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Abstract Digital surface model (DSM) has been widely available for mapping and was also sometimes used 
for mapping vegetation height. The authors conducted a preliminary study to evaluate the potential use of 
DSMs derived from ASTER, ALOS, and SRTM for estimating vegetation cover density in mountainous area.  This 
study used NDVI and SAVI vegetation indices, in addition to forest cover density (FCD) model as references for 
evaluation.  A DSM-based volume index (Volindex) concept is introduced, which is the product of the canopy 
height model (CHM) and the pixel area. CHM was derived from the value difference between the DSM and the 
reference DEM. The Volindex model was then compared with the NDVI, SAVI and FCD.  We found that all DSM-
based Volindex models are not accurate enough to represent the vegetation cover density, although the ALOS 
Palsar-based Volindex could reach 41.53% accuracy and was finally used to predict the vegetation cover density.
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1.	 Introduction 
Nowadays, the availability of images in the form of digital 

surface models (DSM) is increasing. This is inseparable from the 
development of imaging systems that can derive data for this 
purpose, both those working in the passive optical (producing 
stereoscopic images), active optical (Lidar), and in the active 
microwave domains (in this case radar).  Among these various 
systems, DSM recorded via satellite is a type of data that is 
widely available and has attracted interest for use in various 
applications, for example ASTER GDEM, SRTM, and ALOS Palsar.

From a geographical point of view the DSM differs from 
the digital elevation model (DEM), in terms of the elevation 
information presented (Huggett and Cheesman, 2002). DEM 
provides ground level information above a datum or an agreed 
reference, while DSM provides information on the height of 
land cover such as vegetation and buildings, and the ground 
level if the land is open without cover.  Due to its capability 
to provide information on the height of land cover, DSM data 
has been widely studied and applied for various purposes 
around the world, for example for the measurement of tree 
height (Kellndorfer et al., 2004; Urbazaev et al., 2018), urban 
green (Hecht et al., 2008), time-series analysis of vegetation 
(Trier et al., 2018), and also mapping of plant species (Wu et 
al., 2016), in addition to topographic mapping (Julzarika and 
Harintaka , 2019).

Despite their difference, many researchers have used DSM 
as DEM, both for topographic mapping (Nikolakopoulos and 
Chrysoulakis, 2006), physiographic interpretation (Taramelli 
and Melelli, 2008), flood hazard mapping and other DEM-based 
modeling (Prasannakumar et al., 2011; Dragut and Elsank, 
2011; Dragut et al., 2012). Some of these studies ignored 

the differences between DEM and DSM, and some others 
considered that the method of recording by the sensor and 
the use of the selected electromagnetic wavelength spectrum 
minimizes the difference in elevation between the land surface 
and the land cover height. 

Broadly speaking, field analysis does not require accurate 
DSM corrections, if it is related to visual interpretations; but 
it requires accurate corrections to DEM when used as a basis 
for modeling terrain attributes of slope, flow direction, flow 
accumulation, and models related to topo shape (Eastman, 
2020). Huggett and Cheesman (2002) stated that the accuracy 
of a DEM is highly dependent on the accuracy of the source 
data. The accuracy of DEM is never greater than that of the 
source data. Besides, the accuracy is very dependent on 
the modeling methods, but on the other hand usually the 
method of obtaining the error value is not explained in detail.  
Furthermore, some applications rarely carried out test for 
the distribution of errors in the model. The method used to 
produce error values does not evaluate DEM for different types 
of errors (random and systematic).

On the contrary, research related to vegetation as land 
cover and its function in the ecosystem is mostly carried 
out using optical images. Various approaches to extracting 
vegetation parameter information have been carried out 
with optical digital images, for example through multispectral 
classification of various land cover classes or multispectral 
classification combined with GIS to identify ecosystem units 
(Danoedoro, 2019), transformation of vegetation indices for 
study of vegetation density and biomass estimation (Huete 
1988; Dewa and Danoedoro, 2017), and also classification of 
vegetation structural composition through forest cover density 
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or FCD (Himayah et al., 2016; Ismail et al., 2017; Salsabila and 
Danoedoro, 2021; Danoedoro and Gupita, 2022). Vegetation 
studies using vegetation indices  in Menoreh Mountain have 
been carried out by Umarhadi et al. (2018) and Umarhadi and 
Danoedoro (2019).

Based on the introduced background, the research problem 
could be formulated that DSM has not been studied much 
for ecological vegetation studies in mountainous wet tropical 
areas like Indonesia, even though DSM contains information on 
vegetation height. Research carried out by Anggara et al (2015) 
have tried to combine DSM data from SRTM with DEM data to 
estimate the volume of stands, but there has been no broader 
research related to comparisons of different DSMs for the same 
purpose, as well as comparison with models based on optical 
spectral information such as vegetation index transformations.

The objectives of this study were twofold: (a) to develop a 
DSM-based vegetation volume index and to correlate it with 
the vegetation-sensitive transformations like NDVI, SAVI and 
FCD; (b) to evaluate the accuracy of DSM-based volume index 
as a basis for vegetation density parameter using forest cover 
density (FCD) as a reference.

2.	 Methods
This study departed from the assumption that the 

DSM represents the surface height of land cover including 
vegetation. Because the information provided is in the form of 
land cover surface height, there is a height difference between 
the DSM and the DEM, where the altitude value on the DSM 
should be higher.  By calculating the difference between the 
DSM and DEM values, the value of the land cover surface height 
can be obtained. Multiplication of the height difference and 
the surface area generates land cover volume.  Given that land 
cover in the form of vegetation differs from building land cover, 
since it is not massive and the underside is not completely 
covered with leaves, this volume value should be viewed as a 
volume index, that is, an index that represents volume, but not 
the volume value itself.  The volume index was then compared 
with SAVI dan NDVI and correlated with the vegetation cover 
density represented by the FCD as a basis for regression model.

Study Area and Materials 
The Menoreh Mountains area covering the districts of Kulon 

Progo and Purworejo was chosen as the research area based 
on the consideration that this area might represent an area 
with very rough topographic variations, so it is suitable to be 
a test of the reliability of DSM, DEM and vegetation spectral 
transformations in presenting information related to vegetation 
density. The image of the area is presented in the form of a 
false-color composite image of Landsat 8 OLI in Figure 1.

We used three types of digital surface model (DSM) images 
obtained using optical and radar spectra recording, namely 
ASTER GDEM optical image (30 m), Shuttle Radar Topography 
Mission (SRTM, 30 m), and ALOS PALSAR (30 m). In addition to 
the three types of DSM images, this study also utilized Landsat 
series imagery with a spatial resolution of 30 m, which were 
recorded in three different years, i.e., Landsat 7 ETM+ of 21 
August 2002, Landsat 5 TM of 19 October 2009, and Landsat 8 
OLI of 22 February 2015.  This study selected these three image 
datasets with respect to the nearly cloud free coverage and 
the closest years to each DSM development, i.e., SRTM (2000), 
ASTER GDEM (2009) and ALOS PALSAR (2014) respectively.  As 
a reference DEM, we used RBI topographic map of 1:25,000 
scale. The study area covers mountainous, hilly, and flat areas, 

which are covered by natural and semi-natural vegetation, as 
well as agricultural crops and settlements.  All image processing 
stages were carried out using Idrisi TerrSet and ILWIS, while 
the map presentation was carried out using ILWIS and ArcGIS.

Figure 1. Study area as recorded by Landsat 8 OLI, using 
color composite of bands 5, 6, and 2 (RGB)

Research Stages
DEM Preparation

As summarized in Figure 2, in the initial stage the RBI 
topographic map was interpolated linearly to derive a digital 
elevation model (DEM) data. This DEM represents the spatial 
distribution of land surface elevations and becomes a reference 
for calculating the height difference (CHM or Canopy Height 
Model) and vegetation volume index (Volindex) based on the 
three DSM datasets.   The pixel size of this reference DEM is 
set to 30 m in order to match the DSM datasets in this study.  

Volume Index Development
In the second stage, each DSM was then overlaid with the 

reference DEM based on an assumption that the altitude on the 
land cover surface recorded in the DSM is equal to, or higher 
than, the elevation data available in the DEM image. Prior to 
doing this, each DSM image was converted to the projection 
system and its coordinates and datum, referring to the system 
used by the Indonesian Geospatial Information Agency (BIG).  
The result of subtracting the reference DEM pixel values from 
the DSM at the same position gives the height values of land 
cover in meters. By considering the area of each pixel, i.e., 30 x 
30 m2, the product of the land surface area and the land-cover 
height gave the value of the volume of land-cover per pixel.  
Given that the volume values range very widely, a natural 
logarithmic function applied as follows:

(1)

where Volindex is the volume index of the land cover volume, 
DSM is the land cover height in meter, DEM represents the 
ground elevation, and Rs is the spatial resolution in meter.

Vegetation Index Transformation
In the third stage, volume index images based on ASTER, 

SRTM, and ALOS Palsar were then compared with vegetation 
indices of NDVI and SAVI, as well as with FCD model based 
on the spectral transformation of Landsat series images. 
These indices have been known to have strong correlation 
with biomass content, stand volume, and carbon storage 
(Margaretha et al., 2013; Dewa and Danoedoro, 2017; Pahlevi 
et al., 2021; Zheng et al., 2022).  Prior to the application of 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = ln((𝐷𝐷𝐷𝐷𝐷𝐷 −𝐷𝐷𝐷𝐷𝐷𝐷) ∗ 𝑅𝑅𝑅𝑅2) 
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vegetation index and FCD transformations, all Landsat datasets 
were radiometrically corrected using ‘full model’ referring to 
Chavez (1996) and Eastman (2020), where the pixel values are 
transformed to at-surface reflectance ρ:

                       	
			   (2)

where ρ is at-surface reflectance in percent, Lλ is the image 
spectral radiance,  Lhaze is scattered spectral radiance recorded 
as the minimum one by the sensor, τv is the atmospheric 
transmittance or optical thickness of the atmosphere, Eo is the 
solar spectral irradiance which takes into account the Earth-Sun 
distance in specific Julian day, Tz is the incident angle of the direct 
solar flux to the Earth surface, and Edown is downwelling spectral 
irradiance due to the scattered solar flux in the atmosphere.

Practically, this correction takes into account image 
metadata containing information about (a) the range of the 
original DN values or the level of bit-coding, (b) maximum 
and minimum spectral radiance in Watts m-2sr-1µm-1 that can 
be detected by the sensor, (d) Sun elevation and azimuth, 
(e) recording time (date, month and hour) follows the UTC 
standard, (f) optical thickness of the atmosphere at the time 
of recording, and (g) DNs for objects in the form of very dark 
shadows or very clear and deep water.

Meanwhile, the formulas for NDVI and SAVI are as follows:

	                       	     (3)                                                               

   		
			                 (4)                                                         

where for both types of indices, the value ≤ 0 indicates non-
vegetation land cover, 0 indicates barren land, while the greater 

Figure 2. Flowchart of research methods

the index value close to +1 indicates the higher vegetation 
density. The results of the correlation analysis then became the 
basis for evaluating the possibility of the DSM-based volume 
index to be used for estimating vegetation parameters.

Vegetation Density Reference Model using Forest Cover 
Density (FCD)

In this study, a field reference to represent vegetation 
density made use of Forest Cover Density (FCD) concept, 
although we ran it using ILWIS and Idrisi TerrSet instead of the 
FCD Mapper software.  The FCD transformation (Rikimaru et 
al., 2002) makes use of six Landsat spectral bands, comprising 
blue, green, red, near infrared (NIR), first middle infrared 
(SWIR1) and thermal regions.  The FCD model was developed 
using several stages of transformation, involving Advanced 
Vegetation Index (AVI), Soil Brightness Index (BI), Shadow 
Index (SI) and Thermal Index (TI).  Combination of AVI and BI 
produces Vegetation Density (VD), while integration SI and TI 
generates Shadow Scaled Index (SSI).  The FCD was computed 
using inputs from VD and SSI.   The FCD is not simply an index 
like NDVI or SAVI, since it represents two aspects of vegetation 
parameters, i.e., density and structural composition, so that it is 
frequently used for regional mapping of forest vegetation cover 
without correlating the values with the field measurement 
(ITTO, 1997). The following formulas follow an explanation from 
Rikimaru et al. (2002), Himayah et al. (2016) and Danoedoro 
and Gupita (2022).

AVI makes use of red and NIR bands and is formulated as 
follows. 

IF (NIR-Red) ≤ 0, 
THEN AVI= 0,
ELSE                                                                                         (5)
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BI makes use of blue, red and SWIR1 bands, and is 
formulated as follows:

,  Where  
					     0 ≤ BI ≤ 200  (6)

SI image was generated by involving blue, green, and red 
bands, with the following formula:

		
       (7)

While TI was derived from the rescaled thermal band.

We processed VD by applying a principal component analysis 
(PCA) of a dataset containing AVI and BI images.  The VD was taken 
from the first principal component (PC1).  The same approach 
applied for deriving SSI, where the first PC of SI – TI combination 
was taken.  The VD was then rescaled to 0 – 100, where 0 
represents bare soil (no vegetation) and 100 represent very dense 
vegetation.   Areas with SSI value = 0 were regions with shadow 
value (SI) = 0 too.  The area where SSI = 100 was the area with 
100% shadow cover.  The resultant FCD may have 0-100 range, 
depending on the vegetation density variation in the image, and 
was generated using the following formula

				       	           		
	 (8)

After that, the resultant FCD image was converted into 
classified FCD shown in Table 1.

3.	 Results and Discussion 
DEM preparation through RBI contour interpolation

The DEM map resulting from the interpolation of RBI 
contour lines showed a variation of the ground surface 
elevation.  Referring to the principle that 1: 25,000 scale 
contour maps can be rasterized with the smoothest spatial 
resolution of 1/2000 x the scale denominator (Tobler, 1988; 
McCloy, 2005), the allowable pixel size is 12.5 m or coarser. 
By using 30 m pixel size for the results of rasterization and 
interpolation of the formation of this DEM, the existing 

principles were not violated. The DEM map is presented in 
Figure 3, together with the DSM images of ALOS Palsar, ASTER 
GDEM, and SRTM respectively.

As shown in Figure 3, the maximum elevation of the 
reference DEM is 849 m, while the maximum values vary in 
the three DSMs.  ALOS Palsar and SRTM maximum elevations 
are higher than the reference DEM, i.e., 863 m and 657 m 
respectively, while the one of ASTER GDEM is lower than the 
reference, i.e., 843 m.  At a first glance, this elevation ranges 
give the impression that ASTER GDEM provides less accurate 
information, given that the DSM was built based on optical 
(near infrared) bands taken stereoscopically, which has no 
vegetation canopy penetration capability.  On the contrary, 
the ALOS PALSAR and SRTM DSMs precisely perform higher 
maximum elevation values.  Apart from these differences, 
correlation analysis between datasets showed that they are 
perfectly correlated with r = 1.0, which means that every 
increase in any location of one image is followed by increases 
in corresponding location of other images.

Volume Indices based on DSM Images
Canopy Height Model (CHM) was generated by subtracting 

the reference DEM from each DSM image.  As shown in Figure 
3.  Many pixels in each CHM image have negative values, which 
is impossible to represent the canopy height or even any other 
land-cover, so that they are assigned a blank value.  There are 
three possible errors related to this.  First, the RBI topographic 
map which was used as a reference DEM is not accurate; 
second, all the satellite-based DSM images are not accurate; 
and the third is both types of datasets are not accurate. 

Figure 3 shows that all CHMs have significant number of 
pixels containing negative values, although the height ranges 
are different, where SRTM represents the largest range.  On 
the other hand, the highest average height difference belongs 
to ASTER GDEM, i.e, at 7.13 m.  This phenomenon is probably  
related to the way ASTER GDEM acquired (using optical 
NIR spectrum), while the other two used radar wavelength, 
regarding that Almeida-Feilho et al., (2009), Kenyi et al., (2009), 
Basuki et al., (2013), and Urbazaev et al. (2018) mentioned that 
the microwave energy can penetrate the vegetation canopy.    It 

Table 1. FCD Classification according to ITTO, which contains density and structural composition

Class Value 
Range

Vegetation structural composition 
description Cls Value 

Range Vegetation structural composition description

0 0 Bare soil
1 1-10 No canopy coverage. Open land 

and grass are predominant
6 51-60 Adult and young tree canopies are growing, covering 

51-60% of the pixel area which is starting to show a 
difference

2 11-20 Tree canopies began to appear, but 
open land is still predominant

7 61-70 Tree canopies are growing rapidly covering 61-70% of 
the pixel area with differences in strata of stands, clearly 
visible and heterogeneous

3 21-30 Tree canopies occupy 11-20% of 
the pixel area but open land is still 
predominant 

8 71-80 Tree canopies cover 71-80% of the pixel area with distinct 
strata standing distinctions, species heterogeneity is 
increasing,

4 31-40 Tree canopies occupy 21-30% of the 
pixel area interleaved with bushes 
and shrubs

9 81-90 Tree canopies cover 81-90% of the pixel area with 
different standing strata; very clearly seen, very high 
heterogeneity

5 41-50 Young tree canopies develop and 
cover 41-50% of the pixel area, with 
a predominance of shrubs while 
shrubs decrease.

10 91-100 Tree canopies cover 91-100% of the pixel area with very 
stratified differences, very high heterogeneity, sunlight is 
unable to reach the forest floor and moisture is very high.

Source: ITTO (1997)
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is also interesting to note that the three CHMs depict different 
spatial pattern of pixels with positive values. The ALOS-based 
CHM show relatively random pattern of positive values and 
only occupies 11.12% of the total area.  On the other hand, 
the ASTER GDEM-based and SRTM-based CHMs represent 
negative values in many parts of east- and southeast-facing 
slopes, although the ASTER’s have more positive values in the 
flat and gently sloping areas.  The negative values of the ASTER’s 
occupies 61.66%, while the SRTM’s covers 77.11% of the total 
area.  To say it in another way, the three CHM models can only 
work in relatively small portion of the study area, when they 
are processed further for vegetation density analysis.

The CHM images were then trasformed to Volindex images 
by using equation (1).  The result is presented in Figure 4. As 
compared to the correlations between CHMs, the correlation 
coefficients between VolIndices are lower.  Figure 4 also shows 
that Volindex of ASTER GDEM is higher than others across the 
study area.  It is not easy to find the reason why, because there 
is no information on the exact date of the data acquisition 
of the ASTER images that has been used for building up the 
GDEM, especially in relation with the presence of annual crops 
(planting period) and forest stands (e.g. seasonal deciduous).  
The same reason also applied for the other DSM images. A 
correlation matrix was developed for three Volindex images 
contaianing positive height values only.  In contrast to the 

original DSM images, the correlation coefficients between 
Volindex images become much lower, which means that their 
variation in space and time are different.  Generally speaking, 
the SRTM-based Volindex model has the highest value range 
as compared to that of ALOS-Palsar and ASTER GDEM.  

Vegetation Indices Development 
Two vegetation indices, i.e. NDVI and SAVI were generated 

using three different datasets of Landsat.  Radiometric 
correction were applied to the datasets that has not been 
correctited using equation (2), and the NDVI and SAVI images 
were derived using equaitons (3) and (4).  For image with the 
closest date of recording to SRTM data development (and 
relatively cloud free), a Landsat 7 ETM+ of 2002 has been 
used, while for ASTER GDEM a Landsat 5 TM of 2009 dataset 
was chosen, and for ALOS PALSAR a Landsat 8 OLI of 2015 
was selected.  They do not exactly match the years or dates 
of DSM development, but they are recorded at the closest 
dates of recording with relatively good quality, although the 
thermal bands of Landsat 7 ETM+ and Landsat 5 TM are not 
good enough.  The resultant images are presented in Figure 4.

Vegetation Cover Density 
Vegetation cover density as a reference for the DSM-

based volume index modelling was built up using forest cover 

Figure 3. Left: The (DEM) and DSM. Right: Comparison betwen Canopy Height Models (CHMs) generated using three DSMs

Figure 4. Left: Comparisan between Volindix images generated using ALOS Palsar, ASTER GDEM, and SRTM. Right: SAVI and 
NDVI images of different years corersponding with the year of DSMs acquisition.
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density (FCD) transformation. Figure 5 depicts the outline of 
the process carried out in this study, where the vegetation 
cover density is represented by FCD and was generated using  
Advanced Vegetation Index (AVI), Bare Soil Index (BI), Shadow 
Index (SI), Thermal Index (TI), Vegetation Density (VD), and 
Shadow-scaled Index (SSI).  This procedure applied for three 
dates of recording with respect to the use of three different 
DSMs. The formula for these indices refer to equations (5) up 
to (8).  All FCD formulas work on the 8-bit Landsat data, so 
that all images were rescaled to 0-255 range first (Danoedoro 
and Gupita, 2022).  The Vegetation Density (VD) index was 
generated using principal component analysis (PCA) involving 
dataset containing AVI dan BI, while the Shadow-scaled Index 
(SSI) was derived using PCA of dataset containing SI and TI. The 
process of VD and SSI generation using PCA required inversions 
since the results showed inversed pixel values, i.e. the original 
PC1 of VD and SSI performed high values for bare soil and low 
ones for vegetation.  Therefore, we applied inversion followed 
by 0-100 rescaling.

Referring to ITTO (1997) and Rikimaru et al (2002), the 
FCD model is a semi-expert sytem, which was developed for 
forest cover density mapping with limited or the absent of field 
survey, since the formulas involved were based on empirical 
information and purposively designed for covering remote 
areas. Therefore, this study made use of the FCD models of 
2002, 2009, and 2015 as references for the DSM-based Volindex 
models being evaluated.  However, this study also found that 
three FCD models are not exactly the same in representing the 
condition of vegetation cover, both in density and structural 
composition.  Figure 5 represents the three FCD maps. 

Figure 5 also shows that there are some differences among 
the vegetation density of 2002, 2009 and 2015 which are 
represenetd by the FCDs.  The FCD map of 2002 looks less 
contrats as compared to the other years.  Besides, the FCD map 
of 2009 shows denser vegetation classes  on the east-facing 
slopes.  The FCD map of 2015 represents sparser vegetation 
density and accentuates the relief expression of the study area.  
These differences were caused, for one thing, by the difference in 
time recording as well as the level of atmospheric  disturbance.  
In addtion,   the seasons of recording also imply the greeness 
level of the vegetation. For example, in 2002 the vegetation 
cover of the study area was relatively better than the more 
recent condition.  On the other hand, October is the end of dry 

season, and most annual crops and dediduous vegetation are 
usually have low greeness levels.  The quality of Landsat 7 ETM+’s 
thermal band also affected the derivation of the FCD of 2002, 
particularly in building up the TI and SSI, so that the urban areas 
look more vegetated than those of 2009 and 2015.  

Since the FCD concept combines percentage of vegetation 
coverage and the structural composition, it was not easy to 
validate the exact values of the model (at 0–100 range) using 
vegetation density measurement in the field.  That is why 
the authors could only validate the FCD classes wih the field 
observation, which took into account the density and the 
structural composition at once. Problem occured when there 
was no accurate information on the vegetation density and 
structural compositon during the years of recording.  Interview 
with the local people supported by the assumption that in 
mountainous and remote areas the forest cover did not change 
significantly applied in this situation.  By using confusion matrix, 
we found that the accuracy levels of the FCD model are 76.34% 
for 2002, 85.01% for 2009, and 84.74% for 2015, which are 
similar to result obtained by Danoedoro and Gupita (2022).  
Regardless this accuracy level, we used these information as 
a basis for correlation with the Volindex models.   

Correlation and Regression Analysis between Vegetation 
Density and Volindex Models

After obtaining all DSM-based Volindex and vegetation 
density models, the authors applied masking for all maps in 
order to exclude areas with negative values with regard to the 
Volindex models of SRTM, ASTER GDEM, and ALOS Palsar.  That 
is to say, only relatively few pixels were involved in this analysis 
since the Volindex negative values implied the impossibility to 
model the vegetation density.  Table 2 represent the correlation 
matrix between all vegetation indices (NDVI and SAVI), FCD, 
and Volindex of all years involved.  Therefore, this correlation 
analysis at this stage was based on the population involving 
millions of pixels, instead of samples. 

As shown in Table 2, correlation between NDVIs varies with 
the years of recording. The lowest correlation coefficient was 
presented by NDVI 2002 and NDVI 2015, while the highest one 
was between NDVI 2002 and NDVI 2009.  The same pattern 
was also presented by SAVIs, which means that the vegetation 
density (regardless the structural composition) of the study 
area changed significantly over time of observation.  When the 

Figure 5. Left: Example of vegetation cover density model developed using several stages involving six indices 2015. Right: 
Three FCD images in real values (top) and classified maps used as field references
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vegetation structural composition was also involved, we found 
that the highest correlation coefficient between FCDs belongs 
to the same pair as NDVI’s and SAVIS’s (i.e. FCD 2002 and FCD 
2009, at 0.62).  To say it in another way, the vegetation density 
of the study area performed the same pattern as viewed from 
cover percentage as well as from structural composition. 

When the Volindex models were correlated with the 
vegetation indices and FCD models, slight differences in 
correlation were found, although the Volindex ALOS performed 
the best and the Volindex ASTER was the worst.  The NDVIs 
have low correlation coefficient with all Volindex models. The 
highest coefficient was performed by the Volindex ALOS and 
NDVI 2015.  SAVIs gave stronger correlations with Volindex 
of ALOS, as compared to other Volindex models,  In terms of 
vegetation density represented by the FCDs, the Volindex of 
ALOS performed a relatively higher correlation coefficient with 
all FCD models, despite the FCD 2002 - Volindex ALOS pair 
shows weak correlation (at 0.43) and the FCD 2009 – Volindex 
ALOS as well as FCD 2015 – Volindex ALOS pairs perform 
moderate correlation at 0.50 and 0.51 respectively.  The SAVI 
2015 strongly correlates with the FCD 2015 at r=0.97, and 
consistently the SAVI 2015 correlates with the Volindex ALOS.  
Since this study focused on the vegetation density parameter 
representing a combination between cover density and 
structural composition, we used correlation between Volindex 
ALOS and all FCD models for further analysis.

At the next stage, we took samples from the FCD models to 
represent the vegetation density parameters in the field and we 
extract the Volindex values at the corresponding locations. For 
each pair of FCD – Volindex we selected different sample sets, 
due to the fact that the pixels representing DSM with posirive 
values are distributed differently among sensors. Therefore 
there were 30 sample points for each Volindex model 3.

Since the Volindex ASTER performed the worst correlation 
coefficients with all FCD models, this study made use the pairs 
of Volindex SRTM – FCD 2002, Volindex ALOS – FCD 2009, and 
Volindex ALOS – FCD 2015 to represent the best correlations 
as the basis for vegetation density estimate using regression 
equations. Prior to the corelation and regression analyses, 
a normality test applied, and we found the samples could 
be used for the regression analysis.  In contrast to the total 
population involved in the correlation matrix (Table 2), the 
analyzed samples showed a relatively higher correlation for 
each pair of Volindex and FCD.   The authors found that the 

Volindex SRTM – FCD 2002 has a positive correlation with r 
=0.489, which is very close to the moderate level.  Meanwhile, 
the Volindex ALOS – FCD 2009 and Volindex – FCD2015 have 
positive correlation at r = 0.565 and r = 0.640 respectively. 
Although these correlation coefficients are not high enough, 
we still need to test the regression equation for predicting the 
vegetation density values using Volindex of SRTM and ALOS. 
The results are presented in Table 3.

The regression equations for modelling the vegetation 
densit parameter in terms of FCD were obtained using Volindex 
SRTM (for Landsat 7 ETM+ of 2002) and Volindex ALOS (for 
Landsat 5 TM of 2009 and Landsat 8 OLI of 2015).  Table 3 
also shows the selected equations in the rightmost column.   
After that,  these regression equations were run separately 
using map calculator for generating predicted or estimated 
FCDs.  The results are presented in Figure 6, where the spatial 
distribution of each estimated FCD shows different pattern 
and values, depending on the positive values obtained from 
the CHM previously explained.

Accuracy Assessment of the Results
Acuracy assessment of the estimated or predicted FCDs 

applied two methods to the different products.  Firstly, the 
predicted FCD values were assessed using standard error of 
estimate (SEE).  Based on the SEE, the minimum and maximum 
accuracies were calculated according to the 95% confidence 
level.  Secondly, the pedicted FCD classes were evaluated using 
confusion matrix (Congalton and Green, 2009), and gave results 
in overall accuracy as well and Kappa.  Both methods made use 
of independent datasets, taken from the originally generated 
FCD maps explained in section 3.5.

As presented in Table 3, the SEE of the 2002 result using 
SRTM-based Volindex is 47.26, while the SEEs of 2009 and 
2015 results using ALOS-based Volindex are 36,11 and 
29.78 respectively.  These SEEs gave maximum accuracys at 
24.55%, 34,25% and 39.44%; and 27.24%, 37.22% and 44.75% 
respectively.    In terms of the FCD classes, the overall accuracies 
obtained are 30.04% (for SRTM-based Volindex), 37.27% and 
41.54% (for ALOS-based Volindex).  .

The accuracy assessment implies that all Volindex model 
cannot accurately predict the vegetation density parameter, 
which is represented by the FCD models.  The most accurate 
Volindex model, i.e. the ALOS Palsar-based Volindex could only 
reach 41.53% overall accuracy when it is transformed into 

Table 2. Correlation matrix between all vegetation indices, FCD and Volindex models
NDVI SAVI FCD VOLINDEX

2002 2009 2015 2002 2009 2015 2002 2009 2015 SRTM ASTER ALOS

N
DV

I 2002 1.00 0.87 0.48 0.83 075 0.31 0.69 0.72 0.30 0.21 -0.04 0.24
2009 0.87 1.00 0.55 0.72 0.82 0.33 0.58 0.79 0.32 0.24 -0.03 0.28
2015 0.48 0.55 1.00 0.47 0.52 0.77 0.41 0.46 0.71 0.22 0.00 0.23

SA
VI

2002 0.83 0.72 0.47 1.00 0.77 0.46 0.82 0.79 0.46 0.31 0.13 0.42
2009 0.75 0.82 0.52 0.77 1.00 0.43 0.60 0.87 0.41 0.23 0.10 0.54
2015 0.31 0.33 0.77 0.42 0.43 1.00 0.42 0.46 0.97 0.26 0.12 0.52

FC
D

2002 0.69 0.58 0.41 0.82  0.60  0.42 1.00 0.62 0.42 0.35 0.12 0.43
2009 0.72 0.79 0.46 0.79  0.87  0.46 0.62 1.00 0.47 0.27 0.09 0.51
2015 0.30 0.32 0.71 0.46  0.41  0.97 0.42 0.47 1.00 0.32 0.03 0.52

VO
L-

IN
DX

SRTM 0.29 0.24 0.22 0.32 0.23 0.26 0.35 0.27 0.32 1.00 0.17 0.37
ASTER -0.04 0.14 0.00 0.13 0.10 0.12 0.09 0.31 0.08 0.17 1.00 0.12
ALOS 0.24 0.28 0.31 0.42 0.44 0.52 0.43 0.50 0.51 0.37 0.12 1.00

Note: SRTM was acquired in 2002, ASTER GDEM in 2009, and ALOS Palsar in 2014
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Table3.SamplesofFCD–Volindexpairs

Smpl 
No

FCD2002-SRTM FCD2009-ALOS FCD2015-ALOS
Correlation coefficients and regression 

equationFCD2002 VOLIDX 
SRTM FCD2015 VOLIDX 

ALOS FCD2009 VOLIDX 
ALOS

1 11.50 2.073 0.000 2.042 10.30 2.042 For SRTM-based DSM and L7 ETM+:

FCD = 269.1 + 0.016*Volindex_SRTM

R2 = 0.239

2 78.90 4.441 44.440 2.998 52.51 2.998
3 99.40 4.912 89.940 4.681 77.66 4.681
4 0.00 2.451 75.730 4.392 89.92 4.392
5 44.60 2.002 40.060 3.247 47.23 3.247
6 34.70 3.744 8.920 4.555 90.12 4.555
7 22.80 3.949 10.550 3.007 84.83 3.007
8 85.10 4.953 36.720 2.568 56.32 2.568
9 69.80 2.006 69.690 4.282 43.45 4.282

10 87.50 3.252 88.920 4.556 65.21 4.556
11 54.60 2.989 92.930 3.966 24.29 3.966 For ALOS-based DSM and L5 TM:

FCD = -3.255 + 15.067*Volindex_SRTM

R2 = 0.319

12 17.90 3.225 76.110 4.112 27.88 4.112
13 75.70 3.995 89.950 4.004 88.32 4.004
14 29.30 3.012 14.350 2.045 12.24 2.045
15 40.60 4.747 50.010 2.234 50.31 2.234
16 4.90 2.003 46.160 3.201 35.32 3.201
17 90.90 3.955 67.390 2.006 45.18 2.006
18 79.40 3.245 42.620 2.567 66.55 2.567
19 63.80 4.965 28.280 2.223 35.75 2.223
20 61.60 3.002 59.330 3.457 65.63 3.457
21 33.30 3.248 26.340 2.038 64.08 2.038 For ALOS-based DSM and L8 OLI:

FCD = -0.470 + 15.466*Volindex_ALOS

R2 = 0.410

22 0.00 2.342 0.230 2.345 39.27 2.345
23 10.70 3.007 2.740 2.331 26.36 2.331
24 81.80 2.989 3.480 3.452 70.01 3.452
25 49.50 3.647 12.830 2.221 24.11 2.221
26 60.60 4.879 39.750 2.573 0.98 2.573
27 35.50 4.646 20.780 2.023 11.89 2.023
28 4.94 2.505 62.350 3.695 42.67 3.695
29 41.25 4.365 24.280 2.705 29.39 2.705
30 20.47 3.754 33.280 2.676 34.13 2.676

Note The Volindex of ASTER GDEM was not used due to its very low correlation with all FCDs, and replaced by Volindex of ALOS which 
shows relatively higher correlation with FCD 2009 and FCD 2015

Figure 6. Regression equations used for transforming the Volindex models into prediceted FCDs.

FCD classes. Apart from this weakness, the ALOS Palsar-based 
Volindex model could be used to predict the vegetation density 
parameter of different years at relatively higher accuracy as 
compared to the other Volindex models.  Among the three 
models, the ASTER GDEM-based one was found the worst since 

it shows very low correlation coefficient with the vegetation 
indices and FCD. Figure 7 depicts the most accurate model.

The low accuracy of the Volindex model might be caused by 
several factors, i.e. the accuracies of  RBI topographic map, the 
satellite-based DSMs, and the FCDs. In addition,  Landsat images 
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Table 4. Standard Error of Estimates and accuracies of the predicted FCD based on Volindex models

Volindex and Predicted FCD SEE Minimum 
accuracy

Maximum 
accuracy

Overall 
accuracy Kappa

FCD 2002 (based on Volindex SRTM) 47.26 22.25% 24.24% 29.04% 0.2853
FCD 2009 (based on Volindex ALOS) 35.11 34.55% 37.22% 37.27% 0.2498
FCD 2015 (based on Volindex ALOS) 29.78 39.44% 44.74% 41.53% 0.3902

Figure 7. Predicted vegetation cover density using Volindex of ALOS Palsar. Top: real values, bottom: 
classified values to structural composition categories (see Table 1)

quality and the topographic configuration of the study area 
might play an important role. With 12.5 m contour intervals, 
the maximum acuracy of the RBI topographic map and the 
derive DEM is only 6.25 m (Robinson et al., 1995; Hugget and 
Cheesman, 2002).  The resultant CHMs show that many pixels 
with negative values exist, indicating that most of the SRTM, 
ASTER GDEM, and ALOS Palsar’s elevation values are lower 
than the RBI topographic map’s ground elevation.  Different 
patterns of the CHMs’ negative values also indicate a systematic 
inaccuracies, which require further studies.  Different Landsat 
datasets also perform different ranges of NDVI and SAVI, which 
means that they need relative calibrations. Extremely rough 
topography of Menoreh Mountain also caused radiometric 
bias, which has been studied by Umarhadi and Danoedoro 

(2019; 2020). This bias might lead to inaccuracies of the derived 
FCD models. 

4.	 Conclusions 
This study found that the Volindex concept does not work 

well as a basis for vegetation density estimation or prediction in 
very rough topography like Menoreh Mountain.  The negative 
values that are performed by the CHMs cause Volindex models 
can only work in several topographic parts of the study area, 
depending on the satellite sensors used.  Correlation analysis 
showed that the Volindex models more correlate with the 
FCDs than with NDVIs and SAVIs, although there is no strong 
correlation between them.  As compared to other DSMs, the 
ALOS Palsar DSM could generate Volindex models that are more 
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correlated to all FCDs of all years, and the best correlation can 
be used for predicting the vegetation cover density at 41.54% 
overall accuracy. There is a need for further studies in other 
areas with various topographic characteristics and using more 
accurate topographic map as basis for CHM and Volindex 
computation. In addition, radiometric calibration in terms of 
topographic correction of the multispectral data should also 
be considered. 
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