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ABSTRACT

Canopy spectral measurement using ground-based hyperspectral device
and rice crop variables such as leaf area index (LAI), leaf dry weight (LDW) and
SPAD values were done periodically during growth season with involving three
rice cultivars (Pandamvangi, Ciherang and IR Jumbo) and four nifrogen
application levels (N0, N80, N92 and N103 kg'ha). The study is directed to explore
all possible waveband combinations ftested in reflectance of vegetation indices
(Vis) and to develop a predictive model of relation between hyperspectral-based
vegetation indices with rice crop variables.

Analysis of all possible two-pair waveband combinations used in Vis was
investigated with 6,786 combinations to gain optimal waveband attributed to crop
variables. To develop efficient and accurate model, various multivariate regression
models were examined with ten-fold cross validations. Accuracy validation of
predicted model was performed using reflectance and F'DR, NDVI, RVI, RDVI and
SAVI data. Validation of predictive model using FDR implied better accuracy (o
estimate LAI using whole season data (R°—0.856). Meanwhile, the model using
SAVI denoted highest values (R’ -0.852) for predicting LAL While the validation of
predictive model using RVI implied the highest values (R°=0.797) for predicting
LDW. Moreover, the test of predictive model using SAVI indicated the highest
value (R°=0.658) for predicting SPAD values. According to overall validation
using VIs, it seems that RVI has the best accuracy to validate the predictive model
of LAI than those of LDW or SPAD valnes. Meanwhile, the most significant of R’ to
validate the predictive model was obtained on FDR data with R°--0.859 for LAI

Keywords: visible, near-infrared, hyperspectral, vegetation indices, crop variable,
predictive model.
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INTRODUCTION

Asian countries are dependent on rice as major staple food for Asian
countries. The importance of rice endorses countries to sustain the rice availability
with many ways, such as applying technologies to observe the current status of
rice. Remote sensing techniques have high potential to provide quantitative,
instantaneous, and nondestructive information on rice over a large areas.

Estimation ability for rice biophysical parameters and its productions in the
fields from remote sensing images is not only fundamental in agriculture
application precision, but it can be very useful for food provisions management.
Remote sensing technique, well known, has an advantage in providing temporaly
information with fair accuracy and precision on the current status of interested
targets, however the spectral nature of crop vegetation and the relationships
between image spectral characteristics and crop variable should be well defined
and clarified in laboratory and in the field as well, before practical agricultural
applications are performed [Yang and Su, 1997]. Tn past years, varied spectral
indices have been developed from spectral transformation of several wavebands to
improve the radiometric measurement of crop vegetation and to monitor and
evaluate vegetation development [Anderson and Hanson, 1992)]. The ratio-based
spectral indices such as NDVI [Gilabert et al., 1996] and soil adjusted vegetation
indices (SAVI) [Huere, 1988] were designed to minimize interferences by internal
geometry noise caused mostly by plant structure and population architecture, and
external radiation influences due mainly to solar angle and atmospheric properties
[Elvidge and Chen, 1995].

The normalized transformations generally incorporate the functions of red
and near-infrared bands of a vegetation spectrum and result in 2 nonlinear measure
of biophysical parameters. It is well known that reflectance in red light is
negatively correlated with chlorophyll concentration while reflectance in the near-
infrared is positively correlated with leaf area [Tucker, 1979; Tucker et al., 1979].
In addition, spectral indices have been widely used in many agricultural
applications and combined with various growth models for vegetation growth and
activity comparison in field, regional, and global scales [EEvidge and Chen, 1995].

In addition to spectral indices, combining spectral reflectance from two or
more charactenstics wavebands into single numbers may improve sensitivity to
plant vegetation relative to using individual bands [Wanjura and Hatfield, 1987].
Many studies on this subject have demonstrated relationships between spectral
characteristics and vegetation attributes through regression analysis where multiple
regression models provide flexibility in choosing discrete narrows bands and give
better information from spectral data [Shibayama and Akivama, 1991]. However,
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the band combinations which provided optimal information are influenced by
growth status of the crop, whose characteristics differ among phenological stages
and are affected by environmental conditions and cultural practices [Thenkabail et
al., 2001]. The collinearity between wavebands may also result in overfitting, using
more spectral bands than are necessary [Thenkabail ef al., 2001). 1t is therefore
interesting to examine the optimal waveband combinations from hyperspectral
reflectance data for a possibility of improving the relationships by using growth
parameters in specific crops.

THE METHOD

Experiments for this research was carried out at tropical irrigated wetland
rice area at Karawang district, West Java, Indonesia (6°14°50.9”S and 107°2¢°29.47
E). This area is a lowland and flat area, near to the north coast of Java Island.
Paddy field is technically innundated through imrigation network supplied from
Jatiluhur reservoir.

Canopy spectral irradiance in the range of 350 to 1050 nm was measured by
using a high spectral resolutions (1 nm intervals) portable spectroradiometer (MS-
720) [£EKO Instruments, 2004]. The device was equipped with an integrated LCD, a
small-sized grating spectrometer, diode array, and internal memory. The entire
measurements were performed on cloudless or near cloudless days, started on 9 am
until 12 am local standard time. Measurements were undertaken periodically
(approximately every week) at each plot, pointed downward from 1 m above the
canopy, with aperture angle of FOV 45° In addition, measurements were executed
consecutively three times per plot to reduce the possible effect of changing sky
conditions. A spectral on (Labsphere, Inc., Sutton, NH, USA) reference panel was
used to optimize the EKO instrument prior to taking canopy reflectance
measurements at each plot.

Plant sampling was undertaken coincided with spectral measurement.
Samplings were purposed to collect crop variables information such as leaf area
index (LAI), leaf dry weight (LDW) and SPAD values which are commonly used
as a growth status indicators. Ten leaves of representative hills were randomly
measured using Minolta SPAD-502 chlorophyll meter for obtaining the mean value
of SPAD.

Data processing

Spectral domain which displayed low signal-to-noise ratio in both ends of
the spectrum (325-397; 983-1050 nm) was first omitted and then spectral
wavebands were averaged into 5 nm wavelength to reduce the noise and amount of
data for analysis, resulting in a total of 117 spectral bands between 400 nm and 980
nm. A first derivative reflectance (FDR) spectra was calculated corresponding to
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method introduced by [Dawson and Curran,1998] and smoothed using Savitzky-
Golay method [Savitzky and Golay,1964]. A first difference transformation of the
reflectance spectrum (FDR), which calculates the slope values from the reflectance,
was denved from the following equation [Dawson and Curran, 1998]:

_ (Rz(j.m_ R,’l(j))
A (1)

where FDR is the first derivative reflectance at a wavelength 7/ midpoint between
wavebands j and j + {. Ry is the reflectance at waveband j, Ry, is the reflectance
at waveband j + /, and A, is the difference in wavelengths between j and j = 1.
Averaged 5 nm wavelength intervals were used to define the intervals between
channels j and j + 1.

FDR

The analysis was carried out by three growing seasons of paddy crop
respectively, namely (1) pooled whole-season data (DAT 19 — 80, n = 132) and
focused on (2) before-heading (DAT <= 47, n = 72) and (3) after-heading data
(DAT > 47, n = 60). These data sets were first randomly divided into calibration
(2/3) and validation data (1/3) sets. Afterward, calibration model was developed
using calibration data set. The end step of all, the model was validated by
comparing between predicted values (from the model) and measured value (from
laboratory measurement) in the validation data set. In the first analysis, the linear
regression analyses of LAI, LDW and SPAD with all of corresponding reflectance
and FDR spectra data throughout the wavelength ranged from 400 to 980 nm in the
calibration data set were performed. Afterward, the next step is to determine
reflectance and FDR in the calibration data set which having the greatest R? values
with crop variables. In the second analysis, four selected vegetation indices (VIs),
such as (1) RVI, (2) NDVI, (3) RDVI and (4) SAVI were calculated for all
available waveband combinations. The VIs were calculated using following
equations as is represented in Table 1. The narrow bands are computed as %, and A,
derived from selected-waveband in reflectance or FDR spectra.

Table 1. Vegetation Indices Formulae used in This Study.

Index name Formulae
. . . (?"1 - l;)
Normalized Difference Vegetation Index (NDVI) m
1 v2
()l.] - )"'2)
Renormalized Difference Vegetation Index (RDVT) ﬁ
-1 2
A
Ratio Vegetation Index (RVI) Il*
2
Soil Adjusted Vegetation Index (SAVI) (20 + L)
oil Adjusted Vegetation In \/O“ L+ L)
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RESULT AND DISCUSSIONS

(a) Overview of the spectral reflectance data

Average reflectance data at each growth stage of the three rice cultivars and
four N application levels is presented in Fig. 1. Spectral variations among curves
are mainly due to differences in crop growth stages. Lowest reflectance values in
near infrared wavelengths (700 — 1000 nm) were observed for early developmental
stage, where biomass was still not dense and spectral reflectance was mainly
influenced by soil and water background. Maximum reflectance in the NIR was
heading stage, which was coincident with maximum values of
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The increase of reflectances at NIR waveband was related to increases of
crop biomass, LAI and canopy water, while the reduction in reflectance at red
waveband potentially resulted from the increase of leaf chlorophyll and N. It
consequently shows low reflectance of solar radiation in red wavelengths and high
scattering of solar radiation in NIR. At heading until maturity stages, reflectance in
visible (400-700 nm) and NIR (700-1000 nm) regions increased and decreased,
respectively. This case is mainly caused by the increase of number of senescent
leaves.

The reflectance at NIR of Pandanwangi cultivar is higher than both
cultivars, i.e [R Jumbo and Ciherang cultivar. This point can be explained by
physical appearance, where Pandanwangi cultivar had bigger and wider sizes of
leaf blade than the others. Likewise, IR Jumbo cultivar had bigger and had wider
sizes of leaf blade than that of Ciherang cultivar. In the visible waveband region,
the differences of reflectance among cultivars were small. The changes of the
spectral reflectance pattern in rice canopy at every stage are shown in Figure la.
The reflectance of early growth stage shows a peak at green spectrum within
visible waveband and relatively high value at 559 nm and 807 nm within infrared
wavebands. Spectral reflectance in visible waveband domain changed from high to
low with increasing of LAI, however, spectral reflectance of infrared waveband
was increased with increasing of LAI The reflectivity of visible band remained
less than 0.1, but near infrared band ranged from 0.1 to 0.4 throughout growing
season.

Furthermore, on Fig. 1b shows that application of N rates of 103 kg/ha
increased reflectance at near-infrared waveband (>760 nm) higher than that of N
rates of 92.80 and 0 kg/ha, respectively. Likewise, application of N rates of 92
kg/ha increased reflectance at near-infrared waveband higher than that of N rates of
80 and O kg/ha, respectively. Near infrared waveband of 800 nm, reflectance of
three cultivars is significantly different, as was already mentioned above. In
general, the reflectance of each N rate indicated similar trend, where they decreased
at red waveband, and increased at NIR waveband.

(b) Correlation of crop variables with canopy reflectance and FDR

The relation as is indicated by coefficient of determination (R?) calculated
by regression analysis among reflectance and FDR with crop variables (LAI, LDW,
and SPAD) represented various results (Fig. 2). LAI, LDW and SPAD value
represented positive correlation with both reflectance and FDR, at whole season,
before heading and after heading, respectively. Among those relations, LAI and
FDR at whole season hold the most significant relation at 735 nm (R = 0.897),
than that of before and after heading. However, overall relations generally pointed
out the significant correlations. In addition, the relation of LAI and LDW with
reflectance at whole season implied significant values (R* = 0.849) at the same
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waveband (890 nm) in Figure 2. Likewise, the relation of LAI and LDW with
reflectance at after heading indicated significant values (R* = 0.891 for LAI and
0.743 for LDW) at the same waveband (775 nm). Meanwhile the correlation LAI
LDW and SPAD value with FDR at after heading represented signiﬁcant
correlation (R? = 0.891 for LAI, 0.845 for LDW and 0.752 for SPAD) with close
waveband (730 nm for LAl 740 nm for LDW and 720 nm for SPAD value,
respectively).
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Figure 2. The relation among reflectance and FDR with LAL, LDW and
SPAD at whole- (a), before- (b) and after-heading (c) stages. Typical wavebands
are highlighted in the figure, indicated by greatest R (in parenthesis)
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(c) Best paired-waveband for vegetation indices to predict crop variables

Analysis of all possible two-pair combinations of waveband (Waveband, >
Waveband,) used in VIs was investigated with 6,786 combinations to gain optimal
waveband attributed to crop variables. The linier regression was performed in order
to determine the correlation coefficient (R?). The results of R* were plotted in a
matrix plot and the plot revealed a characteristic pattern with a number of “hot
spots” with relatively high correlate on coefficients (Fig. 3 and Fig. 4). These spots
were selected by choosing the wavebands combinations that showed an R? between
70% and 100% of the overall best index. A number of “hot spots” with high
correlation coeflicient were revealed in a linier regression analysis of the individual
crop variables toward VIs calculated according to equations in Table 1 for all
possible two-pair combinations of the reflectance measured at the 117 wavebands.
Best-3 of “hot spot” resulted from analysis of all possible of waveband
combination using both waveband, and waveband;, with crop variables were
revealed in Table 4.

The typical selected wavebands through all combinations bands that used in
Vs varied across crop variables and growing stage. The vegetation indices (Vls)
were calculated for all available waveband combinations between 400 nm and 980
nm to define the best patred combination of wavebands attributed to crop variables.
Several paired wavebands with high R? values were found in LAI (R?> 0.80, green
area in Fig 3a), LDW (R?> 0.60, light-red area in Fig.3b) and SPAD values (R®>
0.50, orange area in Figure 3c). The significant relations were represented in the
domain of shorter waveband in red edge (700 — 760 nm) to LAI and LDW.
Meanwhile, the second highest R” values for SPAD values attained when combined
with narrow bands in the blue (400 — 495 nm) and mixing green and red (600 — 700
nm) regions, in particular for RDVI and SAVI. The highest R? values for LAI were
obtained by waveband combinations that ranged from blue, green and red region
{400 nm to 740 nm), in particular for RV1, RDV{ and SAV]. Whereas for NDVI
the highest R? values for LAI were found waveband combinations, ranged from
green to red regton (500 nm to 730 nm).

Fig. 4 demonstrates relations for all waveband combinations used in VIs
toward (a) LAL (b) LDW, and (c) SPAD, respectively before and after-heading.
All possibilities of 6,786 waveband combinations were investigated to achieve best
band-paired. Several paired wavebands with high R® values before and after
heading were found in LAI (R® > 0.80, light green area in Figure 4a). Meanwhile,
paired-wavebands with high R? values before and after heading in LDW shows that
domain with R? > 060 represented by red area before heading, whereas domain
with R*> 0.80 after heading represented by RVI, NDVI and RDVI (yellow to green
area) in Figure 4b. Paired-wavebands with high R* values before and after heading
for SPAD values indicate that region with R%> 0.80 (bright area) is represented by
RDVI and SAVI before heading, whereas for after heading, region with R*> ¢.70
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is shown by orange area. The region with R? > 0.60 after heading was represented
by RVI and NDVI (red area) in Figure 4c. In general, the numbers of optimal
paired-wavebands used in VIs for LAl exceed the number of optimal paired-
wavebands used for LDW and SPAD.

The wavebands in red and NIR ranged from 635 nm to 840 nm were
selected in the best-3 of R? values derived from waveband combinations for LAI
before heading and ranged from 715 nm to 735 nm after heading (Table 4). The
highest R? (0.923) is represented by pairing wavebands of 720nm and 725 nm for
after heading. From the Table 4 also, it looks that Band 1 and Band 2 are
dominated by NIR wavebands (820 nm to 840) for whole season and for NDVI,
RDVI and SAVI, while for RVI, Band 1 and Band 2 are dominated by red
wavebands (715 nm and 730 nm for Band 1 and 515 nm to 610 nm for Band 2). In
the case of before heading stage, there are variations of Band 1 and Band 2 that
involved in band combinations, where for RVI and NDVI, red waveband used in
Band 1 (685 nm to 695 nm) and Band 2 (715 nm to 725 nm). Whereas for RDVI
and SAVI NIR waveband dominantly used in Band 1 (840 nm to 850 nm) and red
waveband dominantly used in Band 2 (745 nm). In the case of after heading stage,
involved band combinations in all VIs are represented by red wavebands for Band
1 (715 nm to 735 nm) and Band 2 (700 nm to 720 nm).

The best-3 of R? derived from waveband combinations used in VIs for
LDW ranged from 750 nm to 840 nm, 520 nm to 740 nm and 690 nm to 905 nm
before heading, after heading and whole season, respectively (Table 4). Generally,
from the same table it seems that Band 1 dominated by NIR wavebands (825 nm to
905 nm) and Band 2 dominated by red wavebands (670 nm to 755 nm) for whole
season and before heading and for all VIs, while for after heading, Band 1 and
Band 2 are represented by red that ranged 730 nm to 735 nm and 590 nm to 740
nm, respectively. The highest R? are generally obtained from involving wave band
combinations in red region for LDW and for VIs after heading, while during before
heading and whole season, the highest R” represented by combinations of Band 1
and Band 2 in NIR (825 nm to 840 nm) and red region (670 nm to 755 nm),
respectively.
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Figure 3. Coefficients of determination (R®) of the relation for all
wavelength combinations used for linear regression analysis of the four VIs against
(a)} LAI (b) LDW, and (c¢) SPAD, respectively, in the calibration data for whole-
season (n = 88). A total number of 6,786 combinations were investigated
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Figure 4. Coefficients of determination (R?) of the relation for all waveband
combinations used in linear regression analysis of the four Vs against (a) LA, (b)
LDW, and (c¢) SPAD, respectively, in the calibration data for before- (bottom-right,

n = 48) and after-heading (top-left, n = 40). A total number of 6,786 combinations
were investigated
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As for the relations VIs with SPAD, the best-3 of R? was derived from
waveband combinations for SPAD ranged from 405 nm to 895 nm, 410 nm to 955
nm and 525 nm to 720 nm for before heading, after heading and whole season,
respectively (Table 4). From the Table 4 also, it looks that Band 1 and Band 2 are
dominated by green wavebands (535 nm to 545 nm and 525 nm to 530 nm) for
whole season and for RVI and NDVI, while for RDVI and SAVI, Band 1 and Band
2 are dominated by red region (715 nm and 720 nm for Band 1 and 705 nm to 715
nm for Band 2). In the case of before heading stage, there are variations of Band 1
and Band 2 that involved in band combinations, where for RVI, green waveband
used in Band 1 (525 nm to 535 nm) and red waveband used in Band 2 (715 nm).
Whereas for NDVI, NIR waveband used in Band 1 (820 nm) and blue waveband
used in Band 2 {425 nm to 440 nm). In the case of RDVI and SAVI, involved band
combinations in both VIS indicated the variation of wavebands, either Band 1 or
Band 2, but in general it seems still dominated by red domain for Band 1 and green
region for Band 2, respectively. Meanwhile, as for after heading stage, for Band 1
is dominated by NIR wavebands (955 nm) and Band 2 is dominated by red
waveband (715 nm to 725 nm).

(d) Validation data set for prediction of rice crop variables

Comparisons of MLR models (measured and predicted values) using
reflectance and FDR, NDVI, RVI, RDVI and SAVI (Fig. 5) show significant
correlations (R* > 0.57). Model using FDR for LAI implied better accuracy for
predicting LAI using whole season data (R* = 0.86), however, inversely for LDW
and SPAD values, model using reflectance data mdlcated better precision to predict
LDW and SPAD values, as are represented by their R?, namely 0.651 and 0. 707
respectively. Meanwhile, the model using SAVI denoted the highest values (R =
0.852), then followed by RDVI (R? = 0.845), RVI (R? = 0.816) and NDVI (R =
0.785) for predicting LAL.While the validation of predictive model using RVI
implied the highest values (R? = 0.797), then followed by SAVI (R* = 0.756),
RDVI (R? = 0.754) and NDVI (R® = 0.731) for predicting LDW.

Moreover, the test of predictive model using SAVI indicated the highest
value (R’ = 0.658), then followed by RDVI (R? = 0.644), RVI (R? = 0.566) and
NDVI (R? = 0.565) for predicting SPAD values. According to overall validation
using VIs, it seems RVI has the best accuracy to validate the predictive model of
LAI than that of LDW or SPAD values. Meanwhile, the most significant of R2 to
validate the predictive model is using FDR data with R? = 0.859 for LAL
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The selection of wavebands has been undertaken in connection with known
canopy characteristics. The approach in present experiment was more extensive,
where all available waveband combinations were tested in NDVI, RVI, RDVT and
SAVI to be attributed to crop variables. The spectral properties of the canopy were
not used directly to analysis crop variables, but tested in Vls as showed by a matrix
plot “hot spot”, which is a sort of two-dimensional corellogram (Fig. 3 and Fig. 4).
The advantage the matrix plots is that they give a quick overview of thousands
waveband combinations and make it possible to detect interesting wavebands for
further analysis.The band combinations were often paired so that both bands were
closely spaced in the steep linear shift between Red and NIR. This index proved in
fact to give the best description of the three crop variables (LAL, LDW and SPAD
values), and all expressing quantity per unit soil surface or canopy area. The use of
VIs implies that closely space narrow bands indicate the slope of the reflectance,
which often is referred to as a denvative vegetation index [Efvidge and Chen,
1995].

Generally, even if four VIs yielded high coefficient of determination (R?)
against crop variables, however the mean R* calculated from the first 30 band
combinations were higher for RDVI and SAVI than that of RVI and NDVI after
heading for LAl and LDW, and before heading for SPAD (Fig. 4). Therefore,
RDVI and SAVI may be better indices for diagnosing and predicting crop variables
that relating to particularly biomass in dense canopies. The performance of
reflectance was directly affected by divergent treatments (Fig. 1). In general view,
it looked that the pattern of change of reflectance was similar for all the treatments.
Increasing of plant density, nitrogen level and growth stage cause increasing of
greenness, reflecting a combination of biomass and chlorophyll density.

The variation of R? values denotes that narrow band combinations tested in
Vs respond differently toward biomass. The study has shown that crop variables
information is not only contained in the red absorption and NIR wavelengths. Most
narrow bands tested in RVI, NDVI, RDVI and SAVI, which yielded the highest
correlation against crop variables, were located in the red edge region (Fig. 3 and
Fig. 4).

128



ASSESSING THE HYPERSPECTRAL REMOTE SENSING M. Evn eral

Reflectance (a) FOR
SlLa B ‘{_,-:'P
ERS A & L=
oy O “af L3
“ [P ‘
3 D_"g N o
4 o 3
4 g 96"—‘ 2F e go ,DJ?
=] o a
1 ‘%3‘:’& B w39 ' @ B =0 Esa
o ‘Qq & RWEER % 0 B50 ol® + o RMSED « 0 54
a 1 2z 3 a 5 & 9 1 2 3 & & B
w0 F mF T
. LDwy =0 | LEWY -
E 2D R 3‘; [ Yo oW
- RS O [ o
MBo T e e ol ;%o
o g -] G
m g o wl B
a @k @w R =] 651 al _'.?}L. TR W RT
Py RMSEP = 29 72 T RSER = 4 a9
a - ot ek oo T
D S0 100 IS0 200 760 AWM A0S t08 150 2N 20 X0
5 SEan ) 5| SPAD
2o < -
Ll Ll o
o ooﬁg& ] o
= o0 65,° »l o, a0
wgc:g.?‘f & o ,%
Y i Y = 0 702
RMEED « + 740 RMSER = 1835
N ¥ o N B w45
Measurad valus
RvVI ) NDVI
- N B ]
6 [ La ° Tl flem B
e - 5}
s 8 8%
.l aqo a "_', .
D - 3
£ o o 3 34 &
> b °°G‘E%'D E ?‘?é)mo 2
&2 T F
1 e R = 0ME 1 &O =) 7ES 1
o AMSER -9 | AMTER - 11 745 a
@ 1 I 1t 4 § B b1 ¥ 34 4 5 B
b 0 | 00 11 e
L O : g LOW
é =0 o= F ™0 -
- ¢ T o L ¥ 2.
| 8o oo ™0 000 | g “
150 & P “ £ o[ =0 | ‘
o o ady wh o §§;§J n E O wor -
= ¢ magrer | s} B ©  Rt=ra [ ] g 0 L
FMEEDR « 3 675 'ﬁfp AMSES o 30337 2 MMM = 0820 RMEEF = 3808 |
PR . : o A u. s P [ - i L o A T
0 S0 100 150 200 360 0 D 50 400 50 I M0 300 b S0 100 140 200 280 N
1:1 e
= F OSPAD . 15 b oSEan . s BPAD i
e By
0+ Dcsoo S? - 0‘)‘30 éé. -0
@ %:% P %Q%é
* P og"&g ¥ Fo o agﬂ:g s
ey N
% f e s ReQueE | Fhea R¥ = O 665 -0
RMSER » 2 857 - FMSEE » a5
0 ¥ 4« i5 T
Meesured valus Massured valun

Figure 5. Validation of laboratory measurement of crop variables (LAI, LDW and
SPAD) with reflectance and FDR (a), RVI and NDVI (b), and RDVI and SAVI (c)
with their predictive vatues from MLR regression analysis using reflectance and
FDR data (a) and Vis data (b and ¢) during growth season
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Furthermore the red edge position influenced a high correlation of
determination (R?) with crop variables. The red edge exhibits a region of transition
from strong chlorophyll absorption to near infrared reflectance. High correlations
in this study were largely obtained by combining narrow bands from the shorter
wavelengths of the red edge portion of the electromagnetic spectrum (700-750 nm)
and the longer wavebands of the red edge (750-800 nm). The shorter wavebands of
the red edge portion are sensitive to changes in chlorophyll content [Filelia and
Penuelas, 1994, Lichtenthaler et al., 1996]. At longer wavebands of the red edge
domain, multiple scattering from leaf layers results in higher reflectance (Kumar et
al., 2001). Chlorophyll concentration and some extent other pigment in the leaves
play a major role in coloring the canopy during vegetative growth stages. This
agrees with the fact that visible wavebands seem to be important for indices related
to crop variables expressing a concentration of either chlorophyll or leaf nitrogen.
Problems due to saturation have previously been reported for NDVI and SAVI,
using red and NIR, while it was less pronounced for green NDVI [Daughiry et al.,
2000].

CONCLUSION

Selection of the optimal waveband combinations tested in VIs improved the
relationships to crop variables. Validation of predictive model using FDR implied
better accuracy to estimate LAI using whole season data (R? = 0.859), however,
inversely for LDW and SPAD values, validation using reflectance data indicated
better precision to predict LDW and SPAD values, as are represented by their R?,
namely 0.651 and 0.707, respectively.

Meanwhile, the model using SAVI denoted the highest values (R? = 0.852),
then followed by RDVI (R? = 0.845), RVI (R? = 0.816) and NDVI (R? = 0.785) for
predicting LAl While the validation of predictive model using RVI implied the
highest values (R? = 0.797), then followed by SAVI (R* = 0.756), RDVI (R? =
0.754) and NDVI (R? = 0.731) for predicting LDW.

Moreover, the test of predictive model using SAVI indicated the highest
value (R? = 0.658), then followed by RDVI (R? = 0.644), RVI (R? = 0.566) and
NDVI (R? = 0.565) for predicting SPAD values. Across entire validation using VIs,
RDVI has the best accuracy (R? = 0.854) to validate the predictive model of LAI
than that of LDW (R2 = (0.754) or SPAD (R? = 0.644). It seems, all VIs have the
most significant results in validating predictive mode! for LAI than that of LDW
and SPAD, and beside that, validating predictive model for LDW still points out
the significant result (R* > 0.731). In general, the accuracy to validate predictive
model using VIs as shown in Figure 5 indicates significant value (R? > 0.565).
Meanwhile, the most significant of R? to validate the predictive model is using
FDR data with R =0 859 for LAL
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