Measuring the Height of Volcanic Clouds Using Weather Radar : Case Study Mount Sinabung Eruptions in Medan, Indonesia

https://doi.org/10.22146/ijg.96391

Hesti Heningtiyas(1*), Budhi Achmadi(2), Asep Adang Supriyadi(3), Syachrul Arief(4), Rindita Charolydya(5)

(1) Sensing Technology Study Program, Faculty of Defense Science and Technology, Republic of Indonesia Defense University IPSC, Sentul Area, Citereup,Bogor, West Java, Indonesia
(2) Commander of the National Air Operations Command which covers central Indonesia
(3) Commander of the National Air Operations Command which covers central Indonesia
(4) Geospatial Information Agency, BIG, Bogor, Indonesia
(5) Meteorological, Climatological, and Geophysics Agency, BMKG, Jakarta, Indonesia
(*) Corresponding Author

Abstract


Apart from being used to observe hydrometeorological phenomena, weather radar can also be used to observe volcanic eruptions. Weather radar reflectivity data can describe the estimated height of volcanic eruptions, while the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model describes the trajectory or direction of distribution of eruption clouds. BMKG's single polarization C-Band weather radar at the Regional Office I in Medan was able to observe several eruptions of Mount Sinabung. Mount Sinabung is about 50 km from the Medan Weather Radar hence is still within radar coverage. Several eruptive activities of Mount Sinabung can be observed from the Medan Weather Radar, using Maximum (MAX) and VCUT (Vertical Cut) products to obtain information on the height of volcanic eruptions and eruption characteristics. While, the HYSPLIT model developed by ARL-NOAA is used to determine the direction of distribution of volcanic ash immediately after the eruption. The MAX and VCUT weather radar products and the results of NOAA HYSPLIT model for several events in this study show that the eruption height in weather radar observations is higher than the HYSPLIT model and the direction of volcanic ash distribution is different from Volcanic Observatory Notice for Aviation (VONA) observations.

Received: 2024-05-24 Revised: 2025-06-26 Accepted: 2025-08-15Published: 2025-08-19  


Keywords


weather radar; HYSPLIT model; remote sensing; height of volcanic

Full Text:

PDF


References

Ali, Abdullah & Umam, Iddam Hairuly & Argo, Henrikus Jatining Wahyu & Argo, Wahyu & Haryadi, & Permana, Deni & Deranadyan, Gumilang & Adiyasa, Alif & Winata, Nanda. (2023). SIDARMA: Web-GIS and Android Application-Based In-House Weather Radar Integration System. GEOMATICS. 29. 1-8

Aliotta, L., Gigante, V., & Lazzeri, A. (2023). Volcanic ash as filler in biocomposites: An example of circular economy in volcanic areas. Sustainable Materials and Technologies, 37(June), e00660. https://doi.org/10.1016/j.susmat.2023.e00660

Ariyanti, V., Gaafar, T., De La Sala, S., Edelenbos, J., & Scholten, P. (2020). Towards liveable volcanic cities: A look at the governance of lahars in Yogyakarta, Indonesia, and Latacunga, Ecuador. Cities, 107(July), 102893. https://doi.org/10.1016/j.cities.2020.102893

Binetti, M.S., Campanale, C., Massarelli, C., & Uricchio, V.F. (2022). The Use of Weather Radar Data: Possibilities, Challenges and Advanced Applications. Earth (Switzerland), 3(1), 157–171. https://doi.org/10.3390/earth3010012

Black, B.A., Lamarque, J.F., Marsh, D.R., Schmidt, A., & Bardeen, C.G. (2021). Global climate disruption and regional climate shelters after the Toba supereruption. Proceedings of the National Academy of Sciences of the United States of America, 118(29), 1–8. https://doi.org/10.1073/pnas.2013046118

Cahalan, R.C., Mastin, L.G., Van Eaton, A.R., Hurwitz, S., Smith, A.B., Dufek, J., Solovitz, S.A., Patrick, M., Schmith, J., Parcheta, C., Thelen, W.A., & Downs, D.T. (2023). Dynamics of the December 2020 Ash-Poor Plume Formed by Lava-Water Interaction at the Summit of Kīlauea Volcano, Hawaiʻi. Geochemistry, Geophysics, Geosystems, 24(3), 1–23. https://doi.org/10.1029/2022GC010718

Carlsen, H.K., Aspelund, T., Briem, H., Gislason, T., Jóhannsson, T., Valdimarsdóttir, U., & Gudnason, T. (2019). Respiratory health among professionals exposed to extreme SO2 levels from a volcanic eruption. Scandinavian Journal of Work, Environment and Health, 45(3), 312–315. https://doi.org/10.5271/sjweh.3783

Crawford, A., Chai, T., Wang, B., Ring, A., Studer, B., Loughner, C. P., Pavolonis, M., & Sieglaff, J. (2022). Evaluation and bias correction of probabilistic volcanic ash forecasts. Atmospheric Chemistry and Physics, 22(21), 13967–13996. https://doi.org/10.5194/acp-22-13967-2022

Durant, A. J., Bonadonna, C., & Horwell, C. J. (2010). Atmospheric and environmental impacts of volcanic particulates. Elements, 6(4), 235–240. https://doi.org/10.2113/gselements.6.4.235

Engwell, S., Mastin, L., Tupper, A., Kibler, J., Acethorp, P., Lord, G., & Filgueira, R. (2021). Near-real-time volcanic cloud monitoring: insights into global explosive volcanic eruptive activity through analysis of Volcanic Ash Advisories. Bulletin of Volcanology, 83(2). https://doi.org/10.1007/s00445-020-01419-y

Falconi, M.T., & Marzano, F.S. (2019). Weather Radar Data Processing and Atmospheric Applications. June, 85–97.

Hapsari, RI, Sugna, BAI, Novianto, D., Asmara, RA, & Oishi, S. (2020). Naïve Bayes Classifier for Debris Flow Disaster Mitigation in Mount Merapi Volcanic Rivers, Indonesia, Using X-band Polarimetric Radar. International Journal of Disaster Risk Science, 11(6), 776–789. https://doi.org/10.1007/s13753-020-00321-7

Hirtl, M., Arnold, D., Baro, R., Brenot, H., Coltelli, M., Eschbacher, K., Hard-Stremayer, H., Lipok, F., Maurer, C., Meinhard, D., Mona, L., D. Mulder, M., Papagiannopoulos, N., Pernsteiner, M., Plu, M., Robertson, L., Roki, K., Schellin-Pirscher, B., Sievers, K., … Zopp, R. (2020). A volcanic-hazard demonstration exercise to assess and mitigate the impacts of volcanic ash clouds on civil and military aviation. Natural Hazards and Earth System Sciences, 20(6), 1719–1739. https://doi.org/10.5194/nhess-20-1719-2020

Hurst, T., & Davis, C. (2017). Forecasting volcanic ash deposition using HYSPLIT. https://doi.org/10.1186/s13617-017-0056-7

Irwandi, I., Ilhamsyah, Y., Permana, D. S., Haloho, M. P., Prasetyo, B., & Dana, I. N. (2019). Application of C-band Doppler Weather Radar (CDR) for Detecting Volcanic Ash Dispersion of Sinabung Eruption 19 February 2018. IOP Conference Series: Earth and Environmental Science, 273(1). https://doi.org/10.1088/1755-1315/273/1/012019

Ministry of Energy and Mineral Resources (2023). Types of Volcanoes in Indonesia (A, B, and C).https://magma.esdm.go.id/v1/edukasi/tipe-gunung-api-di-indonesia-ab-dan-c. Retrieved December 8, 2023.

Ministry of Energy and Mineral Resources (2024). VONA Archived.https://magma.esdm.go.id/v1/vona?code=SIN. Retrieved January 14, 2024.

Ministry of Energy and Mineral Resources (2024). Press Release DEVELOPMENT OF SINABUNG VOLCANO ACTIVITIES.https://vsi.esdm.go.id/press-release/press-release-perkembangan-angkat-gunung-api-sinabung. Accessed 08 February 2024.

Maki, M., Kim, Y., Kobori, T., Hirano, K., Lee, D.I., & Iguchi, M. (2021). Analyzes of three-dimensional weather radar data from volcanic eruption clouds. Journal of Volcanology and Geothermal Research, 412. https://doi.org/10.1016/j.jvolgeores.2021.107178

Maki, M., Takaoka, R., & Iguchi, M. (2021). Characteristics of particle size distributions of falling volcanic ash measured by optical disdrometers at the Sakurajima volcano, Japan. Atmosphere, 12(5). https://doi.org/10.3390/atmos12050601

Marshall, L.R., Maters, E.C., Schmidt, A., Timmreck, C., Robock, A., & Toohey, M. (2022). Volcanic effects on climate: recent advances and future avenues. Bulletin of Volcanology, 84(5). https://doi.org/10.1007/s00445-022-01559-3

Marzano, F.S. (2011). Remote Sensing of Volcanic Ash Cloud During Explosive Eruptions. March, 0–3.

Marzano, F.S., Barbieri, S., Picciotti, E., & Vulpiani, G. (2007). Microwave radar remote sensing of Plinian volcanic ash clouds for aviation hazard and civil protection applications. International Geoscience and Remote Sensing Symposium (IGARSS). https://doi.org/10.1109/IGARSS.2007.4423658

Marzano, F.S., Barbieri, S., Vulpiani, G., & Rose, W.I. (2006). Volcanic ash cloud retrieval by ground-based microwave weather radar. IEEE Transactions on Geoscience and Remote Sensing, 44(11). https://doi.org/10.1109/TGRS.2006.879116

Marzano, F.S., Lamantea, M., Montopoli, M., Di Fabio, S., & Picciotti, E. (2011). The Eyjafjöll explosive volcanic eruption from a microwave weather radar perspective. Atmospheric Chemistry and Physics, 11(18). https://doi.org/10.5194/acp-11-9503-2011

Marzano, F.S., Lamantea, M., Montopoli, M., Herzog, M., Graf, H., & Cimini, D. (2013). Remote Sensing of Environment Microwave remote sensing of the 2011 Plinian eruption of the Grímsvötn Icelandic volcano. Remote Sensing of Environment, 129, 168–184. https://doi.org/10.1016/j.rse.2012.11.005

Marzano, F.S., Marchiotto, S., Textor, C., & Schneider, D.J. (2010). Model-based weather radar remote sensing of explosive volcanic ash eruption. IEEE Transactions on Geoscience and Remote Sensing, 48(10). https://doi.org/10.1109/TGRS.2010.2047862

Marzano, F.S., Picciotti, E., Montopoli, M., & Vulpiani, G. (2013). Inside volcanic clouds: Remote sensing of ash plumes using microwave weather radars. Bulletin of the American Meteorological Society, 94(10). https://doi.org/10.1175/BAMS-D-11-00160.1

Marzano, F.S., Vulpiani, G., & Rose, W.I. (2006). Microphysical characterisation of microwave radar reflectivity due to volcanic ash clouds. IEEE Transactions on Geoscience and Remote Sensing, 44(2), 313–327. https://doi.org/10.1109/TGRS.2005.861010

Nakada, S., Zaennudin, A., Yoshimoto, M., Maeno, F., Suzuki, Y., Hokanishi, N., Sasaki, H., Iguchi, M., Ohkura, T., Gunawan, H., & Triastuty, H. (2019). Growth process of the lava dome/flow complex at Sinabung Volcano during 2013–2016. Journal of Volcanology and Geothermal Research, 382, 120–136. https://doi.org/10.1016/j.jvolgeores.2017.06.012

Nasruddin, Idrus Alhamid, M., Daud, Y., Surachman, A., Sugiyono, A., Aditya, HB, & Mahlia, TMI (2016). Potential of geothermal energy for electricity generation in Indonesia: A review. Renewable and Sustainable Energy Reviews, 53(2016), 733–740. https://doi.org/10.1016/j.rser.2015.09.032

NOAA Air Resources Laboratory. Available online: https://www.ready.noaa.gov/HYSPLIT.php (accessed 15 January 2024)

Osipov, S., Stenchikov, G., Tsigaridis, K., LeGrande, A.N., & Bauer, S.E. (2020). The Role of the SO 2 Radiative Effect in Sustaining the Volcanic Winter and Soothing the Toba Impact on Climate. Journal of Geophysical Research: Atmospheres, 125(2). https://doi.org/10.1029/2019JD031726

Paredes-Mariño, J., Forte, P., Alois, S., Chan, K.L., Cigala, V., Mueller, S.B., Poret, M., Spanu, A., Tomašek, I., Tournigand, P.Y., Perugini, D., & Kueppers, U. (2022). The lifecycle of volcanic ash: advances and ongoing challenges. Bulletin of Volcanology, 84(5). https://doi.org/10.1007/s00445-022-01557-5

Karo Regency Government (2023). http://pariwisata.karokab.go.id/up/index.php/en/besar-wisata/produk-wisata-alam/6-gunung-sinabung. Retrieved December 8, 2023.

Poland, M. P., Lopez, T., Wright, R., & Pavolonis, M. J. (2020). Forecasting, Detecting, and Tracking Volcanic Eruptions from Space. Remote Sensing in Earth Systems Sciences, 3(1–2), 55–94. https://doi.org/10.1007/s41976-020-00034-x

Poulidis, A.P., Shimizu, A., Nakamichi, H., & Iguchi, M. (2021). A computational methodology for the calibration of tephra transport nowcasting at Sakurajima volcano, Japan. Atmosphere, 12(1), 1–15. https://doi.org/10.3390/atmos12010104

Prata, F., Rose, B. (2015). Chapter 52: Volcanic Ash Hazards to Aviation. The Encyclopedia of Volcanoes (Second Edition), Pages 911-934. https://doi.org/10.1016/B978-0-12-385938-9.00052-3

Prata, F. (2020). Detection and avoidance of atmospheric aviation hazards using infrared spectroscopic imaging. Remote Sensing, 12(14), 1–31. https://doi.org/10.3390/rs12142309

Reichardt, U., Ulfarsson, G.F., & Pétursdóttir, G. (2019). Developing scenarios to explore impacts and weaknesses in aviation response exercises for volcanic ash eruptions in Europe. Journal of Air Transport Management, 79(June), 101684. https://doi.org/10.1016/j.jairtraman.2019.101684

Rizza, U., Donnadieu, F., Magazu, S., Passerini, G., Castorina, G., Semprebello, A., Morichetti, M., Virgili, S., & Mancinelli, E. (2021). Effects of variable eruption source parameters on volcanic plume transport: Example of the 23 November 2013 paroxysm of Etna. Remote Sensing, 13(20), 1–25. https://doi.org/10.3390/rs13204037

Sato, E. (2021). Kusatsu-Shirane volcano eruption on January 23, 2018, observed using JMA operational weather radars. Earth, Planets and Space, 73(1). https://doi.org/10.1186/s40623-021-01445-w

Sato, E., Fukui, K., & Shimbori, T. (2018). Aso volcano eruption on October 8, 2016, observed by weather radars. In Earth, Planets and Space (Vol. 70, Issue 1). https://doi.org/10.1186/s40623-018-0879-4

Sokol, Z., Szturc, J., Orellana-Alvear, J., Popová, J., Jurczyk, A., & Célleri, R. (2021). The role of weather radar in rainfall estimation and its application in meteorological and hydrological modeling —A review. Remote Sensing, 13(3), 1–38. https://doi.org/10.3390/rs13030351

Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., & Ngan, F. (2015). Noaa's HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1

Tadini, A., Roche, O., Samaniego, P., Guillin, A., Azzaoui, N., Gouhier, M., … Le Pennec, J.L. (2020). Quantifying the Uncertainty of a Coupled Plume and Tephra Dispersal Model PLUME‐MOM. Journal of Geophysical Research: Solid Earth, 125(2). https://doi.org/https://doi.org/10.1029/2019JB018390

Takebayashi, M., Onishi, M., & Iguchi, M. (2021). Large volcanic eruptions and their influence on air transport: The case of Japan. Journal of Air Transport Management, 97(December 2020), 102136. https://doi.org/10.1016/j.jairtraman.2021.102136

Webley, P., & Mastin, L. (2009). Improved prediction and tracking of volcanic ash clouds. Journal of Volcanology and Geothermal Research, 186(1–2), 1–9. https://doi.org/10.1016/j.jvolgeores.2008.10.022



DOI: https://doi.org/10.22146/ijg.96391

Article Metrics

Abstract views : 2249 | views : 760

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Authors and Indonesian Journal of Geography

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

The Indonesian Journal of Geography (ISSN 2354-9114 (online), ISSN 0024-9521 (print))  is an international journal published by the  Faculty of Geography, Universitas Gadjah Mada in collaboration with The Indonesian Geographers Association. The content of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

Web
Analytics IJG STATISTIC