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Abstract Landslides represent a serious hazard, particularly in the mountainous area currently. This recent study at-
tempts to predict future landslide occurrence at watershed scale and to calculate the potency of mass movements for 
each sub-watershed at Lompobatang Mountain. In order to produce landslide susceptibility map (LSM) using the statis-
tical model, we identified landslide inventories that occurred in the past, and predicted the prospective future landslide 
occurrence by correlating it with causal factors. In this study, six parameters were used namely, distance from fault, 
slope, aspect, curvature, distance from river and land use. This research proposed the Weight of Evidence (WoE) model 
to produce a landslide susceptibility map. Success and predictive rate were also used to evaluate the accuracy by using 
Area Under Curve (AUC) of Receiver Operating Characteristic (ROC). The result would be useful for land use planner 
and decision makers, in order to devise a strategy for disaster mitigation.

Abstrak Tanah longsor merupakan bahaya serius, khususnya di daerah pegunungan saat ini. Penelitian ini bertujuan 
memprediksi terjadinya longsor di dalam daerah aliran sungai dan menghitung potensi longsor yang akan terjadi di dalam 
setiap sub DAS di gunung Lompobattang. Untuk menghasilkan peta tingkat kerawanan longsor di DAS dengan menggu-
nakan pedekatan statistik, kami mengidentifikasi longsor yang telah terjadi dan menghubungkannya dengan penyebab 
terjadinya longsor untuk memperdiksi longsor yang akan terjadi. Adapun penyebab longsor yang digunakan adalah jarak 
dari fault, kemiringan lereng, aspek, curvature/kelengkungan, jarak dari sungai, dan penggunaan lahan. Penelitian ini 
menggunakan model Weight of Evidence (WoE) untuk membuat peta tingkat kerawanan longsor. Akurasi model dan ha-
sil prediksi kemudian dievaluasi dengan menggunakan Area Under Curve (AUC) dari Receiver Operating Characteristic 
(ROC). Penelitian ini diharapkan dapat berguna bagi perencana (planner) dan pengambil kebijakan sebagai bagian dari 
strategi mitigasi bencana.
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1. Introduction
As a developing country, Indonesia could not afford to 

recover from any natural disaster in short given time like 
landslide, flood, earthquake etc. The lack of spatial modeling 
in land use planning and information about the disaster 
make this country highly vulnerable to hazards. Hence, 
an effort to minimize these problems is to incorporate all 
disaster related information by preparing susceptibility map.

In Indonesia, floods and landslide occurrences are 
increasing and thus the combination of natural factors 
like the influence of global warming and human factors 
like land use change are becoming suspects. The land 
use change as part of development is a dominant factor 
for these disasters. Nowadays, landslides are serious 
problems, particularly in hilly terrains. Landslides trigger 
debris flows/flash, flood disaster that occurs every year 
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often during or after a heavy rainfall in Indonesia. 
The Government and research institutes have 
attempted to minimize the loss through land-use 
planning and by incorporating all the information 
that contribute to future landslide susceptibility.

Indonesian National Board for Disaster 
Management /BNPB (2016) reported that disturbed 
watershed environment also caused floods and 
landslides. Currently, watershed damage in Indonesia 
is an extraordinary condition. In 2016, there are 118 
watersheds in critical condition from total 450 while 
in 1984 there were only 22 critical and in 2007 it 
increased to 80 damaged watersheds (references?). 

Landslide susceptibility map is the tool of land 
use planer and decision makers. In land use spatial 
planning management, the main subject is the area 
that includes the administrative authority and natural 
boundary like watershed. Watershed is sources of a 
set of valuable ecosystem because it provides high 
quality freshwater, carbon sequestration, nutrient 
retention, and bio diversity.  Despite, watershed 
areas also have potential hazards like flash floods, 
landslides, and forest fires [Band, et al., 2012]. Based 
on the watershed boundary, the scope of losses 
during disasters like landslide is becoming obvious.
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Beside landslide inventory, as a first stage of landslide 
hazard mitigation, landslide susceptibility mapping 
must provide important information to support 
decisions for urban development that considerably 
reduces the potential landslide damages. In other 
words, landslide susceptibility maps are produced to 
help humans to recognize and adapt to landslide hazard 
mitigation procedures [Pourghasemi, et al., 2012]. 

To deal with the impact of landslide disaster, this 
study also considers the landslide density and number 
of settlements at sub watershed scale in order to set 
the land use planning and management. A spatial 
planning based on disaster facilitates the governments 
and decision makers to implement a better policy. The 
landslide susceptibility map provides locations which 
have a high probability of landslide which helps to avoid 
the fatalities and to formulate preventive measures. 

This paper present GIS aided procedures for 
creating the landslide susceptibility map using a 
Weight of Evidence one of the statistical approaches. 
GIS represent and visualize the world through 
geographic layers containing object pixels, points, 
lines, and polygons along with associated attributes 
[Malczewski, 2004]. In GIS technique, a model can 
be used to combine a set of input maps or factors 
employing a function to produce an output map. 
The function can take many forms including linear 
regression, multiple regression, conditional analysis 
and discriminate analysis, etc. [Fell, et al., 2008].   

The WoE initially uses Bayesian probability model 
and landslide causal factors are prepared as input maps. 
The WoE method calculates the weight for a certain 
category of a predictive factor based on the presence or 
absence of the landslide. The result of this method is map 
that tends to show the probability of occurrence and 
the associated uncertainty of the probability estimates 
of landslide occurrences [Neuhäuser & Terhorst, 2007]. 

A variety of purposes using the WoE model have 
been applied not only in study related to landslide 
mapping. Agterberg et al (1993) employ the WoE 
model for study which concerned in potential 
mineral mapping and applying in evaluating a 
ground subsidence spatial hazard near abandoned 
underground coal mines by [Oh & Lee, 2010] or 
to analyze the relationship among groundwater 
productivity data to produce the regional groundwater 
productivity potential map [Lee, et al., 2012].

A comprehensive of the mathematical relationships 
was describe in [Dahal, et al., 2008b] and [Regmi, 
et al., 2010].  In order to get positive and negative 
weights, the landslide locations overlayed with 
each of the causal factors in pairs and the spatial 
relationship was calculated subsequently (Table 1).

The WoE modelling is compatible with most 
GIS software packages [Dahal, et al., 2008a] 
and relatively easy, and less time consuming.

A set of landslide inventory map was prepared. It 
will show the location of visible landslides. The map was 

used in landslide susceptibility mapping by weights-of-
evidence modelling because the analysis requires an 
inventory map. The literature shows the way to compile 
the landslide data beside field survey like collected 
from aerial photographs [Ayalew & Yamagishi, 2005] 
and remotely sensed images interpretation based on 
the spectral characteristics, shape, contrast and the 
morphological expression [Kanungo, et al., 2006].

The main objective of this study is 
to create a landslide susceptibility map at 
Lompobattang Mountain in watershed scale. 

2. The Methods
A general rule of thumb is that water flow 

direction is perpendicular to contour lines. In the 
case of the isolated hill, water flows down on all sides 
of the hill (Fig. 1).  The highest point upstream is the 
head of the watershed beyond which the land slopes 
away into another watershed. At each point on the 
stream, the land slopes up on each side to some high 
point then down into another watershed. Finally, the 
watershed boundary was created by connecting all 
of the high points around the stream in lines. High 
points are generally hilltops, ridgelines, or saddles.

 

Figure 1. Watershed boundary 

= Surface water flow 

Figure 1. Watershed boundary

The study area set at Lompobattang Mountain in 
Sulawesi Selatan province. The land use was classified 
into agriculture area and forest area . The study area 
was located at 119o50 – 120o04 E and 5o12’ -5o28’ 
S. It has maximum altitude of 2,876 meter above sea 
level covering a total area of 351.742 km2 (Fig. 2). 

There   are  93  settlements  in  this       area 
and the hydrologic system contains six 
watersheds, i.e.; Jeneberang, Lantebong, 
Kelara, Apparang, Bijawang and Tangka.

This study was developped with the general 
assumption that the future landslides will triggered by 
the same condition that causes landslides in the past. In 
general, there are two main data including for analysis 
i.e. landslide data inventories (dependent variable) 
and landslide causal factors (independent variable).
in order to achieve the objective, the major procedures 
were conducted: (1) mapping of past landslides 
and landslide causal factors, (2) development of 
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landslides data inventories, includingnon-landslide 
areas, (3) preparation of probabilistic model of 
landslide susceptibility using weight of evidence 
model (4) Validation of model using Receiver 
Operating Characteristic (ROC) curve approach, 
(5) landslide density analysis at sub watershed scale 
in order to determine the level of susceptibility of 
settlements in this area. This study obtains landslide 
inventory data which was divided into landslide 
data for training and for validation. ArcGIS is used 
in spatial analysis, Microsoft excel to calculate the 
relationship between causal factors with landslide 
and SPSS statistical software was used to count the 
AUC of the ROC curve for validation of the model. 

Table 1. Computed weights for causal factor 
classes based on landslide occurrences

Land-
slide 
Causal 
Factor

∑A ∑B W + W- C

Topography
Slope Class in Degree
0-5 64 27459 -1.23 0.05 -1.28
5-10 136 67750 -1.38 0.15 -1.53
10-20 472 137617 -0.84 0.27 -1.11
20-30 609 86336 -0.12 0.03 -0.16
30-40 840 45954 0.83 -0.19 1.02
40-50 734 19573 1.55 -0.22 1.77
> 50 262 6141 1.68 -0.07 1.75
Curvature Class
Con-
cave

1616 192998 0.05 -0.05 0.10

Flat 15 5424 -1.06 0.01 -1.07
Convex 1486 192408 -0.03 0.03 -0.06
Aspect Class
Flat 5 1933 -1.13 0.00 -1.13
North 159 22786 -0.13 0.01 -0.14
North 
East

353 53942 -0.20 0.03 -0.23

East 207 57312 -0.79 0.09 -0.88
South 
East

242 65237 -0.77 0.10 -0.87

South 540 56441 0.18 -0.03 0.22
South 
West

834 46535 0.81 -0.18 0.99

West 372 30493 0.43 -0.05 0.47
North 
West

231 35952 -0.22 0.02 -0.24

North 174 20199 0.08 0.00 0.08
Distance From fault (m)
500 886 34527 1.17 -0.24 1.41
1000 952 35187 1.22 -0.27 1.49

1500 296 35483 0.04 0.00 0.05
2000 177 27949 -0.23 0.02 -0.25
3000 411 50855 0.01 0.00 0.02
4000 263 47642 -0.37 0.04 -0.41
6000 63 81203 -2.33 0.21 -2.54
8000 69 53027 -1.81 0.12 -1.94
Distance from River (m)
50 213 58994 -0.79 0.09 -0.89
100 220 56989 -0.73 0.08 -0.81
150 227 51007 -0.58 0.06 -0.65
200 285 44044 -0.21 0.02 -0.23
250 293 37016 -0.01 0.00 -0.01
300 291 30154 0.19 -0.02 0.21
> 300 1588 112626 0.57 -0.37 0.94
Landuse Class
Prima-
ry Dry 
Forest

994 99453 0.23 -0.09 0.32

Sec-
ondary 
Dry 
Forest

757 46591 0.71 -0.15 0.86

Bushes 977 83215 0.39 -0.14 0.52
Mix 
Dry-
land 
Agri-
culture

382 133251 -1.02 0.29 -1.31

Grass 
Land

7 1112 -0.24 0.00 -0.24

∑A = Number of landslide pixels, ∑B = Number of 
class factor pixels,  C = Contrast

Landslide data inventories were collected from 
Google Earth image interpretations in area where 
step scarp of noticeable landscape modification exist 
that lies at the altitude of 500 m above sea level. From 
this, a total of 158 landslides were identified which 
covers an area of 3.44 km2. Most of the landslide are 
shallow landslides with maximum and minimum area 
of 708 m2 and 512.765 m2 (0.51 km2) respectively.  

Six landslide causal factors (distance from 
fault, slope, curvature, aspect, distance from 
river, and land use) were selected as independent 
variables for landslide susceptibility mapping.  
Figure 3 describes the stages of this research.

Remote sensed images were used to identify 
rock fractures that is indicated by lineaments. The 
farctures affects surface material structures and make 
a large contribution to terrain permeability leading 
to slope instability [Kanungo, et al., 2006]. Faults and 
lineaments are structural features representing zone 
of weakness along fractures planes where landslide 
susceptibility is higher. Thus, distance from fault and 
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landslide occurrences were analyzed to identify their 
relationship .  The identification of faultswas based 
on Geology Map at a scale of 1:250.000 [Sukamto and 
Supriatna, 1982]. The proximity distance from fault 
was identified using multilevel buffer from lineament 
or fault map(500 m to 8000 m in 8 categories).

 

Topography is one of the important factors in 
the development of landslide susceptibility map. The 
topographic data were analyszed  to determine slope, 
aspect and curvature. These data were derived from 
ASTER DEM with spatial resolution of 30 m. ASTER 
DEM was extracted to be elevation thematic map. Then, 
Triangular Irregular Networks (TIN) were produced in 
ArcGIS and converted into DEM raster with a pixel size 
30 m. This allows to calculate slope angle, slope aspect 
and curvature. Slope is the most substantial cause for 
landslides. On a slope of uniform isotropic material, 

increasing slope angle correlates with increasing 
likelihood of failure. In this study, six slope angle 
categories were made i.e., 0-5o, 5-10o, 10-20o, 20-30o, 
40-50o, and above 50o. In many landslide susceptibility 
studies, slope angle is an important factor in inducing 
slope instability study. Aspect is defined as the direction 
of maximum slope of the terrain surface which have an 
indirect influence on slope instability .The aspect map 
also plays a significant role in slope stability assessment 
[Chauhan, et al.,2010]. In this study, aspect is divided 
into 9 classes for the study area, namely, flat, N, NE, 
E, SE, S, SW, W, and NW. To describe the variances 
among classes, aspect map display the distribution of 
each direction in the topography by using different 
color to each cell of the study area [Quan & Lee, 2012]. 
Profile curvature was reclassified into 3 classes, namely, 
concave, flat and convex. The curvature values represent 
the morphology of the topography. Profile curvature is 
generally related to the puddle condition after heavy 
rainfall. Profile curvature slope contains more water 
and retain water from heavy rainfall for a longer period.

The distance from river was identified by buffering 
and analyses of river lines that were derived from 
topographic map with scale 1:50.000. The class starts 
from 0-50 m and ends with > 300 m. Drainage lines and 
landslide occurrence in hilly area have strong association 
between them due to erosional activity. The last causal 
factor is land use. Land use (cover) is also a key factor 
responsible for landslide occurrences. The occurrence 
of landslide is inversely related to the vegetation density. 
The land use map was derived from Landsat 7 with 30 m x 
30 m, and it was established by one board from Ministry 
of Environtment and Forestry 2014 (Balai Pengelolaan 
Daerah Aliran Sungai Jeneberang Walanae. in. Bahasa). 
The land use map is classified into several classes : 
forest (including primary and secondary), bushes, 
crop land (agriculture), and grass land were identified.    

Dependent and independent variables were 
converted into a spatial form using Geographic 
Information System (GIS). Arc GIS 10.0 was used for 
preparing a spatial database, particularly using the 
spatial analyst and 3-D analyst tools. All independent 
and dependent variable were digitized and then 
processed by converting all the datasets into a raster 
format with 30 m x 30 m pixel size. The total numbers 
of cells are 390,837 pixels and the numbers of landslide 
pixels are 3,827. Microsoft Excel was used to compute, 
manage tabular data and calculate the weight of 
independent variable values related to dependent 
variable based on weight of evidence model (WoE). 

Statistical approaches can be categorized into 
bivariate and multivariate approaches. The typical 
procedure for bivariate statistical analysis that each 
map which depicts the spatial extent of causal factor 
of landslide will be combined with the landslide data 
inventory. Then, weight values based on landslide 
density are calculated for each mapped category of the 
causal factor. In general, there are two models in bivariate 

Figure 2. Study area on the watershed of 
South Sulawesi Province
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approaches in landslide susceptibility study i.e. frequency 
ratio (FR) and WoE. This current research uses the 
WoE to calculate and produce landslide susceptibility.

Originally, the purpose of the WoE model is to 

provide flexible tools to modify the value in continuous 
and categorical predictor variables into discrete 
categories automatically and to assign to each category 
as “weight” value. The weight of evidence tells the 
predictive power of an independent variable in relation 
to the dependent variable. It is calculated by taking the 
natural logarithm (log to base e) of division of % of non-
events and % of events. F represents the presence and   
represents absence of a potential landslide causal factor. 
L and    represent consecutively the presence and   the 
absence of landslide, then the WoE method calculates 
the positive and negative weights of the respective 
factor classes based on the probability ratios as follows :

	

			 
In order to calculate the weights of each landslide 

factor classes for landslide susceptibility 
mapping, Eq. (1) and Eq. (2) were expressed in 
terms of the numbers of cell (pixel) as follows: 

	 or 

 3
and

	 or
 

(4)                     

where npix1 is the number of landslide pixels present 
on a given causal factor class, npix2 is the number 
of landslides pixels not present in a given causal 
factor class, npix3 is the number of pixels in a given 
causal factor class in which no landslide pixels are 
present and npix4 is the number of pixels in which 
neither landslide nor the given factor is present. 

A positive weight (W+) the presence of a causal 
factor in the landslide and its magnitude is an 
indication of the positive correlation between presence 
of the causal factor and landslides. A negative weight 
(Wˉ) indicates an absence of the causal factor and the 
magnitude indicates negative correlation. The C was 
calculated in order to quantify the spatial association 
between a map class and the occurrence of landslides 
which is known as the weight contrast, where C = W+ - 
Wˉ. The magnitude of contrast reflects the overall spatial 
association between the causal factor and landslides.

3. Results and Discussion
The six landslide causal factor maps were combined 

with the landslide data for training. The procedure of 
combining the maps based on GIS spatial analysis tools 
and Microsoft Excel was used to calculate the weight of 
their relationship The pixels of each class of causal factors 
and landslide were arranged in spatial database and they 
were subsequently exported into Mic. Excel format.

The result of total weight (i.e. contrast) as shown 
in figure 4, directly indicates the importance of each 
causal factor. In case of slope angle factor, the contrast 
increases with the slope angle class from 30o to > 
50o, indicating a higher positive correlation with the 
landslide locations. Related to aspect factor, the graph 
is positively correlated in south west. Concerning 
distance from fault and distance from river class, 
same condition is seen within the distance from 
500 m to 1000 m and >300 m respectively, which 
means that these two factors have high probability of 
occurrence. From five classes of land use factors, class 
of secondary dry forest is highest contrast means has  
a significant positive relationship with the landslide. 

Landslide susceptibility index map (Fig. 5) can 
be obtained by combining the contrast of each causal 
factor. This is expressed in the following equation :,
LSI =  			                             (5)	
where, LSI is a Landslide Susceptibility Index, Cij 
is the contrast for class i of causative factor j; the 
summation is over all causative factors from 1 to n.

The weights are assigned to the classes of causal 
factor maps to produce weighted causal factor maps. 
Then, all the maps were overlaid and numerically 
added according to Eq. (5) to create a LSI map. The 
result of the LSI values varies from -8.22 to 6.15.

The landslide susceptibility map in Fig. 5 was 
created from the five classification of landslide 
susceptibility index map by using natural breaks 
classification method or Jenks optimization method. In 
this study area, the five classes include very low, low, 

Figure 3. Flowchart of research
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moderate, high and very high landslide susceptibility.
The percentages of landslides susceptibility 

zonation map is shown in Fig. 6. The ratio of each 
class of susceptibility was found by dividing the area 
of each class with the total area that area which falls 
in high to very high, moderate, and very low to low 
comprises of 28.96%, 24.29 %, and 46.75% respectively. 
The landslide data for validation subsequently overlay 
on the LSM to calculate number of landslide pixels 
in each class of susceptibility. Fig. 6 showed that the 

ratio is 82.96% in high to very high classes, 24.29% in 
moderate class, and 8.17% in very low to low classes. It 
indicates, that most of the landslide data for validation 
pixel fall into high to very high class of susceptibility.

This study establishes two stage of validation. First, 
the Area Under Curves (AUC) of Receiver Operational 
Characteristic (ROC) curve was used to measure the level 
of accuracy of the model and the probability result. The 
second stage is the ratio of landslide data for validation 
which laid on the LSM that indicate good results (82.96%).

Figure 4. Graph of contrast value of the six causal factors.

Figure 5. Landslide susceptibility index (left) and landslide susceptibility map (right).
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The AUC represents the success rate and predictive 
rate. The AUC of the success rate was found by 
combining the LSI map values with landslide data 
for training. Likewise, in case of the AUC for the 
predictive rate was set up by combining the LSI 
with landslide data for validation.  As general rule, 
Hosmer and Lemeshow (2002), classified the AUC 
value for validation.  The model is failed if the AUC 
less than 0.50, acceptable: 0.70-0.80, excellent: 0.80-
0.90 and outstanding: 0.90 -1.00. The result shows 
that the model exhibit similar performance for both 
success rate and predictive rate, i.e. 0.849 and 0.847 
(indicate 84.9 % and 84.7 % accuracy) respectively. 

The density of landslide susceptibility in sub 
watershed area was found by summarizing each class of 
landslide susceptibility in sub watershed area divided 
by total area. The number of settlements which were 
located in each sub watershed was counted as well 
means found that the probability of property loss will 
be high for instance houses and road.. Fig. 7 shows 
Bialo, Bijawang, and Kelara have high percentage of 
landslides, which fall in high to very high (VH+H) 
around 6% to 7% comparing with another sub 
watershed. In the case of a number of settlements, 
Bialo and Tangka is > 15. The ratio indicates that 
these sub watershed need to get more concern on 
land use planning to minimize the probability of loss.

This recent study tried to create a map which 
is describing the vulnerability of landslide using 6 

(six) causal factors with the high level of accuracy, 
meanwhile, some researchers use more. It can conclude 
that the combination of factors also has an important 
role to achieve the best result [Meten et.al. 2015].

4. Conclusions
This study has demonstrated the simple of 

procedures for landslide susceptibility assessment by 
WoE methods with 6 (six) thematic maps. This landslide 
susceptibility map will be used to provide an important 
information particularly to determine the suitability 
of land.This research also describe about the good 
level of accuracy of prospective landslide prediction 
using the AUC curve and by overlying landslide 
inventories that were not used in model building over 
the landslide susceptibility map.  It is recommended 
to consider the sensitive natural factors such as slope 
angle and land use/land cover for spatial planning 
purposes. Nevertheless, the result of the landslide 
susceptibility map will be more accurate on a larger 
scale, particularly at topographic map and geological 
map. In order to prevent any fatalities in future causes 
by landslide disaster, the availability of data regarding 
population at this area will be helpful and the result of 
the planning decisions will be more comprehensive.
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