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Abstract The territory of Indonesia is prone to a high level of tectonic earthquake vulnerability including In 
Simeulue Regency, one of the regions of Aceh Province. Therefore, this study aimed to analyze level of tectonic 
earthquake activity in Simeulue Regency and its surroundings divided into four Sub Regions (I, II, III, and 
IV). The data used spanned 1940-2020 and were sourced from the ISC with the criteria of the depth being 
<60km and a magnitude of 3Mw. The seismic features were elucidated through descriptive statistics, while 
the determination of ‘a’ and ‘b’ values for individual Sub Region was accomplished by using the maximum 
likelihood estimation (MLE) method. The results showed that the highest distribution of earthquakes was at 
a depth of 15-44.9 km and magnitude at intervals of 3.0-4.9 Mw, specifically in Sub Region III. The largest 
Mc value was found in Sub Region I, while Sub Region III had high seismic activity and rock heterogeneity. 
In addition, this area had a large seismicity index and the shortest return period at intervals of magnitude 

. Sub Region I on the other hand had a longer seismicity index at intervals of magnitudes 
 and  
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Abstract. Flood is one of the disasters that often hit various regions in Indonesia, specifically in West Kalimantan. 
The floods in Nanga Pinoh District, Melawi Regency, submerged 18 villages and thousands of houses. Therefore, 
this study aimed to map flood risk areas in Nanga Pinoh and their environmental impact. Secondary data on 
the slope, total rainfall, flow density, soil type, and land cover analyzed with the multi-criteria GIS analysis 
were used. The results showed that the location had low, medium, and high risks. It was found that areas with 
high, prone, medium, and low risk class are 1,515.95 ha, 30,194.92 ha, 21,953.80 ha, and 3.14 ha, respectively. 
These findings implied that the GIS approach and multi-criteria analysis are effective tools for flood risk maps 
and helpful in anticipating greater losses and mitigating the disasters.
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1. Introductin
Floods occur when a river exceeds its storage capacity, 

forcing the excess water to overflow the banks and fill the 
adjacent low-lying lands. This phenomenon represents the 
most frequent disasters affecting a majority of countries 
worldwide (Rincón et al., 2018; Zwenzner & Voigt, 2009), 
specifically Indonesia. Flooding is one of the most devastating 
disasters that yearly damage natural and man-made features 
(Du et al., 2013; Falguni & Singh, 2020; Tehrany et al., 2013; 
Youssef et al., 2011).

There are flood risks in many regions resulting in great 
damage (Alfieri et al., 2016; Mahmoud & Gan, 2018) with 
significant social, economic, and environmental impacts 
(Falguni & Singh, 2020; Geographic, 2019; Komolafe et al., 
2020; Rincón et al., 2018; Skilodimou et al., 2019). The effects 
include loss of human life, adverse impacts on the population, 
damage to the infrastructure, essential services, crops, and 
animals, the spread of diseases, and water contamination 
(Rincón et al., 2018).

Food accounts for 34% and 40% of global natural disasters 
in quantity and losses, respectively (Lyu et al., 2019; Petit-
Boix et al., 2017), with the occurrence increasing significantly 
worldwide in the last three decades (Komolafe et al., 2020; 
Rozalis et al., 2010). The factors causing floods include 
climate change (Ozkan & Tarhan, 2016; Zhou et al., 2021), 
land structure (Jha et al., 2011; Zwenzner & Voigt, 2009), and 
vegetation, inclination, and humans (Curebal et al., 2016). 
Other causes are land-use change, such as deforestation and 
urbanization (Huong & Pathirana, 2013; Rincón et al., 2018; 
N. Zhang et al., 2018; Zhou et al., 2021).

The high rainfall in the last few months has caused much 
flooding in the sub-districts of the West Kalimantan region. 
Thousands of houses in 18 villages in Melawi Regency have 
been flooded in the past week due to increased rainfall 

intensity in the upstream areas of West Kalimantan. This 
occurred within the Nanga Pinoh Police jurisdiction, including 
Tanjung Lay Village, Tembawang Panjang, Pal Village, Tanjung 
Niaga, Kenual, Baru and Sidomulyo Village in Nanga Pinoh 
Spectacle, Melawi Regency (Supriyadi, 2020).

The flood disaster in Melawi Regency should be mitigated 
to minimize future consequences by mapping the risk. 
Various technologies such as Remote Sensing and Geographic 
Information Systems have been developed for monitoring flood 
disasters. This technology has significantly contributed to flood 
monitoring and damage assessment helpful for the disaster 
management authorities (Biswajeet & Mardiana, 2009; Haq 
et al., 2012; Pradhan et al., 2009). Furthermore, techniques 
have been developed to map flood vulnerability and extent 
and assess the damage. These techniques guide the operation 
of Remote Sensing (RS) and Geographic Information Systems 
(GIS) to improve the efficiency of monitoring and managing 
flood disasters (Haq et al., 2012).

In the age of modern technology, integrating information 
extracted through Geographical Information System (GIS) and 
Remote Sensing (RS) into other datasets provides tremendous 
potential for identifying, monitoring, and assessing flood 
disasters (Biswajeet & Mardiana, 2009; Haq et al., 2012; 
Pradhan et al., 2009). Understanding the causes of flooding 
is essential in making a comprehensive mitigation model. 
Different flood hazard prevention strategies have been 
developed, such as risk mapping to identify vulnerable areas’ 
flooding risk. These mapping processes are important for the 
early warning systems, emergency services, preventing and 
mitigating future floods, and implementing flood management 
strategies (Bubeck et al., 2012; Falguni & Singh, 2020; Mandal 
& Chakrabarty, 2016; Shafapour Tehrany et al., 2017).

GIS and remote sensing technologies map the spatial 
variability of flooding events and the resulting hazards 
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1.  Introduction 
Tectonic earthquake is among the most formidable 

natural catastrophes, capable of inflicting harm on residential 
areas and resulting in casualties. This phenomenon also has 
the potential to set off additional calamities, including the 
formation of tsunamis. In general, the greater the magnitude 
and intensity of earthquake, the more severe the damage 
caused (Nampally et al., 2018; Jafari, 2010; Lines et al., 
2022). Indonesia falls within the classification of earthquake-
prone region due to its location at the convergence of three 
significant tectonic plates namely Eurasia, Indo-Australia, and 
the Pacific (Luschen et al, 2011, & Ramdani et al., 2019). One 
of earthquake-prone areas is Simeulue Regency, primarily due 
to the interaction of the subduction zone between the India-
Australian and the Eurasian Plate. The significant earthquake 
of 1907, estimated to have a magnitude ranging from 7.5 to 
8.0 Ms struck Aceh, leading to the rupture of the upper and 
shallower megathrust segments of Nias Southern Simeulue. 
This incident had devastating consequences, including the 
destruction of the South Coast of Simeulue, causing the Island 
to nearly submerge, and the loss of 50-70% of the population. 
In December 2004, another earthquake with a magnitude of 
9.2 occurred, resulting in seven fatalities. The 2005 incidence 
was associated with an uplift in the Southern Part of Simeulue 
which peaked at 50 cm extending from the southernmost West 
Coast of Nias to the North End of the island and the North to 

the East Simeulue. This earthquake caused a tsunami of 3-4m 
but no casualties (Meltzner et al, 2015, Rahman et al., 2018).

To mitigate the consequences of earthquake events, it 
is essential to obtain a prediction or an estimate of return 
period. This estimation can be acquired by determining the 
values of two crucial activity parameters namely ‘a,’ reflecting 
seismicity of an area, and ‘b,’ characterizing tectonic conditions 
(Henderson et al, 1994; Sharma et al, 2013; Gorgun, 2013; 
El-Nader, 2016; and Gunti et al, 2022). The determination of 
these two parameters is expected to identify areas that have 
the potential to cause earthquake in the future for mitigation 
efforts. Furthermore, the Maximum Likelihood Method 
(MLE) is a statistical method well-suited for addressing 
various seismological challenges and offers advantages in 
the computation of earthquake activity parameter values (‘a’ 
and ‘b’). This method can be used to statistically calculate the 
seismic activity parameter values from the Guttenberg-Richter 
(GR) Law equation, seismicity index, earthquake risk level, 
and return period.

Several previous studies have applied the MLE method, 
including Kladivko and Rusy (2022) who examined the Hull-
White model implemented on EUR interest rate data. In 
2022, Liu used the Maximum Likelihood Estimation (MLE) 
method to forecast the comprehensive elemental composition 
of coal, comprising C, H, O, N, and S, achieving a predictive 
accuracy suitable for engineering applications. Furthermore, 
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Kim and Lee, in 2021, formulated a probabilistic model for the 
non-suppression of electrical fires in fire brigades, using the 
MLE and relying on fire incident data from the Organization 
for Economic Cooperation and Development concerning 
the operation of nuclear power plants. This method was also 
applied to estimate the spatial variation coefficient (SVC) 
model using Gaussian processes as its basis (Dambon et al., 
2020).

Previous investigations have also applied the MLE method 
in the field of earthquake. The method was used in likelihood 
analysis to evaluate the magnitude of the most significant 
seismic event, relying on certain statistical characteristics. 
Based on the analysis, while local characteristics might not 
be ideal for modeling the occurrence of seismic peaks, there 
was an observable correlation between some global properties 
and the largest magnitudes (Zaccagnino et al, 2023). Sharma 
and Biswas (2022) further showed that earthquake with a 
magnitude of 5,352 was considered the largest annual event 
in the Indo-Burmese region. It was also projected that large 
earthquake might likely occur over a wide period. On the 
other hand, Görgün (2013) reported that the distribution of 
low b-values for the series of Van–Erciş aftershocks in Turkey 
due to the cessation of the eastward mainshock rupture was 
considered a precursor phenomenon for future moderate to 
large magnitude earthquake. In 2017, Wang et al. used the 
MLE to fit non-local models while incorporating restricted 
local data, which included a case study assessing the likelihood 
of a significant earthquake occurring in Taipei. Therefore, 
this study aims to analyze seismicity level in multiple areas 
within Simeulue Regency and the adjacent regions in the 
Special Region of Aceh Province using the MLE method. 
The examination of seismicity level is closely linked to the 
determination of earthquake return period and the assessment 
of the risk level in these areas.

2.  Data and Methods
The data used in this study consisted of earthquake 

records from period spanning 1940 to 2020 sourced online 
from the International Seismological Center (ISC) and the 
Indonesian Meteorology, Climatology, and Geophysical 
Agency (BMKG). These records included earthquake events 
with a magnitude equal to or greater than 3 on the Richter 
scale (SR) and a depth of 60 kilometers or less. The study area 
included Simeule Regency and its surroundings located at the 
coordinates 1°.97^’-3°.20’ North Latitude and 95°.20^’-97°.05’ 
East Longitude. Based on data from ISC and BMKG (from 
1940-2020), 2,241 earthquake events have occurred in these 
areas. 

Simeulue Regency consists of ± 40 large and small islands 
with 138 villages spread over 10 sub-districts, namely East 
Salang, Alafan, and Teluk Dalam. Simeulue Island is the largest 
in Regency and is located about 150 km from the coast to the 
west of Sumatra Island with an area of 2,051 km2 (Syafwina, 
2014). The Island together with other small ones is located in 
the west of Aceh Province. 

In this study, the selected methodology was the traditional 
statistical method, specifically MLE. The distribution of 
earthquake epicenters was approximated using the GMT 
application, while the hypocenter was represented through 
a 3D scatterplot created using the MATLAB application. 
Moreover, seismic calculations were carried out using the 
Excel application. The foundational relationship between 
earthquake frequency and magnitude was initially introduced 

by Ishimoto & Iida in 1939, and subsequently extended by B. 
Guttenberg & C. F. Richter. This relationship was applied to 
both global seismic and specific regional datasets. The general 
formula commonly used stems from the empirical formula 
derived by B. Guttenberg & C. F. Richter, namely:

  (1)

where N(M) is the cumulative number of earthquake with a 
magnitude greater than or equal to M, M is the magnitude, a 
and b are seismic and tectonic parameters (Lin, 2010; Singh, 
2014; & Han et al, 2015). Parameter a signifies the seismic 
activity of the area and is influenced by the fragility of the 
underlying rock, while b represents the slope or gradient of the 
linear equation depicting the relationship between earthquake 
frequency and magnitude. This slope characterizes the local 
stress activity and the greater the value of a in an area, the 
higher the seismic activity. Meanwhile, the value of b varies 
in each region depending on the rock structure that makes 
up the surface. Period and area of observation determine the 
level of seismicity. The values of a and b in Equation (1) were 
determined in this study using the MLE method.

The MLE method is a versatile statistical method, and 
one of its applications includes addressing seismological 
issues. This method was used to estimate the parameters 
of probability distributions by maximizing the likelihood 
function. Let  be the value of a random sample 
from a population with parameter , the likelihood function 
(Kladivko and Rusy, 2022; Draper 1998; Walpole, 1982) of the 
sample would be

where  is the value of joint probability 
density or joint probability distribution of the random variables 

 at 
. The MLE method comprises the process of maximizing 
the likelihood function with respect to parameter . The 
maximum estimate of δ is the value at which the maximum 
likelihood function L(δ) reaches its peak during the relevant 
calculation. To find this value, the derivative of the logarithm 
of L(δ) was typically equated to zero, as represented by the 
equation:

The Maximum Likelihood was used to analyze the 
relationship between earthquake frequency and magnitude 
(M). It is a statistical method often used to estimate the 
parameters of probability distributions and model this 
relationship, particularly in seismic studies. Suppose a 
probability distribution function of M (Nava et al, 2017) was 
defined as;

= ,                  (2)

If there are n earthquake with a magnitude , , …, 
, then according to the likelihood function of Equations (1) 
and (2), 
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                                                                               (3)

where 

                                                                (4)

The estimated maximum likelihood of b was obtained 
from the relationship between Equations (3) and (4) (Smith, 
1981; Henderson et al, 1994; Hiramatsu et al, 2000; Sharma et 
al, 2013; & Arubi et al, 2022),

                                                                 (5)

where 

is the average magnitude of earthquake,  is the minimum 
magnitude, and log e = 0.434. The corresponding value of a 
calculated from the cumulative frequency relationship for 

 would be:

To quantify the deviation in the calculation of the 
‘b-value’ using the Maximum Likelihood method, the 

estimated parameters ‘a’ and ‘b’ were compared. The values 
were then used to compute seismicity index of earthquake. 
Earthquake seismicity index was determined using Equation 
(5) [Chasanah et al, 2013, Wally et al, 2023].

                                                                         (6)

where  is the observation time interval. 
Seismicity index is a metric that quantifies the overall count 
of earthquake events observed over a specific period, with 
magnitudes surpassing a defined threshold. On the other hand, 
return period represents the interval between occurrences of 
earthquake with the same magnitude in a particular area. The 
value was determined using Equation (6). [Chasanah et al, 
2013, Wally et al, 2022]:

 (7)

where  is the i-th return period for magnitude 
. On the other hand,  is the ith 

seismicity index for  with  being the smallest 
earthquake magnitude.

3.  Result and Discussion 
1.1.Seismic Attributes in Simeulue Regency and 
Surroundings 

The study area comprised Simeulue Region, spanning 
multiple locations with coordinates between 1°.97’ - 
3°.18’ North Latitude and 95°.29’ - 97°.05’ East Longitude 
(Figure 1a). Using data sourced from the ISC (International 
Seismological Center) and BMKG online, the study spanned 
an approximately 80-year period from 1940 to 2020. During 
this time frame, 2241 earthquake events with magnitudes 
greater than or equal to 3 and depths less than 60 km were 
recorded (1b). 

Figure 1. Study Area of Simeule Regency and Surroundings
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Based on Figure 1b, the distribution of earthquake in 
Simeule Regency and its surroundings was mostly in the sea area. 
Furthermore, the study area was divided into 4 Sub Regions (I, 
II, III, and IV). Sub-Region I was an area delineated by North 
Latitude coordinates ranging from 2°.42’ to 3°.20’ and East 
Longitude coordinates spanning from 95°.20’ to 96°.18’. This 

region included the Alafan District, the western segment of 
Simeulue, sections of Salang, parts of the smaller Central 
Simeulue area, and approximately one-third of the Inner Bay. 
Sub Region II was part of the Indonesian Ocean with boundaries 
of a North Latitude: 2°.42’ - 3°.20’ and East Longitude: 96°.19’ - 
97°.05’, while Sub Region III bounded by a North Latitude: 1°.56’ 

Figure 2. Spatial Distribution of Earthquake in the Study Region

 

(a) (b)
Figure 2. (a) Map of Earthquake Distribution in Sub Regions, (b) Graph of Total Earthquake Distribution per Sub Region

(a) (b)

(c) (d)
Figure 3. Earthquake distribution map based on depth in Sub Regions (a) I, b) II, (c) III, and d) IV
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- 2°.42’ and East Longitude: 96°.18’ - 97°.05’ included Sinabang 
City (Capital of Simeulue Regency), South Teupah, and a small 
part of East Simeulue District. On the other hand, Sub Region 
IV bounded by a North Latitude: 1°.97’ - 2°.42’ and East 
Longitude: 95°.24’ - 96°.19’ covered most of Central Simeulue 
District, mostly Teluk Dalam and West Teupah District. 
Sub-Region III, characterized by North Latitude coordinates 
ranging from 1°.56’ to 2°.42’ and East Longitude coordinates 
spanning from 96°.18’ to 97°.05’, comprised Sinabang City, 
the South Teupah, and a small section of the East Simeulue 
District. Additionally, Sub-Region IV, defined by North 
Latitude coordinates between 1°.97’ and 2°.42’ as well as East 
Longitude coordinates between 95°.24’ and 96°.19’, included a 
substantial portion of the Central Simeulue District, a major 
part of the Teluk Dalam, and a segment of the West Teupah 
District. 

The distribution of earthquake in each region is shown 
in Figure 2a, with Sub Region III having the highest incidence 
(920), while the lowest (219) occurred in Sub Region II (Figure 
2b).

The distribution of earthquake based on depth in Sub 
Regions I, II, III, and IV with a 3D scatterplot method is shown 
in Figure 3, with X = Longitude, Y= Latitude, and Z = Depth.

The distribution of earthquake depth was reviewed in 3 
intervals (Figure 4a), namely 0-14.9 km, 15-44.9 km, and 45-
59.9 km. Distribution based on magnitude grouping is shown 
graphically in Figure 4a. Based on the results, there was a 
dominance of earthquake in the 15 – 44.9 km (1643 events) 
depth interval compared to 0-14.9 km (549 events) while 549 
events occurred at a depth interval of 45 - 59.9 km (Figure 4a). 
At depth intervals of 0-44.9 km and 15-44.9 km, Sub Region 
III had a larger number of occurrences while the smallest was 
recorded in Sub Region II. Furthermore, Sub Region I had 
the highest number at a depth interval of 45 – 59.9 km, and 
the least occurred in Sub Region III but was not significantly 
different from the other Sub Regions.

The magnitude distribution was divided into 4 groups, 
namely 3.0-3.9 Mw, 4.0 – 4.9 Mw, 5.0 – 5.9 Mw, and 6.0 – 6.9 
Mw as shown graphically in Figure 4b. Based on the results, 
Sub Region III recorded more dominant events in the 3.0-
3.9 Mw and 4.0-4.9 Mw intervals, while the least was in Sub 
Region II. Furthermore, Sub Region I had a higher frequency 
of earthquake events between the 5.0-5.9 Mw interval, and the 
least was recorded in Sub Region II. Sub Region I also showed 
a dominant occurrence in the interval magnitude of 6.0 – 6.9 
Mw while no occurrence was reported in Sub Region III.

1.2. Seismic Activity Assessment in Simeulue Regency and 
Surroundings 

The assessment of seismic activity level required several 
sequential steps. The initial phase entailed the computation 
of ‘a-value’ and ‘b-value.’ Subsequently, both values were 
determined for each of the Sub Regions (I, II, III, and IV) 
using the MLE method according to Equations (2) and (3). 
The computed results for ‘a’ and ‘b’ in each region are presented 
in Table 1.

Based on Table 1, the a-value of Sub Region III was 
greater compared to others, showing that this area had high 
seismic activity. The lowest value was recorded in Sub Region 
IV, meaning that this area had lower seismic activity compared 
to others (Figure 5).

Figure 6 shows the spatial variation of seismotectonic 
parameters for a-values in each Sub Region (Figure 6). The 
‘a-value’ in Sub Region I ranged from 4.1 to 8.1, with the 
highest occurring in the Sembilan Village, West Simeulue 
District. In Sub Region II, the value ranged between 4 to 8.5, 
and the highest was found in the sea area. On the other hand, 
in Region III, the ‘a-value’ varied between 5 and 17.2, with 
the highest also reported in the sea area. In Sub Region IV, it 
ranged from 3.9 to 6.5, and the highest was found in the East 
Simeulue, South Teupah, and predominantly in the sea area.

(a) (b)
Figure 4. Number of Earthquake by a) Depth and b) Magnitude

Table 1. a-value and b-value for each Sub Region
Sub Region a-value b-value

I 3.297 0.376
II 3.478 0.498
III 4.389 0.630
IV 3.271 0.386
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The b-value in Sub Region III was greater compared to 
others, suggesting that the rocks in this area could be classified 
as brittle rocks (heterogeneous), with relatively low-stress 
level due to their frequent release in the form of seismic waves 
(Table 1). The b-value in the four Sub Regions are graphically 
presented in Figure 7.

The spatial variation of b-value seismotectonic parameters 
for each Sub Region based on map color gradations is shown 
in Figure 8.

Based on Figure 8, the b-value in Sub Region I ranged 
from 0.59 to 1.38 with the highest occurring in the Sembilan 
Village, West Simeulue District, and predominantly in the 

Figure 5. Spatial variation of a-value seismotectonic parameters in Sub Region a) I, b) II, c) III, and d) IV

a b

c d
Figure 6. The Spatial variation of b-value seismotectonic parameters Sub Region a) I, b) II, c) III, and d) IV

Figure 7. b-value for each Sub Region (I, II, III, and IV)
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sea area. On the other hand, the value for Sub Region II was 
between 0.68 and 1.46 with the highest being reported in the 
sea area. In Sub Region III, the b-value ranged from 1 to 3.3 
with the highest value being in the sea area. This value in Sub 
Region IV was between 0.55 and 1.05 with the highest being 
found at East Simeulue, South Teupah, and mostly in the sea 
area.

Based on the a-value and b-value obtained, the relationship 
between the frequency and magnitude of earthquake (Equation 
1) for each Sub region was assessed (Table 3).

Based on Figure 9, the Mc value was 4.8 showing that the 
frequency of earthquake with a magnitude greater than 4.8 in 
Sub this area would decrease. This pattern also applied to Sub 
Regions II, III, and IV, namely earthquake with magnitudes 
greater than 3.9, 4.7, and 4.1 would decrease. The Mc value 
was obtained using the MLE method, and the red linear line 
in each region showed the GRL empirical equation (Table 3).

The subsequent stage comprised computing 
seismicity index and earthquake return period. Based on 
Equation (5), seismicity index was determined for Sub 
Regions I, II, III, and IV, with magnitude categories of 

, 
and  (Table 4).

As shown in Table 4, for the magnitude range of 
3.0≤M<4.0, Sub Region III showed the highest seismicity 
index at 2,719, and the lowest was observed in Sub Region II 
at 1,051.  In the 4.0≤M<5.0 range, Sub Region I showed the 
highest seismicity index at 0.896, and Sub Region II had the 
lowest at 0.334. In the 5.0≤M<6.0 and M ≥ 6.0 categories, Sub 
Region I had the highest seismicity index of 0.377 and 0.159, 
while the lowest index was found in Sub Region II at 0.106 and 
0.034 respectively.

Based on Figure 10, the larger the magnitude value, the 
smaller seismicity index. Using Equation (6), earthquake 
return period for each Sub Region (I, II, III, and IV) with 
magnitude intervals ( , , 

, and M ≥ 6.0) was calculated and the results 
are shown in Table 5.

Based on Table 5, for the magnitude 
, the longest earthquake return period was 

found in Sub Region II at 0.952 years or 347 days, while the 
fastest was recorded in Sub Region III, at 0.368 years or 134 

A b

C d
Figure 8. The spatial variation of b-value seismotectonic parameters for Sub Region a) I, b) II, c) III, and d) IV

Table 3. Relationship between Earthquake Frequency and Magnitude of Each Sub Region

Sub Region

I

II

III

IV
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days. In the  magnitude, 
the longest earthquake return period was found in Sub Region 
II, estimated at 2,996 years or 1,094 days, while the fastest was 
in Sub Region I, at 1.116 years or 407 days. 

For , the longest 
earthquake return period was in Sub Region II, at 9.431 years 
or 3.442 days, while the fastest was recorded in Sub Region I, 

at 2.652 years or 968 days. In M ≥ 6.0 magnitude, the longest 
period was in Sub Region II, at 29.685 years or 10.835 days, 
while the fastest was in Sub Region I, at 6.302 years or 2.300 
days.

Based on Figure 11, the greater the magnitude, the longer 
return period. Therefore, it was concluded that earthquake 
with large magnitudes rarely occur due to the long return 
period.

a B

c d
Figure 9. The spatial variation map of a-value Sub Regions a) I, b) II, c) III, and d) IV

Table 4. Results of seismicity index analysis

Sub Region
Seismicity Index

I 2.131 0.896 0.377 0.159
II 1.051 0.334 0.106 0.034
III 2.719 0.637 0.149 0.035
IV 1.824 0.750 0.308 0.127

Figure 10. Relation Magnitude and Seismicity Index
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4.  Conclusion 
In conclusion, the results showed that the highest 

earthquake distribution in Simeulue Regency and its adjacent 
areas occurred in Sub Region III, with the majority (1,643 
events) occurring at a depth between 15 and 44.9 km. This 
area also showed a more prominent distribution of events 
within the magnitude range of 3.0 to 4.9 Mw. Furthermore, 
Sub Region I had the highest Mc value of 4.8 compared to II, 
III, and IV, suggesting the occurrence of earthquake with a 
magnitude exceeding 4.8 would be less frequent. This trend 
was consistent across Mc values for the other Sub Regions 
including II, III, and IV. It was also found that Sub-Region 
III had the largest a-value and b-value as well as the highest 
seismicity index for magnitude M≥3.0. On the other hand, 
Sub-Region I had the highest seismicity index for each 
magnitude. Sub Region II was found to have longer periodic 
return for each magnitude interval (
, , , and M ≥ 6.0). The 
results also showed that Sub Region III had the shortest 
return period for intervals of magnitude 
, while Sub Region I showed the shortest return period for 

 and . 
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