution and Global Issues (With
special regard to air pollution). Procedure International Journal
of Science and Technology, 1(3), 1-13. https://doi.org/10.62796/
pijst.2024v1i301

Akbar, R. Z. (2023). Analisis Tingkat Pencemaran Udara Kendaraan
Bermotor di Area Parkir Selatan Universitas Muhammadiyah
Yogyakarta. Media Ilmiah Teknik Lingkungan, 8(1), 25-33.
https://doi.org/10.33084/mitl.v8i1.4680

Alfano, B., Barretta, L., Giudice, A. Del, De Vito, S., Francia, G. Di,
Esposito, E., Formisano, E, Massera, E., Miglietta, M. L., &
Polichetti, T. (2020). A review of low-cost particulate matter
sensors from the developers’ perspectives. Sensors (Switzerland).
20 (23), 1-56. https://doi.org/10.3390/s20236819

Ali, S., Glass, T., Parr, B., Potgieter, J., & Alam, E (2021). Low-
cost sensor with IoT LoRaWAN Connectivity and Machine
Learning-Based Calibration for Air Pollution Monitoring. IEEE




Indonesian Journal of Geography, Vol 57, No. 2 (2025) 408-422

Transactions on Instrumentation and Measurement, 70, 1-11.
https://doi.org/10.1109/TIM.2020.3034109

Anggraeni, R. A. Y., & Lestari, K. S. (2023). The impact of PM2.5 air
pollutant exposure on human respiratory health: A literature
review. World Journal of Advanced Research and Reviews, 19(2),
1057-1064. https://doi.org/10.30574/wjarr.2023.19.2.1680

Asif, M., Hag, R. A. U,, Gulfreen, E., Arshad, S., Tasleem, M. W,,
Rajpoot, S. R., Munir, S., Waseem, M., Yar, M. A, Sohail, M.,
Abbas, M., Fatima, K., & Magbool, M. (2022). Particulate
Matter Emission Sources And Theircontrol Technologies.
Pollution Research, 696-706. https://Do0i.Org/10.53550/Pr.2022.
V41i02.043

Asim, [.A.B., Kamarudin, A.M.B., Onn, M., Azli, S.A., Zainuddin,
A., Zain, N.M., & Hasan, KM. (2018). Low-Cost Real-Time
Mobile Air-Quality Monitoring System (AQMS). International
Journal of Engineering ¢ Technology, 7(4.22), 101-105. https://
doi.org/10.14419/ijet.v7i4.22.27859

Badura, M., Batog, P, Osiadacz, A.D., & Modzel, P. (2018).
Evaluation of low-cost sensors for ambient PM2.5 monitoring.
Journal of Sensors, 2018 (1) 5096540. https://doi.
org/10.1155/2018/5096540

Castell, N., Dauge, E R., Schneider, P,, Vogt, M., Lerner, U,, Fishbain,
B., Broday, D., & Bartonova, A. (2017). Can commercial low-
cost sensor platforms contribute to air quality monitoring and
exposure estimates? Environment International, 99, 293-302.
https://doi.org/10.1016/j.envint.2016.12.007

Cheepsattayakorn, A., & Cheepsattayakorn, R. (2019). PM2.5,
PM2.5-related air pollutants, health hazards and impacts
on respiratory and cardiovascular disorders and diseases:
systematic review and meta-analysis. Journal of Lung, Pulmonary
& Respiratory Research, 6(3), 40-48. https://doi.org/10.15406/
jlprr.2019.06.00205

Chen, H. Y., & Chen, C. (2022). Evaluation of Calibration Equations
by Using Regression Analysis: An Example of Chemical
Analysis. Sensors, 22(2). https://doi.org/10.3390/522020447

Chen, J., & Hoek, G. (2020). Long-term exposure to PM and all-cause
and cause-specific mortality: A systematic review and meta-
analysis. Environment International, 143: 105974. https://doi.
org/10.1016/j.envint.2020.105974

Chen, Z., Chen, D., Zhao, C., Kwan, M. po, Cai, J., Zhuang, Y., Zhao,
B., Wang, X,, Chen, B., Yang, ], Li, R., He, B., Gao, B., Wang,
K., & Xu, B. (2020). Influence of meteorological conditions on
PM2.5 concentration across China: A review of methodology
and mechanism. Environment International, 139:105558. https://
doi.org/10.1016/j.envint.2020.105558

Cowell, N., Chapman, L., Bloss, W, & Pope, E (2022). Field
Calibration and Evaluation of an Internet-of-Things-Based
Particulate Matter Sensor. Frontiers in Environmental Science,
9. https://doi.org/10.3389/fenvs.2021.798485

Darquenne, C. (2020). Deposition Mechanisms. Journal of Aerosol
Medicine and Pulmonary Drug Delivery, 33(4), 181-185. https://
doi.org/10.1089/jamp.2020.29029.cd

Estuhono., Festiyed., & Bentri, A. (2019). Preliminary research of
developing a research-based learning model integrated by
scientific approach on physics learning in senior high school.
Journal of Physics: Conference Series, 1185(1). https://doi.
org/10.1088/1742-6596/1185/1/012041

Falcon-Rodriguez, C. L., Osornio-Vargas, A. R., Sada-Ovalle, L, &
Segura-Medina, P. (2016). Aeroparticles, composition, and lung
diseases. Frontiers in Immunology (Vol. 7, Issue JAN). https://
doi.org/10.3389/fimmu.2016.00003

Giordano, M. R., Malings, C., Pandis, S. N., Presto, A. A., Mcneill, V.
F., Westervelt, D. M., Beekmann, M., & Subramanian, R. (2021).
From low-cost sensors to high-quality data: A summary of
challenges and best practices for effectively calibrating low-cost
particulate matter mass sensors. Journal of Aerosol Science, 158,
105833. https://doi.org/10.1016/j.jaerosci.2021.1058331

421

Glass, T., Ali, S., Parr, B., Potgieter, J., & Alam, F. (2020). IoT Enabled
Low-Cost Air Quality Sensor. 2020 IEEE Sensors Applications
Symposium, SAS 2020 - Proceedings. https://doi.org/10.1109/
SAS48726.2020.9220079

Holstius, D. M., Pillarisetti, A., Smith, K. R., & Seto, E. (2014).
Field calibrations of a low-cost aerosol sensor at a regulatory
monitoring site in California. Atmospheric Measurement
Techniques, 7(4), 1121-1131. https://doi.org/10.5194/amt-7-
1121-2014

Hou, K., & Xu, X. (2022). Evaluation of the influence between
local meteorology and air quality in Beijing using generalized
additive models. Atmosphere, 13(1), 24. https://doi.org/10.3390/
atmos13010024

Irsyada, N.A., & Oktapatika, S. (2023). Peran Pemerintah Dalam
Mewujudkan Smart City Di Kota Tanjungpinang. Jurnal
Wilayah, Kota Dan Lingkungan Berkelanjutan, 2(2), 109-116.
https://Doi.Org/10.58169/Jwikal.V2i2.260

Jiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver,
D., Judge, R., Caudill, M., Rickard, J., Davis, M., Weinstock,
L., Zimmer-Dauphinee, S., & Buckley, K. (2016). Community
Air Sensor Network (CAIRSENSE) project: Evaluation of
low-cost sensor performance in a suburban environment in
the southeastern United States. Atmospheric Measurement
Techniques, 9(11), 5281-5292. https://doi.org/10.5194/amt-9-
5281-2016

Jin, S., Guo, J., Wheeler, S., Kan, L., & Che, S. (2014). Evaluation
of impacts of trees on PM2.5 dispersion in urban streets.
Atmospheric  Environment, 99,  277-287.  https://doi.
org/10.1016/j.atmosenv.2014.10.002

Kang, Y., Aye, L, Ngo, T. D., & Zhou, J. (2022). Performance
evaluation of low-cost air quality sensors: A review. Science
of the Total Environment, 818. https://doi.org/10.1016/j.
scitotenv.2021.151769

Kusuma, M. (2024). Pemodelan Polusi Udara Akibat Pengalihan
Lalu Lintas Dari Pembangunan Fly Over Aloha Sidoarjo. Jurnal
Ilmu Lingkungan, 22(4), 923-932. https://doi.org/10.14710/
jil.22.4.923-932

Larson, P. S., Espira, L., Glenn, B. E., Larson, M. C., Crowe, C. S,,
Jang, S., & Oneill, M. S. (2022). Long-Term PM2.5 Exposure
Is Associated with Symptoms of Acute Respiratory Infections
among Children under Five Years of Age in Kenya, 2014.
International Journal of Environmental Research and Public
Health, 19(5). https://doi.org/10.3390/ijerph19052525

Masic, A., Bibic, D., Pikula, B., Blazevic, A., Huremovic, J., & Zero, S.
(2020). Evaluation of optical particulate matter sensors under
realistic conditions of strong and mild urban pollution. https://
doi.org/10.5194/amt-2020-237

Mesra, R., Salem, V. E. T., Goretti, M., Polii, M., Daniel, Y., Santie, A.,
Made, N., Wisudariani, R., Sarwandi, R. P, Sari, R., Yulianti, A.,
Nasar, Y., Yenita, D., Putu, N., & Santiari, L. (2023). Research &
Development Dalam Pendidikan. PT. Mifandi Mandiri Digital.

Miskell, G., Alberti, K., Feenstra, B., Henshaw, G. S., Papapostolou, V.,
Patel, H., Polidori, A., Salmond, J. A., Weissert, L., & Williams,
D. E. (2019). Reliable data from low cost ozone sensors in a
hierarchical network. Atmospheric Environment, 214. https://
doi.org/10.1016/j.atmosenv.2019.116870

Nan, N., Yan, Z., Zhang, Y., Chen, R, Qin, G, & Sang, N.
(2023). Overview of PM2.5 and health outcomes: Focusing
on components, sources, and pollutant mixture co-
exposure.  Chemosphere, ~ 323.  https://doi.org/10.1016/j.
chemosphere.2023.138181

Nazarenko, Y., Pal, D., & Ariya, P. A. (2021). Air quality standards
for the concentration of particulate matter 2.5, global descriptive
analysis. Bulletin of the World Health Organization, 99(2), 125-
137. https://doi.org/10.2471/BLT.19.245704

Nicolaou, L., & Checkley, W. (2021). Inequities in air pollution
exposure and gaps in air quality monitoring. Journal of




LOW-COST SENSOR BASED ON INTERNET

Dian Hudawan Santoso, et al.

Allergy and Clinical Immunology, 148 (1), 64-66. https://doi.
0rg/10.1016/j.jaci.2021.04.014

Plantower, https://www.plantower.com/en/products_33/74.html,
accessed on June 16, 2025

Raheja, G., Nimo, J., Appoh, E. K. E., Essien, B., Sunu, M., Nyante, .,
Amegah, M., Quansah, R., Arku, R. E., Penn, S. L., Giordano, M.
R., Zheng, Z., Jack, D., Chillrud, S., Amegah, K., Subramanian,
R., Pinder, R., Appah-Sampong, E., Tetteh, E. N., ... Westervelt,
D. M. (2023). Low-Cost Sensor Performance Intercomparison,
Correction Factor Development, and 2+ Years of Ambient
PM2.5 Monitoring in Accra, Ghana. Environmental Science
and Technology, 57(29), 10708-10720. https://doi.org/10.1021/
acs.est.2c09264

Raysoni, A. U, Pinakana, S. D., Mendez, E., Wladyka, D., Sepielak,
K., & Temby, O. (2023). A Review of Literature on the Usage
of Low-Cost Sensors to Measure Particulate Matter. In Earth
(Switzerland) (Vol. 4, Issue 1, pp. 168-186). MDPI. https://doi.
0rg/10.3390/earth4010009

Reddy, C. R., Mukku, T., Dwivedi, A., Rout, A., Chaudhari, S., Vemuri,
K., Rajan, K. S., & Hussain, A. M. (2020). Improving Spatio-
Temporal Understanding of Particulate Matter using Low-Cost
IoT Sensors. 2020 IEEE 31st Annual International Symposium on
Personal, Indoor and Mobile Radio Communications, 1-7. https://
doi.org/10.1109/PIMRC48278.2020.9217109

Ruiter, S., Bard, D., Jeddi, H. Ben, Saunders, J., Snawder, J., Warren,
N., Gorce, J. P, Cauda, E., Kuijpers, E., & Pronk, A. (2023).
Exposure Monitoring Strategies for Applying Low-Cost PM
Sensors to Assess Flour Dust in Industrial Bakeries. Annals
of Work Exposures and Health, 67(3), 379-391. https://doi.
org/10.1093/annweh/wxac088

Santoso, D. H., Santosa, S. J., & Sekaranom, A. B. (2024). Analysis
and Trends Research Publications on Air Quality (PM 2.5)
Management Strategies. IOP Conference Series: Earth and
Environmental Science, 1339(1). https://doi.org/10.1088/1755-
1315/1339/1/012042

Sejati, S.P. 2019. Perbandingan Akurasi Metode idw dan kriging
dalam Pemetaan Muka Tanah. Majalah Geografi Indonesia.
33(2), 49 - 57. https://doi.org/10.22146/mgi.51228

Shaddick, G., Thomas, M. L., Mudu, P,, Ruggeri, G., & Gumy, S.
(2020). Half the world’s population are exposed to increasing
air pollution. NPJ Climate and Atmospheric Science, 3(1), 1-5.
https://doi.org/10.1038/s41612-020-0124-2

Shukla, K., Kumar, P, Mann, G. S., & Khare, M. (2019). Mapping
spatial distribution of particulate matter using Kriging and
Inverse Distance Weighting at supersites of megacity Delhi.
Sustainable Cities & Society Journal, 54, 101997. https://doi.
0rg/10.1016/j.5¢s.2019.101997

Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams,
R. W,, Hagler, G. S. W,, Shelow, D., Hindin, D. A., Kilaru, V. ],
& Preuss, P. W. (2013). The changing paradigm of air pollution
monitoring. Environmental Science and Technology, 47(20),
11369-11377. https://doi.org/10.1021/es4022602

Sousan, S., Koehler, K., Hallett, L., & Peters, T. M. (2016). Evaluation
of the Alphasense optical particle counter (OPC-N2) and the
Grimm portable aerosol spectrometer (PAS-1.108). Aerosol
Science and Technology, 50(12), 1352-1365. https://doi.org/10.1
080/02786826.2016.1232859

422

Sugita, K., Kin, Y., Yagishita, M., Ikemori, F., Kumagai, K., Ohara, T.,
Kinoshita, M., Nishimura, K., Takagi, Y., & Nakajima, D. (2019).
Evaluation of the genotoxicity of PM2.5 collected by a high-
volume air sampler with impactor. Genes and Environment,
41(1). https://doi.org/10.1186/s41021-019-0120-0

Suresh, K., & Palaniraj, N. (2018). Impact of Air Pollution on Human
Health. International Review of Business and Economics, 1(3),
187-191. https://doi.org/10.56902/irbe.2018.1.3.48

Swamy, G. S. N. V. K. S. N,, Nagendra, S. M., & Schlink, U. (2020).
Impact of urban heat island on meteorology and air quality at
microenvironments. Journal of the Air and Waste Management
Association, 70(9), 876-891. https://doi.org/10.1080/10962247.2
020.1783390

Tatavarti, R. (2021). Ambient Air Quality Monitoring: Impetus,
Complexities, Challenges and Solutions. Global Journal of Science
Frontier Research. 21 (H4).41-58. https://doi.org/10.34257/
GJSFRHVOI21154PG41

Thangavel, P.,, Park, D., & Lee, Y. C. (2022). Recent Insights into

Particulate Matter (PM2.5)-Mediated Toxicity in Humans:

An Overview. International Journal of Environmental Research

and Public Health, 19(12), 7511. https://doi.org/10.3390/

jjerph19127511

M. M., Jorliam, A. Y., & Odeh, O. B. (2023). Validation of

Rayleigh-Ritz Deflection Equation for a Tapered Cantilever

Beam using ANSYS Finite Element Software. FUOYE Journal

of Engineering and Technology, 8(1). https://doi.org/10.46792/

fuoyejet.v8i1.970

Xu, X., Shi, K., Huang, Z., & Shen, J. (2023). What Factors Dominate
the Change of PM2.5 in the World from 2000 to 2019? A Study
from Multi-Source Data. International Journal of Environmental
Research and Public Health, 20(3), 2282. https://doi.org/10.3390/
ijerph20032282

Yan, G., Yu, Z., Wu, Y,, Liu, J., Wang, Y., Zhai, J., Cong, L., & Zhang,
Z. (2020). Understanding PM2.5 concentration and removal
efficiency variation in urban forest park-Observation at human
breathing height. Peer], 2020(3). https://doi.org/10.7717/
peer;j.8988

Yan, R., Ma, D., Liu, Y., Wang, R., Fan, L., Yan, Q., Chen, C., Wang,
W,, Ren, Z., Ku, T, Ning, X., & Sang, N. (2024). Developmental
Toxicity of Fine Particulate Matter: Multifaceted Exploration
from Epidemiological and Laboratory Perspectives. Toxics,
12(4), 274. https://doi.org/10.3390/toxics12040274

Yang, L., Li, C., & Tang, X. (2020). The Impact of PM2.5 on
the Host Defense of Respiratory System. Frontiers in Cell
and Developmental Biology, 8, 91. https://doi.org/10.3389/
fcell.2020.00091

Zakaria, N. A., Abidin, Z.Z., Harum, N., Hau, L.C., Ali, N.B., & Jafar,
E A. (2018). Wireless Internet of Things-based Air Quality
Device for Smart Pollution Monitoring. International Journal
of Advanced Computer Science and Applications, 9(11). http://
dx.doi.org/10.14569/ITACSA.2018.091110

Ufe,




