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ABSTRACT

This work aims to estimate Above Ground biomass (AGB) of a tropical
rainforest in East Kalimantan, Indonesia using equation derived from the stand
volume prediction and to study the spatial distribution of AGB over a forest area.
The potential of remote sensing and field measurement data to predict stand
volume and AGB were studied. Landsat ETM data were atmospherically corrected
using Dark Object Subtraction (DOS) technique, and topographic corrections were
conducted using C-correction method. Stand volume was estimated using field data
and remote sensing data using Levenberg-Marquardt neural networks. Stand
volume data was converted into the above ground biomass using available volume
— AGB equations. Spatial distribution of the AGB and the error estimate were then
interpolated using kriging. Validated with observation data, the stand volume
estimate showed integration of field measurement and remote sensing data has
better prediction than the solitary uses of those data. The AGB estimate showed
good correlations with stand volume, number of stems, and basal area.

Keywords: above ground biomass, stand volume, remote sensing, neural networks,
kriging

INTRODUCTION

Tropical rainforests are the largest ecosystems and inhabit most biodiversity
in the world, comprising more than half of all the world plant and animal species.
However, tropical rainforests cover less than 6% of land surface on the earth
nowadays. Tropical rainforests have an important role for global carbon cycle as
they store ca. 30% of all terrestrial carbon (up to 200 Mg/ha) and sequester about
12 Mg/ha per year, i.e. 22% of all carbon fixed on Earth. In environmental study,
biomass assessment is important for many purposes, such as resource use and
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environmental management. The amount of carbon sequestered can be inferred from
the biomass change since 50% of the forest dry biomass is carbon [Losi et al., 2003]
There are three approaches to mapping biomass in forest areas, which are field
measurement, remote sensing, and GIS-based approaches [Lu, 2006]. The field
measurement is the most accurate way to assess biomass, but it is very costly and
time consuming because a destructive sampling is required [deGier, 2003). Remote
sensing is probably the most feasible alternative to assess forest biomass over a
large area. Remote sensing becomes more popular for different applications,
including for biomass assessment. Recent remote sensing studies have explored the
potential of optical satellite [Foody and Cox, 1994; Houghton et al., 2001, Lu et al.,
2004], LIDAR data [Lefsky ef al., 2002], or radar data [Austin et al., 2003; Rauste,
2005] for estimating forest biomass. Those studies as well as other references on
forest biomass mostly addressed the problems on the tropical rainforests of Amazon,
while this study focused in tropical forest region in Central Indonesia. In his smdy,
Foody et al. [2003] concluded the transferability of biomass model, which was
estimated using remote sensing data still remains a challenging task. Those studies
as well as this present study focused on the assessment of above ground biomass
(AGB).

Remote sensing based estimation requires field data for developing biomass
predictive model or for validation purpose. In the case the field data is unavailable;
the biomass can be approached from stand (i.e. tree) parameters, such as tree height
and stand diameter, estimated using statistical method [Houghion et al, 2001;
Rahman et al, 2005]. Sales et al. [2007] predicted the forests biomass using the
estimate of stand volume and statistical multi-regression method. Unlike those
studies, the present study implements a non-statistical method based on artificial
neural networks to predict stand volume, using which the biomass is subsequently
estimated.

This study combines field measurement, digital elevation model (DEM),
spectral data, and vegetation indices for predicting the stand volume. This
combination certainly violates normality assumption that is required for most
parametric method, thus an altemative approach using neural networks approach
was applied, as it has potential to improve the accuracy of stand volume estimate.
The AGB was estimated from the conversion of stand volume using two models
proposed by [Brown and Lugo, 1992; Fearnside, 1997). Few references conducting
study in Indonesian forests to assess the biomass, especially those combining field
measurement and remote sensing data, has also motivated this study.

This study focuses on a tropical rainforests located in Labanan Concession,
Berau Municipality, East Kalimantan Province, Indonesia (Fig. 1). This region
geographically is situated along the equator at the coordinate of 1° 45 t0 2° 10° N,
and 116° 55 to 117° 20° E and has a size of 83,000 hectares. The forest area is
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situated in a relatively flat region with the elevation from 50 - 650 meters above sea
level and enjoys annual rainfall rate of more than 1000 mm.

Legend
+  Transect Data
e - R0 INFBVROTK
Main River
i z Settemeni Area

pa > -
i e

INDONESIA

hd

Figure 1. Boundary of Labanan Concession Forest

The forest area belongs to a state owned timber concession-holder company
where active timber harvesting is carried out. The concession area is mainly
situated on inland of coastal swamps and formed by undulating to rolling plains
with isolated masses of high hills and mountains. The variation in topography is a
consequence of folding and uplift of rocks, resulting from tension in the earth crust.
The landscape of Labanan is classified into flat land, sloping land, steep land, and
complex landforms, while the forest type is often called as lowland mixed
dipterocarp forest {Mantel, 1998]. The forest covers in the area are mainly
dominated with primary forest and mature secondary forest regenerated from the
first cycle of timber harvesting, recently logged over forest, riparian forest with
complex vegetation structure, shrubs and also agricultural and settlement areas.

THE METHODS

There were 1515 sampling plots (with average size 225 m?) divided into 17
transect collected for forest inventory purpose and made available for this study.
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The measurement was carried out on a circular nested plot with respect to tree
diameter size. Trees with diameter at breast height (DBH) > 50 cm were measured
up to 0.125 samples per hectare, and within this plot smaller subplots were
estimated and physical properties of smaller trees were measured. The trees with
DBH of 20 — 49 cm and the trees with DBH of 10 — 19 em were measured with the
sampling intensity of 0.04 sample/ha and 0.0125 sample/ha, respectively. Besides
tree properties, namely DBH (cm) and number of stems per plot, the coordinate,
slope and aspect of each sampling plot were also recorded. Thus, the DBH were
converted into basal area per hectare; considering adjustment factors of each tree
species, the actual stand volume per hectare was estimated.

Landsat 7 ETM+ image with 30 meter resolution was used for prediction of
stand volume together with field measurement data (i.e. number of stems in a
sample plot). The Landsat data was acquired on May 31, 2003 under a very clear
atmospheric condition with almost no significant haze and cloud. The satellite
image was projected using Universal Transverse Mercator (UTM) and WGS 84
datum. Preprocessing of the image was conducted for correcting atmospheric and
topographic effects, since vegetation indices were computed from the
radiometrically calibrated image. Digital Elevation Modeling (DEM) of the same
arca was obtained from Shuttle Radar Topography Mission (SRTM) data. The
DEM which originally has 90 meter resolution was resampled into 30 meter
resolution to fit with the spatial resolution of Landsat image; thus slope angle and
aspect were computed from the resampled DEM and applied as anclllary data for
stand volume prediction.

Radiometric calibration is a multi-step process that involves the use of
standard equations to convert 8-bit satellite-quantized calibrated digital numbers
(DN) to at-satellite reflectance. Landsat 7 images were converted to at-satellite
radiance using Eq.{(1),

— Lmi .
Lone = ((Lmaxmt Wﬂsat)/(D Nmax — D Nmin)) x (DN — DNmin) + Lming,,

wherc Lmax,,, is band-specific spectral radiance scaled to DNmax (W m sr pm
Y, Lming, is band- -specific spectral radiance scaled to DNmin (W m™ ' um )
DNmax is maximum quantized calibrated digital number (2553), and DNmm 15
minimum quantized calibrated digital number (0 for LPGS data, 1 for NLAPS and
EOS data). Eq. (1) accounts for gain state (i.e. high/low settings) by using
respective published Lmax and Lmin values as published in Landsat 7 Science Data
User Handbook [Landsar Project Science QOffice, 1998].

Converting to at-satellite radiance, each Landsat band was converted into
top-of-atmosphere reflectance ( pro4) using following equation [Lu et al., 2004]
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_ md®. L
PrOA = Ecun. cos(d)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (2)

where & is square of the earth-sun distance in astronomical units (AU) that
can be found in Landsat 7 Science Data User Handbook [Landsat Project Science
Office, 1998, Eun is mean solar exo-atmospheric irradiance (W m? um™), and & is
sun zenith angle,

The conversion from at-satellite radiance to top-of-atmosphere reflectance
is known as partial correction case since by definition this value does not remove
atmospheric effects due to atmospheric scattering.

‘For absolute atmospheric correction case, the at-satellite radiance is
converted to surface reflectance (p), assuming a uniform Lambertian surface under
cloudless condition, using following formula [Chavez Jr., 1996]

.d® (Log.—L,)
Ty (Egun.cos(@).T, + Eqoym)

p=

where Lp is path radiance (W m? sr! ym™) or so-called haze layer [Chavez Jr.,

1988], 7, is atmospheric transmittance from the target toward the sensor, 7 is
atmospheric transmittance m the illumination direction, and E ., 15 downwellmg
diffuse irradiance (W m™~ um™). The output of atmospheric correction is the
percentage of surface reflectance. There are different variations of DOS technique
according to a study conducted by [Song et al., 2001]. This study initially adopted
two variations of DOS techmque, which are DOS1 and DOS2. We found
afterwards that DOS2 yields better correction results in terms of the spectral
response of corrected image in relation with the actual spectral of vegetation types.
Thus, hereafter the satellite image was corrected using DOS2 technique.

In order to correct topographic effects of the satellite data, Digital Elevation
Model (DEM) should be assigned. The DEM should be firstly geo-referenced in
the same coordinate system as the satellite image to be corrected and the DEM
should also be of a scale that is close to that of the satellite image, so that the slope
angle and aspect can be derived for each pixel position of the satellite image. Thus,
the DEM is also used to compute the incident angle (y;), defined as the angle
between the normal to the ground and the sun rays [Riano ef al, 2003). The v;
parameters varies from -1.0 to +1.0, and are computed as:

cosy; = cos By cos 8, + sinf, sin 8, cosl (6], — @,) )
where & is the slope angle; 8¢ is the solar zenith angle; ®a is the solar azimuth
angle, and ® is the aspect angle; each angle should firstly be converted into
radian.
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Thus, the incident angle was estimated for the whole image and the
topographic correction can be carried out using different methods. A simple
method to correct terrain slope in areas that receive direct solar illumination is
simply to adopt Lambertian assumption (1.¢. a surface reflects radiation in a diffuse
fashion, so that it appears equally bright from all feasible observation angles).
Instead applying terrain correction with Lambertian assumption, this study is more
cautious of diffuse irradiance since most rugged terrains basically have a non-
Lambertian behavior. This non-Lambertian correction models include Minnaert
correction [Minnaert, 1941], which is probably the most popular empirical method
for computing a complicated Bidirectional Reflectance Distribution Function
(BRDF) of rugged terrain areas. This study however implemented another
empirical-statistical method assuming a linear correlation between the reflectance
of each satellite band under an inclined surface (#7) and the incident angle cosine
(cos vi) as [Teillet et al., 1982].

= by + My - COS ¥;

Tk I O YL 5)
where ™¥ is the slope of the regression line for band ¥ . The b« is considered
constant for the entire image, being the intercept in the regression equation. A
variation of this empirical approach is called the C-correction method [Teillet et al.,
1982] and the correction of the Pt is defined as

cos &, + (b“/mk)
o7+ (o) o

where #2 is the solar zenith angle, and P# is the reflectance of a horizontal surface.

PH = PT

Stand volume estimate

The utility of neural networks to estimate forest properties is based on the
assumption that this method, unlike conventional parametric approaches, does not
need a normality assumption {Cohen and Cohen, 1983]. Field measurement,
spectral data, DEM and vegetation indices clearly have different nature of data
distribution, thus combining these data commonly violates the normat distribution
assumption. The conventional multi-linear regression method has a limitation to
predict such data as this method is bounded by a normality assumption [Berry and
Fediman, 1985]. The study of comparison on prediction ability between neural
networks and multi-linear regression has been conducted in different applications,
such as medical and pharmaceutical technology [Sathe and Venitz, 2003],
environmental modeling [Baik and Peak, 2000; Sousa et al., 2007], chemistry and
material science [Bolanca et al., 2005}, and marketing and business [Lim and
Kirikoshi, 2005]. These studies found that neural networks have performed better
than multi-linear regression for the prediction using a more complex input data
variation,
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The neural networks basically works based on the interconnected neurons
[Wijaya, 2006]. The neuron sums up the weighing of the input value and applies a
threshold function to such value. This process, so called training process, most of
the time is very time consuming, so that to make the training process faster a
training algorithm should be considered. There are different algorithms which can
be used for training the neural networks. The back-propagation algorithm is
probably the most famous training algorithm for the neural networks [Atkinson and
Tatnall, 1997). Nevertheless this algorithm needs the proper parameters in order to
give a reasonable result. Based on our experence the training using back-
propagation method is time expensive as it requires a large number of training
iterations to find an optimal solution.

In contrast with other studies, this work implemented Levenberg-Marquardt
algonthm for traiming a feed-forward neural networks [Hagan and Menhaj, 1994].
Experiments with the Levenberg-Marquardt algorithm found that the training
process 1s more efficient than using back-propagation algorithm. Selection of
training parameters of the Levenberg-Marquardt algorithm includes the number of
hidden layers and the number of nodes in a hidden layer before we can train the
neural networks in Matlab environment [Demuth et al., 2006]. As a comparison
back-propagation algorithm needs not only those two parameters to be carefully
selected, but also other parameters, 1. e. momentum and learning rate.

Stand volume was accordingly estimated using field data and remote
sensing data as the predictors or the independent variable. The chosen field data
was number of stems per sampling plot; as instead of basal area data that have
already been used to estimate stand volume, number of stems data are not directly
related to the stand volume equation. To some extent, number of stems has the
possibility to explain stand volume of a forest, because logically the stand volume
per hectare forest area is related to the number of stems in that area for a given age-
class or age-class distribution of the forest.

The remote sensing data used to estimate stand volume were surface
reflectance of multi-spectral bands (i.e. band 1, 2, 3, 4, 5 and 7 of Landsat 7
ETM+), DEM (i.e. elevation, slope angle and aspect). Vegetation indices calculated
from the satellite data, namely Normalized Difference Vegetation Index (NDVI),
Simple Ratio (SR), Enhanced Vegetation Index (EVI) and Atmospherically
Resistant Vegetation Index (ARVI). Further details on vegetation indices can be
found in most remote sensing references [Jensen, 1996; Mather, 2004; Richards,
1993; Parresol, 1999].
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Above ground biomass prediction

This study estimated the forest biomass through the conversion of the forest
stand volume. The above ground biomass was predicted using two equations
proposed by Brown and Lugo (1992) [Fearnside, 1997]. The Brown and Lugo
equation for above ground biomass (AGBz;) is explained as follows:

APy wSB-BEF(L+@OF-0Q2)) ¢
where S8 is the stemwood biomass, and is defined by
SB=Volume x VEF x WD ._.....c.c.cooooivmiiiiie e (8)

with Volume (m*-ha™) obtained from forest inventory data, VEF (volume expansion
factor to account for trees smaller than the minimum diameter measured) is 1.25 for
dense forests and 1.5 for other than dense forests, WD is wood density (0.69 Mg m’
3 as a weighted average of wood density), and BEF (biomass expansion factor to
account for biomass in addition to stemwood biomass) varied as a function of
stemwood biomass (SB) as follows {Brown and Lugo, 1992].

for $B < 190 Mg hal BEF = ¢l3:213 - 0.506In(SD)]
for SB> 190 Mg ha'', BEF = 174 oo (%)

In Eq.(7), SB x BEF is the conversion of volume to above ground biomass
originally proposed by Brown and Lugo (1992). The constants 0.09 and 0.21 in the
formula were introduced by [Huoghton et al, 2001} to include below ground
biomass and dead above ground biomass.

The second approach for predicting above ground biomass (AGBrs)
implemented equation proposed by [Fearnside, 1997] that suggested modification
of Brown and Lugo Equation (1992):

ACBgn=SBExBEF U +CF) ... 10

where CF = 96.2%, which represents the sum of various correction factors (lianas =
5.3%, trees smaller than 10 cm DBH = 12%:; tree form factor = 15.6%; trees
between 30 and 31.8 cm DBH = 3.6%; hollow trees = -6.6%; bark = 0.9%; palms =
2.4%; below ground biomass = 33.6%,; dead above ground biomass soil = 31%; and
other components = 0.2%) [Sales et al, 2007]. In this study, correction factors
from Eq. (7)- Eq. (10) were assumed constant, i.e., not spatially vanable.
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RESULTS AND DISCUSSION

Spectral response of the corrected satellite image

The surface reflectance of the atmospherically corrected satellite image
reveals significant improvement particularly for visible bands (i.e. ETM 1, ETM 2
and ETM 3), as the atmospheric attenuation was minimum for the middle infra red
bands, ie. ETM 35 and ETM 7. Observation on the reflectance value of the
uncorrected and atmospherically corrected images was conducted taking samples
from some apparent land covers found in the area, the results are exhibited in
Figure 2.

Spectral profile of high density forest, road networks, water body and cloud
in the study area were taken as samples because we assume the surface reflectance
of these land cover types are relatively stable at spatial and temporal scales. The
DN values of the visible bands (i.e. ETM 1, ETM 2 and ETM 3) always have
higher reflectance as compared to those of partially corrected and atmospherically
corrected images. This is due to the DN value being influenced by atmospheric
attenuation, topographic conditions and other parameters, such as sun angle, earth-
sun distance, etc. Upon comparison with the partially corrected image, we found
that DN values have a reduced solar irradiance, sun zenith angle and earth-sun
distance effects in NIR and MIR bands (ETM 4, ETM 5 and ETM 7) especially for
dark objects (water body and dense forest); but it becomes very noticeable for
bright objects (cloud and road networks).

The observation on the partially corrected image found that top of
atmosphere (TOA) reflectance corrected only the effects caused by the sun angle,
carth-sun distance and the solar radiance, but it ignores the effects of atmospheric
scattering. The visible bands are mainly affected by the atmosphenc scattering,
which provided image additive effects, and this especially occurs for dark objects,
e.g. dark vegetation and water body. In contrast, the effects of atmospheric
scattering in visible bands are reduced for bright objects, this can be explained from
Fig 2a and Fig. 2c, where the TOA reflectance of road networks and cloud in
visible bands have similar values as their surface reflectance.

The atmospheric scattering effects were very low in NIR and MIR bands,
both for dark and bright objects. This can be seen in Figure 2 where the partially
corrected and atmospherically corrected images show similar values in the NIR and
MIR bands. The exceptional case is for water bodies where the reflectance of the
partially corrected image in the NIR band is higher than the atmospherically
corrected image; this might be due to the suspended sediment matters or water

turbidity.
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Figure 2. Comparison of corrected and uncorrected spectral responses for
different land cover types, namely (a) dense forest, (b} bare soil,
(c) water body, and (d) clouds

Prediction of stand volume

Neural networks method applied in this study implemented Levenberg-
Marquardt algorithm to train the networks. During training process, the dataset was
divided into three subsets, which are training, validation and test datasets.

The training dataset used to train neural networks, while validation is used
as a control for training process. When the accuracy of validation data started
increasing the training was stopped avoiding overtraining on the networks. Test
dataset moreover was used as independent data for assessing the prediction
accuracy. Stand volume was estimated using (1) field measurement data (ie.
number of stems per sample plot), (2) remote sensing data (i.e. surface reflectance,
DEM, and vegetation indices), and (3) integration of field measurement and remote
sensing data. The correlation of predicted and actual stand volume is depicted in
Figure 3.
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Figure 3. Correlation between predicted and actual stand volume estimated
using field data (a, b, c¢), remote sensing data (d, e, f), and

combination of field measurement and remote sensing data (g, h
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H

Correlation coefficient of independent test dataset showed that 31.6% of
stand volume can be explained by remote sensing data (Fig. 3f) lower than that
predicted using field data (56.8%) (Fig. 3c). Combination of field and remote
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sensing data improved the predictive ability of neural networks in estimating stand
volume and the correlation between the actual and predicted stand volume
increased to 65.8% (Fig. 3i). Although the correlation is statistically acceptable, the
volume estimate is underestimated as compared to the field data. This is indicated
from the mean estimate, which is 146 m*/ha, lower than the actual mean volume,
which is 159 m’/ha (Tabel 1).

Table 1. Actual and predicted stand volume estimated using remote
sensing image and field data

Actual Stand Volume Stand Volume Estimate
Mean 159.1 Mean 146.3
Standard Error 24 Standard Error 14

Standard

Standard Deviation 927 Deviation 556
Minimum 1.0 Minimum 44.5
Maximum 628.6 Maximum 4719
Confidence Confidence
Level(95.0%) 4.7 Level(95.0%) 2.8

This might be due to the saturation of RS data limiting their ability to assess
larger stand volume, i.e. stand volume over 200 m’/ha. For example, surface
reflectance of the corrected image vary from 0.0 to 1.0, and stand volume ranges
from 0 - 600 ton/ha. The small interval of surface reflectance caused the
correlation with stem volume were compromised, so that the predictive ability of
neural networks has less accurate results. Similar with spectral values, NDVI
performance is also limited because the indices of green vegetation ranged from 0.7
— 1.0. This condition, so-called saturation or asymptote problem, commonly occurs
in satellite data for predicting the biophysical properties of forested lands, resulting
in highly scattered correlations at the extreme values of the observed variable.

The coarseness of spatial resolution, i.e. Landsat 7 ETM has 30 meter
resolution, is probably another underlying factor responsible for lower correlation
and underestimates of the stand volume. One pixel of Landsat ETM data covers
900 m? of areas on the ground, with this resolution, variations of forest parameters
within single pixel are certainly accumulated. Using a 225 m® sample plot, the
mixture of different tree compositions is ignored, thus a small error in image
registration might cause a huge problem for generating proper correlation with
forest properties data. Nevertheless, this study has demonstrated that remote
sensing data has potential to improve stand volume estimate coupled with field
observation data, i.e. number of stems.
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Conversion to above ground biomass

Prediction of the Above Ground Biomass (AGB) was carried out using two
equations proposed by [Brown and Lugo, 1992; Fearnside, 1997] converting the
values of predicted stand volume. Using Brown and Lugo equation we found mean
AGB of 368.33 Mgha', while using Fearnside equation the mean AGB was
555.89 Mg.ha™.

This different result was caused by the conversion factors considered for
both equations. Brown and Lugo formula considered only dead above ground- and
below ground biomass, whereas Fearnside equation attributed such dead biomasses
as well as other adjustment factors of different vegetation types. Histograms of
biomass estimates were calculated and the resuits were depicted on Table 2.

Table 2 Statistics of above ground biomass estimate

AGB (Brown and Lugo) AGB (Fearnside)
Mean 368.3 3359
Standard Error 18 2.7
Standard Deviation 69.5 104.9
Minimum 2143 3235
Maximum 938.9 1417.0
Confidence Level(95.0%) 3.5 5.3

The AGB estimate has higher correlation with number of stems (r = 0.82)
compared to stand volume (r = 0.60) and basal area (r = 0.68). Similar with AGB,
the stem volume was also underestimated upon comparison with the measured data
(Fig. 4). We found relatively weak correlations between forest properties and
remote sensing (RS) data, mainly due to highly variable of forest properties values
and saturation of RS data. Recent studies have found that simple band ratios are
sometimes more useful than complex vegetation indices (e.g. NDVI, SAVI, EVI)
for predicting forest stand parameters [Foody et al., 2003, Lu et al., 2004; Lu,
2006]. However, we should be careful for selecting satellite band ratios in our
study, as these ratios are only sensitive to particular forest properties, so that
generalization of those ratios for different applications is rather impossible.

Spatial Distribution of Above Ground Biomass

The AGB estimate was interpolated over the forest concession employing
Knging method assuming spatial correlation of the AGB values. Firstly, the AGB
was transformed using log-transform, so that the data was more likely to be
normatly distributed. Then, the auto-correlation of the AGB values were modeled
in semivariogram selecting Gaussian model which best fitted with the spatial

145



Indonesian Journal of Geography. Vol 40, No. 2, December 2008: 133-152

variability of the values. During semivariogram modeling, no special pattern of
spatial vanability changes within certain direction, so-called anisotropy, was
observed, thus omni-directional variogram was considered.
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Figure 4. Correlation of AGB estimates with (a) stand volume estimate,
(b) basal area, and (c) number of stems

The AGB interpolation was conducted using Ordinary Kriging assuming
unknown constant mean of the values over the study area. We assumed spatial
correlation was less as the predicted AGB moved further from the sampled
locations. Therefore, the interpolation of single pixel considered the neighborhood
values within defined distance and directions.

The neighborhood analysis was determined in the NE-SW and NW-SE
directions. There were maximum 40 neighboring pixels considered in the
interpolation of the unknown value. The neighborhood option has a smoothing
effect on the interpolation results ( Figure Sa, 5c). The AGB standard error was
estimated and we found the error increased as the interpolation was more distant
from the sampled area ( Figure 5b, 5d). We observed that the transect data has a
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systematic error estimate as sampling intensity was concentrated along the central
part of the study area. Another sampling technique, like stratified random sampling
should be considered to improve the predictive ability of Kriging method.
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Figure 5. Spatial distribution and standard error estimate of above ground

biomass based on Brown and Lugo model (a, b), and Fearnside
equation (c, d)

The Fearnside AGB as expected has higher standard error as compared with
that of the Brown and Lugo AGB. The earlier has an average standard error of 83.3
Mg/ha while the latter resulted in 55.19 Mg/ha of the average standard error. This
is due to the Fearnside equation estimated higher above ground biomass over the
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study area. According to the kriging interpolation results, the Fearnside and the
Brown and Lugo equations estimated in average 555.53 Mg/ha and 368.06 Mg/ha,
respectively. There is no significant difference between the AGB estimated from
the conversion of the stand volume with that resulted from the kriging
interpolation.

The interpolation using kriging has a major drawback, which is less robust
than the simple procedure of the conversion of stand volume data. The kriging
interpolation requires a large number of parameters, namely the type of variogram
model (e.g. spherical, exponential, and Gaussian), variogram parameters (e.g.
nugget, sill, and range) and the choice of kriging method.

There are different kriging methods that can be employed for spatial
prediction of un-sampled areas, like ordinary kriging, simple knging and kriging
with a trend model. Different assumptions regarding to data distribution and type
should be initially formulated for selecting the right choice of kriging method
applied for data interpolation. The main advantage of the kriging interpolation is
that one can study spatial distribution of the predicted variable, i.e. above ground
biomass, and the interpolation results can give more information of such variable.

CONCLUSION

The dark object subtraction (DOS) method demonstrated in this study found
that the NIR and MIR bands were less affected by the atmospheric scattering
effects. This technique has efficiently corrected the sun zenith angle, solar
irradiance, and earth-sun distance effects. Stand volume estimated from Levenberg-
Marquardt neural networks found 146 m’/ha of mean volume in the study area,
slightly lower than the measured data (159 m*/ha). Combination of remote sensing
data, i.e. spectral data, vegetation indices and DEM, and field data, i.e. number of
stems, had higher correlation coefficient with the observed stand properties
compared to the individual use of those input data. The AGB’s assessed from stand
volume resulted in different estimates mainly due to various adjustment factors.
The AGB predicted using Brown — Lugo equation varied from 214 to 939 Mg ha™,
while Feamnside model, including additional adjustment components, estimated 323
to 1417 Mg.ha'' of AGB. Spatial distribution of the AGB found higher standard
error in lower sampling intensity areas.

REFERENCES

Atkinson, P.M. and A R L. Tatnall (1997), Introduction Neural networks in remote
sensing. International Journal of Remote Sensing, 18, 699-709.

148



APPLICATION OF REMOTE SENSING Avrief Wijava ef ol

Austin, J., B, Mackey and K. VanNiel (2003), Estimating forest biomass using
satellite radar; an exploratory study in a temperate Australian Eucalyptus
forest. Forest Fcology & Management, 176, 575 - 583.

Baik, J.-J. and J.S. Paek (2000), A neural network model for predicting typhoon
intensity. Journal of the Meteorological Society of Japan, 78, 857-869.

Berry, W.D. and S. Feldman (1985), Multiple Regression in Practice. Sage,
Newbury Park, CA.

Bolanca, T., S. Cerjan-Stefanovic and M. Novic (2005), Application of Artificial
Neural Network and Multiple Linear Regression Retention Models for
Optimization of Separation in lon Chromatography by Using Several
Cntena Functions. Chromatographia, 61, 181-187.

Brown, S. and AE. Lugo (1992), Aboveground biomass estimates for tropical
moist forests of the Brazilian Amazon. fnterciencia, 17, 8-18.

Chavez Jr, P.S. (1988), An Improved Dark-Object Subtraction Technique for
Atmospheric Scattering Correction of Multispectral Data. Remote Sensing
of Environment, 24, 459-479.

Chavez Jr, P.S. (1996), Image-based atmospheric corrections - Revisited and
improved. Photogrammetric Engineering and Remote Sensing, 62, 1025-
1036.

Cohen, J. and P. Cohen. (1983), Applied multiple regressionwcorrelation analysis
Jor the behavioral sciences Lawrence Erlbaum Associates, Inc., Hillsdale,
NJ.

DeGier, A. (2003), A new approach to woody biomass assessment in woodlands
-and shrublands. In Geoinformatics for fropical Ecosystems (ed P. Roy),
161-198, India.

Demuth, H., M. Beale and M. Hagan (2006), Neural Network Toolbox 5 User's
Guide The MathWorks, Inc., Apple Hill Drive Natick, MA.

Fearnside, PM. (1997), Greenhouse gases from deforestation in Brazilian
Amazonia: Net committed emissions. Climatic Change, 35, 321-360.

149



Indonesian Joumnal of Geography, Vol 40, No. 2, December 2008: 133-152

Foody, GM., D.S. Boyd and M E.J. Cutler (2003), Predictive relations of tropical
forest biomass from Landsat TM data and their transferability between
regions. Remote Sensing of Environment, 85, 463-474.

Foody, GM. and D.P. Cox (1994), Sub-pixel land cover composition estimation
using a linear mixture model and fuzzy membership functions. International
Journal of Remote Sensing, 15, 619-631.

Hagan, M.T. and M.B. Menhaj (1994), Training feedforward networks with the
Marquardt algorithm. Neural Networks, IEEE Transactions on, 5, 989-993.

Houghton, R A., K.T. Lawrence, J.L.. Hackler and S. Brown (2001), The spatial
distribution of forest biomass in the Brazilian Amazon: A comparison of
estimates. Global Change Biology, 7, 7131-746.

Jensen, J.R. (1996), Introductory Digital Image Processing: A remote Sensing
Perspective, Second Edition. Prentice Hall.

Landsat Project Science Office (1998), Landsat 7 Science Data Users Handbook,
Vol. 2007. NASA's Goddard Space Flight Center, Greenbelt, Maryland.

Lefsky, M. A, W.B. Cohen,D.J. Harding, G.G. Parker, S.A. Acker and S.T. Gower
(2002), Lidar remote sensing of above-ground biomass in three biomes.
Global Ecology and Biogeography, 11, 393-399.

Lim, C.W. and T. Kirikoshi (2005}, Prediction of Promotional Effect Using Neural
Network Modeling. Jouwrnal of Pharmaceutical Marketing and
Management, 16, 3-26.

Losi, CJ., T.G. Siccama, R. Condit and JE. Morales (2003), Analysis of
altemative methods for estimating carbon stock in young tropical
plantations. Forest Ecology and Management, 184, 355-368.

Lu, D., P. Mausel, E. Brondizio and E. Moran (2004), Relationships between forest
stand parameters and Landsat TM spectral responses in the Brazilian
Amazon Basin. Forest Ecology and Management, 198, 149-167.

150



APPLICATION OF REMOTE SENSING Ariet Wijaya er al,

Lu, DS (2006) The potential and challenge of remote sensing-based biomass
estimation. frmternational Journal of Remote Sensing, 27, 1297-1328,

Mantel, 8. (1998), Soil and Terrain of the Labanan Area: Development of an
environmental framework for the Berau Forest Management Project. Berau
Forest Management Project, Berau.

Mather, P.M. (2004), Computer Processing of Remotely-Sensed Data: An
Introduction, Third Edition edn. John Wiley & Sons, Ltd, Chichester, West
Sussex.

Minnaert, M. (1941), The reciprocity principle in lunar photometry. Astrophysical
Journal, 93, 403-410. '

Parresol, R. (1999), Assessing Tree and Stand Biomass: A Review with Examples
and Critical Comparisons. Forest Science, 45, 573-593.

Rahman, M.M., E. Csaplovics and B. Koch (2005), An efficient regression strategy
for extracting forest biomass information from satellite sensor data.
International Journal of Remaote Sensing, 26, 1511-1519.

Rauste, Y. (2005), Multi-temporal JERS SAR data in boreal forest biomass
mapping. Remote Sensing of Lnvironment, 97, 263-275.

Riafio, D, E. Chuvieco, J. Salas and 1. Aguado (2003), Assessment of Different
Topographic Corrections in Landsat-TM Data for Mapping Vegetation
Types. JEEE Transactions on Geoscience and Remote Sensing, 41, 1056 -
1061.

Richards, J.A. (1993), Remote Sensing Digital Image Analysis - An Introduction,
Second Edition, Springer-Verlag, New York.

Sales, MH,, C.M. Souza Jr., P.C. Kyriakidis, D.A. Roberts and E. Vidal (2007),
Improving spatial distribution estimation of forest biomass with
geostatistics: A case study for Rondonia, Brazil. Ecological Modelling, 203,
221-230.

151



Indonesian Journal of Geography, Vol 40, No. 2, December 2008: 133-152

Sathe, P.M. and J. Venitz (2003), Comparison of Neural Network and Multiple
Linear Regression as Dissolution Predictors. Drug Development and
Industrial Pharmacy, 29, 349 - 355,

Schroeder, T.A.,, W.B. Cohen, C. Song, MJ. Canty and Z. Yang (2006),
Radiometric correction of multi-temporal Landsat data for characterization
of early successional forest patterns in western Oregon. Remofe Sensing of
FEnvironment, 103, 16-26.

Song, C., C.E. Woodcock, K.C. Seto, M.P. Lenney and S.A. Macomber (2001),
Classification and change detection using Landsat TM data: When and how
to correct atmospheric effects? Remote Sensing of Environment, 75, 230-
244,

Sousa, S.IV, F.G. Martins, M.CM. Alvim-Ferraz and M.C. Pereira (2007),
Multiple linear regression and artificial neural networks based on principal
components to predict ozone concentrations. Lnvironmental Modelling and
Software, 22, 97-103.

Teillet, PM,, B. Guindon and D.G Goodenocugh (1982), On the slope-aspect
correction of multispectral scanner data. Canadian Journal of Remote
Sensing, 8, 84-106.

Wijaya, A. (2006), Comparison of soft classification techniques for forest cover
mapping. Journal of Spatial Science, 51, 7-18.

152





