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Abstract- In four-stroke engine injection system, often called 

spark ignition (SI) engine, the air-fuel ratio (AFR) is taken from 
the measurement of lambda sensor in the exhaust. This sensor 
does not directly describe how much AFR in the combustion 
chamber due to the large transport delay. Therefore, the lambda 
sensor is used only as a feedback in AFR control "correction", 
not as the "main" control. The purpose of this research is to 
identify the parameters of the non-linear system in SI engines to 
produce AFR estimator. The AFR estimator is expected to be 
used as a feedback of the main "AFR" control system. The 
process of identifying the parameters using the Gauss-Newton 
method, due to its rapid computation to Achieve convergence, is 
based on prediction error minimization (PEM). The models of 
AFR estimator is an open-loop system without a universal 
exhaust gas oxygen (UEGO) sensors as feedback, called a virtual 
AFR sensor. The high price of UEGO sensors makes the virtual 
AFR sensor can be a practical solution to be applied in AFR 
control. The model in this research is based on the mean value 
engine models (MVEM) with some modifications. The research 
dataset was taken from a Hyundai Verna 2002 with the 
additional UEGO type of lambda sensors. The throttle opening 
angle (input) is played by stepping on the gas pedal and the 
signal to the injector (input) is set to a certain quantity to 
produce the AFR (output) value read by the UEGO sensor. This 
research produces an open loop estimator model or AFR virtual 
sensors with normalized root mean square error (NRMSE) = 
0.06831 = 6.831%. 
 
Keywords--Parameter identification, Air-Fuel Ratio, MVEM, 
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NOMENCLATURE 

EKF Extended Kalman filter 
CGEKF Constant gain extended Kalman filter 
EGO Exhaust gas oxygen 
BEGO Binary exhaust gas oxygen 
UEGO Universal exhaust gas oxygen 
AFR Air-fuel ratio 
PEM Prediction error minimization 
RMSE Root mean square error 
NRMSE Normalized root mean square error 
TPS Throttle position sensor 
MAP Manifold absolut pressure 
  

IAT Intake air temperature 

ECT Engine coolant temperature 

𝑚̇𝑚𝑎𝑝 
Air mass flow rate into cylinder (in kilogram per 
second) 

𝑚̇𝑚𝑎𝑡 
Air mass flow rate past throttle plate (in kilogram per 
second) 

𝑃𝑃𝑎 Atmosphere pressure (1.013 bar) 
𝑃𝑃𝑖 Manifold air pressure (in bar) 
𝑇𝑇𝑎 Atmosphere temperature (in Kelvin) 
𝑇𝑇𝑖 Manifold air temperature (in Kelvin) 
𝑛𝑛 Crank shaft speed (in kilo revolution per minute) 
𝑚̇𝑚𝑓 Cylinder port fuel flow (in kilogram per second) 

𝑋𝑋𝑓 
Fraction of 𝑚̇𝑚𝑓𝑖  which is deposited on manifold as fuel 
film 

𝜏𝜏𝑓 Fuel evaporation time constant (0.25 s) 
𝑚̇𝑚𝑓𝑓 Fuel film mass flow (in kilogram per second) 
𝑚̇𝑚𝑓𝑣  Fuel vapor mass flow (in kilogram per second) 
𝑚̇𝑚𝑓𝑖  Injected fuel mass flow (in kilogram per second) 
𝜆𝜆 Normalized air-fuel ratio 
𝛼𝛼 Throttle opening angle (in degree) 
𝑛𝑛𝑉 Volumetric efficiency 

I. INTRODUCTION 
Identification of parameters (model) is required to obtain an 

accurate mathematical model. A good model is a model that 
more accurately reflects the dynamics of the system or plant. 
The dynamics of air-fuel ratio (AFR) on SI injection system 
Engine is very non-linear and multivariable [1], makes the 
process of the parameter identification difficult compared with 
the linear system and a few variables. 

The AFR is an important indicator that affects exhaust 
emissions, engine power, and fuel consumption in Spark 
Ignition (SI) Engine. The influence of lambda (normalized 
AFR) on power and fuel consumption are presented in Fig. 1. 
Maximum power will be achieved if the lambda value is in the 
range of 0.82 (AFR = 12:1) [2], while the fuel consumption 
will be achieved if the minimum number lambda is in the 
range of 1:09 (AFR = 16:1) [2].  

 
Fig. 1 Graph of power and fuel consumption to changes in the SI lambda 

engine [2]. 
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To reduce emissions, accurate AFR control is required to 

be directed to ideal conditions (stoichiometric), which is a 

theoretical figure of 14.7:1 [2], with worth lambda (λ) = 1. 

AFR value is obtained by reading the lambda sensor or 

exhaust gas oxygen (EGO) located in the exhaust. In ideal 

conditions (stoichiometric), the voltage generated by the EGO 

sensor is about 400 millivolts [2].  

 
Fig. 2 Delay of AFR on SI engine injection system [3]. 

In the SI engine injection control system, the EGO sensor 

output values read by an electronic control unit (ECU) do not 

directly describe the condition of the AFR in the cylinder 

(combustion chamber) at the same time, because of the 

influence of transport delay which is around 250 ms [4]. This 

transport delay is affected by the dynamics of the process of 

mixing air and fuel in the combustion chamber, the length of 

duct, the exhaust, and the dynamics of the EGO sensor itself 

as presented in Fig. 2.  

Computing in ECU still uses the controller as part of the 

classical form of injection control system. This classic 

controller uses algorithms if-then-rule, in the form of look-up 

table [5], [6], or fuzzy logic controller [5], [7], as feedforward 

control.  

Control the "main" AFR generates a control signal which is 

dominant to make the injector ON curing conditions of 

transient and steady state. Transient conditions occur during 

acceleration or deceleration caused by changes in the opening 

angle of the throttle a sudden. While the condition steady state 

occurs when the opening angle throttle that produces a 

constant output, plant AFR, and engine speed (rpm) constant. 

The control signal "corrective" plays to increase or decrease 

the control signal "main" to obtain a difference small between 

the outputs of AFR and AFR targets. The size of control 

signal "correction" is approximately 10% of the control signal 

"main". 

In a classical control at transient conditions, there is the big 

transport delay on the sensor EGO leading to the control 

signal "correction" to be late to respond every change in the 

AFR, so that the sensor EGO is served as the control 

"correction" AFR, not as a control "main" AFR as shown in 

Fig. 3 [5], [6]. 

Logically, by using AFR values in the combustion chamber 

as feedback, the system controls the "main" can be designed to 

stand alone as presented by the AFR control system as 

presented in Fig. 4. 

Controller

AFR Feedback

Ref. AFR Output
Plant

Main Control
(If then Rule)

Sensor

 
Fig. 3 AFR control system using feedback as a correction. 
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Fig. 4 The main controls in the control AFR system using sensor of estimation 

results. 

However, until now there is no sensor to measure the AFR 

directly in the combustion chamber with pressurized 

combustion chamber shape and has a high temperature. 

Therefore, the way offered in this paper is to estimate the AFR 

in the combustion chamber (without the influence of transport 

delay) to an equation of state that is not measured directly by 

the sensor, but it can be modelled into a mathematical form so 

that the value of AFR will still be estimated. 

There are two ways to estimate the state AFR, the first is to 

use a UEGO sensor for feedback, and the second is without 

using UEGO sensor which is also known as virtual AFR 

sensor. The high price of UEGO type sensor makes virtual 

AFR sensor as a practical solution to be used in control 

systems AFR SI engine. The block diagram-based virtual 

MVEM AFR sensor presented in Fig. 5. There are two output 

models, the AFR and the manifold absolute pressure (MAP). 

However, these studies only focus on discussing the AFR. 

Estimated 
Parameter 

MVEM

Sensor (TPS, IAT, RPM)

Actuator (Injektor)

AFR Estimator

MAP Estimator

 
Fig. 5 Estimator AFR of open-loop or a so-called virtual AFR sensor. 

MVEM is a model as well as open-loop observer predicting 

variables on SI engines by making an average of each part of 

the dynamics of events SI engine. This model is physically 

based, very compact, and can be used in diesel and SI engines, 

with and without turbochargers [8]. 

Research on the observer or estimator based MVEM AFR 

has been performed using the method of maximum likelihood 

estimation and the Kalman filter to identify the parameters of 

the MVEM that cannot be calculated in the conventional [9]. 

Then, it is proceeding with the study of the observer to the SI 

engine for using the AFR control for correcting errors EKF 
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state [10]. In the literature, it is explained that the study did 

not observe AFR directly, but by observing a multitude of 

sensors, using Constant Gain Extended Kalman Filter 

(CGEKF), to estimate the value of AFR. The sensor is TPS, 

crank shaft speed (n), MAP, mass air flow (MAFt), and 

MAFp. The AFR estimation is used to calculate the fuel in 

AFR control, which results in AFR = 14.7: 1 ± 0.5. 

In another study, it is presented AFR virtual sensor-based 

neural network (NN) [11]. Results of the study are the 

observer open-loop with feedback sensors on SI engine to 

generate a new variable, namely Power (kW), fuel pressure 

(kPa), lambda (0.3--1.3, rms: 0.0232), HC (g/s), CO (g/s), 

CO2 (g/s) and NOx (g/s). Other studies on AFR observer-

based NN, it has also been done by using artificial neural 

network (ANN) feedforward, ANN recurrent neural networks 

(RNNs), MultiSpread-probabilistic neural networks (PNN), 

RBF-PNN, wavenet (wavelet NN), and Elman NN [1], [12]--

[18]. Furthermore, it also included in the literature that 

another method that is not based on NN which is called 

support vector machine (SVM). 

Another way to estimate the AFR is based on a pressure 

sensor in the cylinder SI engine [19]--[21]. It is also to create 

a new model, which uses methods of Linear Parameter-

varying (LPV) [22] and the new model to estimate the AFR 

by improving transport delay [23]. 

In this paper, the MVEM is selected to estimate the AFR, 

because it also considers transport delay to estimate the 

variables of the AFR that cannot be measured directly, with 

the variables of the AFR estimated to be in the combustion 

chamber, in contrast to the estimator AFR-type black-box,  for 

example, NN. Although the accuracy of the NN method is 

high, this model does not consider the transport delay, because 

the models created cannot be known its dynamics, the process 

of its training is only based on the data set input and the target. 

Besides that, the MVEM has a compact form of mathematics 

and it has been tested from the 1990s to the present with a 

number of research in the field of SI engine injection control 

system that uses MVEM-based observer. 

II. STAGES OF RESEARCH, EXPERIMENTAL SETUP, AND DATA 

RETRIEVAL 

A. Stages Research 

Generally, the stages of the research conducted are divided 

into four, namely the experimental setup and measurement, 

choosing the model structure, parameter estimation, and 

validation of the simulation as shown in Fig. 6. 

B. Experimental settings and measurement data  

Experiment data sets were obtained from direct 

measurements in real time on SI engine, a four-step Hyundai 

Verna (Accent LC) in 2002, G4EB, SOHC, 1500 cc. The plant 

was given additional types of UEGO lambda sensor, LM-2 

Digital Air/Fuel Ratio Meter of Innovate Motorsports 

production, installed in the exhaust. UEGO sensor was 

selected because it had an area of the output wide linear 

sensor to changing conditions, in contrast to the type of sensor 

Bego, called lambda ON-OFF, which has a narrow linear area. 

Eksperimental Setup and 
Measurement (1)

Choosing the Model Structure
(MVEM) (2)

Offline Estimation of Parameters
(Gauss-Newton based on PEM) (3)

Offline Validation (4)

 
Fig. 6 Stages of research. 
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Fig. 7 A diagram of the circuit hardware for data real-time retrieval. 

 
Fig. 8 Experimental settings for data retrieval. 

Data acquisition process is performed to record data using a 

series data logger of microcontroller based connected to the 

software on the computer as presented in Fig. 7. Recorded 

data are the sensor output TPS, IAT, UEGO, the speed (n), 

and signal injector, assuming that the SI engine has reached 

the point working temperature of 80° Celsius. Fig. 8 shows the 

experimental setup for data retrieval. 

III. DYNAMICS OF MEAN VALUE ENGINE MODEL (MVEM) 

MVEM is one of SI engine injection systems pioneered and 

developed by Hendrick presented in the form of mathematics 

that is compact and can be customized parameters for 

different SI engines [24]--[26]. MVEM has been widely 

adopted in research on the SI engine involving control 
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estimator-based/observer or estimator/observer alone [1], [17], 

[27]--[29]. MVEM is broadly divided into four subsystems, 

namely: 

 the dynamics of the intake manifold, 

 the dynamics of the mass flow rate of fuel, 

 the engine rotation speed dynamics, and 

 the dynamics of the air-fuel ratio (AFR). 

Manifold
Pressure

Fuel Injection 
Dynamics

Manifold
Temperature

Time
Delay

AFR

Engine Speed 
Dynamics

UEGO

  

  

 𝑖  

  

 ̇𝑓𝑖  

 𝑖  
 ̇𝑎𝑝  

 𝑖  

 ̇𝑓  

   λ 𝑡 −  𝐷  
λ 𝑡  

  

 ̇𝑎𝑡  

Intake Manifold Dynamics

AFR Dynamics

Fig. 9 General MVEM block diagram [1]. 

MVEM general block diagram is presented in Fig. 9 and is 

described further on exposure under. 

A. The Dynamics of Intake Manifold 

Dynamics of the intake manifold were analyzed based on 

the conservation of air mass into the intake manifold, 

consisting of two nonlinear differential equations that describe 

the manifold pressure    and manifold temperature   . 

Manifold pressure    is associated with the mass flow rate of 

water into the cylinder  ̇  , water mass flow rate past the 

throttle plate mat, manifold temperature Ti, and atmosphere 

pressure as presented in a differential equation [3]. 

  ̇           − ̇    ̇    (1) 

From (1), it can be seen that the dynamics of the air mass 

flow in the intake manifold which consists of two parts, the 

first is the air mass flow rate past the throttle plate  ̇  , which 

is associated with the throttle opening angle α, and manifold 

pressure   , are presented in the following equation [3]. 

 ̇                 √                    (2) 

with, 

       −         −           (3) 

         (4) 

        √ −   
                  

   (5) 

with   ,   ,              is a constant with (5) is an 

equation that is different from the literature, which is the 

result of the modification, and the second is the rate of mass 

air flow of air into the cylinder (combustion chamber)  ̇  , 

associated with temperature manifold   , the pressure 

manifold   , and the engine rotation  , are presented  in the 

following equation [3]. 

 ̇                            (6) 

with    is the volumetric efficiency and        is the air 

charge normalized, 

                      (7) 

with        and       is a positive function that depends on 

the engine speed  ,  approximated by a polynomial equation 

of order 3, 
 

                   
      

  (8) 

                   
      

  (9) 

with                                 is a constant. 

In this paper, the temperature of the manifold    is obtained 

directly from the plant as model input, so that the temperature 

dynamics of the manifold is ignored. 

B. Engine Speed Dynamics 

In this paper, the engine speed n is obtained directly from 

the plant as model input, so that the engine rotation speed 

dynamics is ignored. Representation dynamics into 

differential equations presented in [1]. 

C. Fuel Injection Dynamics 

Equations that describe the fuel mass flow rate of into the 

cylinder (combustion chamber), taking into account the 

evaporation of fuel in the intake manifold,  and there are some 

that stick and flow through the channel walls of the intake 

manifold, stated as follows [1]. 

 ̇   ̇    ̇    (10) 

 ̇     −     ̇   (11) 

 ̈          − ̇      ̇     (12) 

with  

           ̇              … 

…           
       

   (13) 

with    ,    ,    ,    ,      dan     is a constant, mfv is the 

fuel mass flow which evaporates and into the cylinder 

(combustion chamber),  ̇  is fuel the film mass flow attached 

to and flowing through the manifold wall,    is fuel 

evaporation time constant, and    is a fraction of the fuel film 

that produces how much fuel flowing in the walls of the 

manifold that depends on the operating point. Price    ranges 

from 0.1 up to 0.5, while    ranges from 0:25 till 0.75, both of 

which are affected the value of    and   [3]. Equation (13) is 

modified from the original equation [3] to obtain more precise 

results by increasing the polynomial order into a second order 

for the variable   and   . 

Variable input   ̇   obtained from the signal is supplied to 

the injector, in milliseconds, taking into account the engine 

speed n, injector flow rate (  = 234 cc/min), and density ( ) 
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fuel pertamax (715-770 kg/m
3
), taken the average value, ie 

                   .  ̇   presented in the following 

equation. 

 ̇               (14) 

with     is the signal injector in milliseconds, shaped pulse 

ON and OFF the section which in the ON course that is noted. 

D. Dynamics of Air-Fuel Ratio (AFR):  

AFR is calculated by comparing the normalized air mass 

flow rate into cilynder  ̇   and multiplication of numbers 

stekiometri           with the cylinder port fuel flow  ̇ , 
as presented in (15). 

   ̇        ̇   (15) 

Sensor λ type of UEGO have a response in the area of the 

linear width of the representation of the condition of AFR 

good to poor condition (λ>1), rich (λ<1), or ideal 

(stoichiometric). This sensor is approached by the first-order 

system, presented in (16). 

                        (16) 

with         and        ) is the Laplace transform of    𝑡  
and      𝑡 . Variable    is value λ the measured of UEGO 

sensor,       represents the value of λ that will be read by the 

sensor, and    is the time constant of the sensor is temperature 

dependent on the exhaust pipe. The relationship between      

and  , follow the following equation. 

                 (17) 

with Δ (s) is the Laplace transform of λ(t) and    is the time 

transport delay between λ(t) with      𝑡   With inversed 

transform (16) and (17), obtained with the system of first-

order differential function as shown below. 

 ̇         −   −      (18) 

     𝑡    𝑡 −      (19) 

E. Plant SI Engine 

Model of engine is approached by a system of multiple 

input multiple output (MIMO), has four inputs ( ̇  ,  ,   and 

  ), three states  ( ̇  ,    dan   ),, and two outputs (   and 

  ). The equation for the states of       dan    are presented 

as 

 ̇         −                                                        

  ̇        (− ̇              ̇         ) (20) 

  ̇        (−                    )  

Output equation that depends on the states served as 

                                                                                 

         
(21) 

with 

 ̇     ( −   )     (22) 

IV. MODELS NONLINEAR GRAY-BOX (IDNLGREY) 

Modeling of gray-box is useful if it is known the 

relationship between the variables, constraints in the behavior 

of the model, or equation that explicitly represent the 

dynamics of the system. It can be performed using the system 

identification toolbox (MATLAB) to obtain the unknown 

parameters. Toolbox can be used for linear and nonlinear 

systems, discrete and continuous. However, because the laws 

of physics are expressed with continuous time, it is easier to 

construct models to the time domain continuous rather than 

discrete time domain [30].  

The system to be modelled needs to be represented in the 

first-order nonlinear differential equations, which are 

generally presented in the following equation [30]. 

 ̇ 𝑡    𝑡   𝑡    𝑡  𝑝𝑎   𝑝𝑎   𝑝𝑎     𝑝𝑎      

 ̇ 𝑡    𝑡   𝑡    𝑡  𝑝𝑎   𝑝𝑎   𝑝𝑎     𝑝𝑎      𝑡    

                                                                                   (23) 

with  ̇ 𝑡     𝑡   𝑡 for continuous time representation. F 

and H is a linear or nonlinear function with a number of 

component parameter    dan   ,,     is the number of state 

and     is the number of outputs. 
ODE equation is expressed by the C language system 

resulting in a new format C-MEX. Computing using format C-

MEXfiles is faster than the computation process m-

MEXformat file which is a file standardMATLAB. C-

MEXfile can be called by the main program written in the m-

file, it is required the process of compiling the C-MEX file to 

file new extension "mexw64". This conversion process 

requires a compiler from the outside named visual C++. ODE 

equations are already tangible system file mexw64 is called by 

the main program in the m-file to the learning process MVEM 

parameter is identified. 

V. PARAMETER ESTIMATION PREDICTION-BASED ERROR 

MINIMIZATION (PEM) 

A. Prediction Error Minimization (PEM) 

Model the candidate   that represents systems and data sets 

experimental   is defined by the following equations [31]. 

   {        𝐷 }  (24) 

   [                               ] (25) 

where N is the number of pairs of input and output data sets,  

and θ is the vector of the model parameters. Vector estimation 

process model parameter θ, of course,  ( ̂)is defined to be   , 

is  accomplished by mapping    into 𝐷    and is defined by 

the following equation [31]. 

    ̂  𝐷  (26) 

with all input-output pairs of Z, the number of N is mapped to 

the Dμ by the model μ with the estimated parameter vector  ̂. 
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The mapping process is done by a certain parameter 

estimation method. 
By using the estimated parameter vector  ̂, models μ is able 

to predict the output   𝑡  of the system, with  ̂ 𝑡  is the 

prediction of the model output  ( ̂) , so that the error 

prediction is defined by the following equation [31]. 

  𝑡      𝑡 −  ̂ 𝑡    (27) 

with a model is stated to be good if it generates an error 

prediction   𝑡    that is small or close to zero, and this 

requires a criterion as a function of the predictor. To get the 

criterion function R(θ) which is scalar, it is defined  

      
   [31]. 

      
   

 

 
∑  (   𝑡   )

 
     (28) 

Issues into a model parameter estimation process 

optimization become problems that require minimization 

criteria function, as defined by the following equation [31]. 

 ̂      𝑖        
    (29) 

The minimization method is known as the prediction-error 

minimization (PEM). From these explanations, the process of 

minimization based PEM can be summarized into the three-

step process to estimate model parameters, namely choosing 

the model structure (gray-box, black-box, or other), select the 

function criteria (defined by function R(θ) which is scalar), 

and to minimize function criteria. 

Function criterion       is selected for PEM-based 

applications that depends on matrix of the covariance of error 

prediction   𝑡    presented as follows [31]. 

      
 

 
∑   𝑡      𝑡    

    (30) 

assuming that the error prediction   𝑡    Gaussian 

distributed. Function criterion       should be scalar. Error 

predictions can be used directly as a function of criteria only if 

  𝑡    is scalar-valued, that is when a system has a single 

output. In case the system has more than one output, it needs 

to make the criterion function       to be a scalar-valued. 

The function is defined generally to function as presented 

below [31]. 

 (     )    𝑡(     )  (31) 

Choice of the function criteria is considered to be 

statistically optimal statistical because it leads to maximum 

likelihood of errors Gaussian distributed prediction [32]. 

To minimize the criterion function, it is selected Gauss-

Newton method, known as a rapid convergence process. The 

Gauss-Newton method uses routine numerically known as the 

Newton-Raphson algorithm. The step-by-step Gauss-Newton 

method has been described in previous studies [33]. 

B. Strategy Experiments when Training Parameters MVEM 

There are 31 parameters in MVEM consisting of six 

parameters remain without estimation, namely  ,   ,   ,   , 

    and     and also 25 free parameters to be estimated, 

namely [      ], [             ], [ ̇      ̇   ], 

[                  ], [                   ], [   ], 

[                            ], [       ]  dan [  ]. 

[                  ], [                  ]. 

Classification of free parameters that influence the 

dynamics of each system is described in Fig. 10. 

AFR Dynamics

Intake Manifold

Common Free
Parameters

   

[ 𝑖0,  𝑖1 ,  𝑖2 ,  𝑖3], 

[ 𝑖0,  𝑖1 ,  𝑖2 ,  𝑖3] 
[ 1 ,  2], [ 𝑐0 ,  𝑐1 ,  𝑐2], 

[ ̇𝑎𝑡0,   ̇𝑎𝑡1] 

[ 𝑓0], [ 𝑓0 ,  𝑓1,  𝑓2,  𝑓3, 

 𝑓4;   𝑓5], [  0 ,   1], [  ] 

 𝑖  

 
Fig. 10 Free parameters influencing the dynamics of the system. 

Free parameters together, that [                  ]  
[                  ], influence the dynamics of the AFR and 

the intake manifold. Free parameters, which only affect the 

dynamics of AFR are [   ], [                            ], 

[       ], and [  ], [whereas the free parameters, which only 

affect the dynamics of the intake manifold are [      ], 

[             ], and [ ̇      ̇   ]. 
There are three stages of training or learning done, the first 

process training for AFR dynamics, the second is the process 

training for the dynamics of the intake manifold, and the third 

is the process training by combining the dynamics of the AFR 

and the intake manifold in a large system model. This is done 

to minimize the computational process. 

In the first stage, it is assumed model does not require the 

estimation of MAP /Pi  close-loop,as presented in Fig. 11, 

with a value of Pi directly obtained from the MAP sensor. 

From here it can be seen that the model is a MISO system 

with five inputs = [               ]
   [  ̇            ]

 
, 

   [       ]
  =  [  ̇         ]

 
, and one output   [  ] = 

[    ]. 

Fuel Injection
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 𝑖  

 ̇𝑓  
 ̇𝑓𝑖  

 ̇𝑎𝑝  
 ̇𝑎𝑝  

 𝑖  

Intake manifold

 
Fig. 11 MVEM block for identification strategy in the first stage. 

Target data         𝑡      are obtained from 

experimental data sets of the UEGO sensor shifted forward as 

far as    𝑓              The new variable      is 

needed because it is not found a way to build a non-linear 

model of grey-box functions delay into a syntax that is 

necessary toolbox, or toolbox in MATLAB that does not have 

this facility, so it requires manually one by one to see the 

effect of τD for the accuracy of the results parameter 

estimation, by trying to enter 5 x 6 = 30 points.  
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Free parameters which influence the dynamics of AFR are 

[   ], [                            ], [       ]  dan [  ] 

coupled with the free parameters together, that 

[                  ] and [                  ]  Parameters 

[       ] affect sthe transport delay   . The process training 

using the Gauss-Newton method based PEM is done by 

inserting a 30 point    one by one manually. Estimated free 

parameters [ ̂    ̂  ] can be obtained from the condition 

normalized root mean square error (NRMSE) and to 

determine the smallest done manually by describing the shape 

of its surface and contour.  More specifically, it is discussed 

further in the "Results and Discussion". While other estimated 

free parameters are obtained automatically from the process 

training using the Gauss-Newton-based PEM, namely [ ̂  ]  

[ ̂     ̂    ̂     ̂     ̂     ̂  ]  [ ̂ ], added by the free 

parameters of [ ̂     ̂     ̂     ̂  ], [ ̂     ̂     ̂     ̂  ]. And of 

course, the process training requires initialization. 

  

  

 𝑖  

 ̇𝑎𝑡  

 ̇𝑎𝑝  

  
 𝑖  

Intake manifold

 
Fig. 12 MVEM block for identification strategy in the second stage. 

In the second phase of the system formed the open-loop by 

   as the output of the system, as in Fig. 12. From here, it can 

be seen that that the model is a MISO system with three 

inputs, namely  [          ]
   [       ]

 , one state x = 
[   ]

  =  [  ], and one output   [  ] = [  ]. Target data    is 

obtained from a data set of record results MAP sensor. Free 

parameters which influence the dynamics of the intake 

manifold is [      ], [             ]  and [ ̇      ̇   ]  and 

added by a joint free parameters, namely [                  ] 
and [                  ]. Early initialization parameters for 

shared freely are obtained from the first stage above and 

others made random. After the process of training with the 

Gauss-Newton method based PEM is completed, it is obtained 

estimated free parameters of [ ̂    ̂ ]  [ ̂     ̂     ̂  ]  and 

[ ̂̇      ̂̇   ], added by the free parameters of 
[ ̂     ̂     ̂     ̂  ], [ ̂     ̂     ̂     ̂  ]. 

In the third stage, the two subsystems, namely the AFR and 

the dynamics, intake manifold combined into one is presented 

in Fig. 13. It appears that the model is a MIMO system with 

four inputs  [             ]
   [  ̇          ]

 
, three states 

  [           ]
  =  [  ̇           ]

 
,  and two outputs 

  [     ] = [       ]. Target data    and      sensor data 

are obtained from MAP /Pi and UEGO. Initialization 

beginning to use all the free parameter values obtained from 

the second stage above.  
For the record, there are three files C-MEX generated for 

each of the above steps. Then, the process of the estimation of 

MVEM parameters uses the Gauss-Newton based PEM 

method using the following syntax in m-file MATLAB.  

“pem(z, nlgr, 'Display', 'Full', 'SearchMethod','gn')” 

Fuel Injection

AFR

  

 𝑖  

  

  

 𝑖  

 ̇𝑓  
 ̇𝑓𝑖  

 ̇𝑎𝑝  

Intake Manifold

 ̇𝑎𝑡  

 ̇𝑎𝑝  

  

   𝑤  

 
Fig. 13 MVEM block for identification strategy in the third stage. 

VI. RESULTS AND DISCUSSION 

This section discusses the analysis, research data, transport 

delay    on AFR, validation of results, and analysis. The 

success rate is obtained by calculating the root mean square 

error (RMSE) and NRMSE, with notes saturation value of 

UEGO sensor, so as to calculate its error criteria, the outputs 

of the model are also given the function of saturation of λ ε 
[0.685,1.285]. 

 
Fig. 14 Data set of  the first validation with condition gear 1 to 2. 

A. Research Data 

There are three kinds of data set that are used with each 

dataset of more than 10,000 pairs of input and output with 

time of sampling 0:01 seconds. The first set of data are used 

for process training or learning when MVEM parameter 

identification. Data set of training were taken by positioning 

gear (gear) one, then moved into high gear (gear) two, and 

finally to the gear three. The last two data sets were used for 

validation, called data validation sets, used to assess the 

success of the model estimator AFR. In contrast to the method 

of the collection of the data set training, data sets of validation 

were performed in two ways: 
1. the data set of validation 1 were taken by positioning gear 

(gear) one, then moved into gear two, and  

2. the data set of validation 2 were taken by positioning gear 

(gear) one, then moved directly into gear three.  
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For injector, it was given a certain amount of signal pulse 

when the injector should be ON. As for the gas pedal, played 

by the driver while running the car on the highway. In this 

section, it is presented one example of a data set of studies, the 

data set of the first validation as presented in Fig. 14. 

B. Results Identification MVEM 

Process training produces estimated parameters, namely (1) 

free parameters which only affect the AFR dynamics or 

dynamics of the intake manifold only, and (2) along with free 

parameters that affect the dynamics of the AFR and the intake 

manifold. The free parameters are presented in Table I and the 

fixed parameters are presented in Table II. 

TABLE I 
I-PARAMETER PARAMETER VALUE FREE MVEM RESULTS IDENTIFICATION 

Parameter Value Parameter Value 

 ̂   0.96408  ̂    108.64 

 ̂  -5.4292e-2  ̂   -8.3926 

 ̂    0.27939  ̂   0.1554 

 ̂    0.28459  ̂    3.0906 

 ̂    1.73280  ̂    52.566 

 ̂̇    -0.08776  ̂   -0.7243 

 ̂̇     28.5710  ̂   -4.8022 

 ̂    385.190  ̂    0.0110 

 ̂    1088.8  ̂    1.5280 

 ̂   -358.90  ̂    0.6140 

 ̂    35.042  ̂   -0.0940     

 ̂    252.49  ̂   0.0555 

 ̂   -347.67 X X 

TABLE II 
VALUE PARAMETER-PARAMETER FIXED MVEM 

Parameter Value Parameter Value 

  0.00287     14.7000 

   0.00150    301.000 

   0.00170    0.95580 

C. Transport Delay τD on AFR 

An experiment to get the value of     and     was done 

during the initial training MVEM parameter when identifying 

MVEM. The function of    𝑓    is approximated linearly 

derived from the equation of a straight line with the two points 

known points of                and               , 
with   = n in unit of krpm   =    in seconds. By changing the 

value of y1 and y2 manually in every process of training 

when making MVEM parameter identification with the first 

phase of the strategy (described in Section "Parameters 

Training Strategy Experiments currently MVEM" above), 

then the result is NRMSE value. By combining    dan       = 
0.25 s; 0.35 s; 0.40 s; 0.45 s; S 0.50, 0.55 s and   = 0.00 s; 
0.10 s; 0.15 s; 0.20 s; 12.25s, the obtained NRMSE value is 6 

x 5 = 30 points. 

Furthermore, from the 30 pairs of data input (     ) and 

output z = NRMSE, it is approximated by (32). 

        𝑓       

     
      

             

          
(32) 

Using toolbox of MATLAB, "polyfitn" produced values 

of           −               −               

   −       −        −       −              . 
The shape of surface the equation is presented in Fig. 15 and 

the shape of its surface. It can be seen that the curve is 

concave with a certain minimum value. This minimum point 

is sought to produce estimates of transport delay   . 

 

Fig. 15 Surface effect of variable (y1,y2) in function of τd= f(n) against 

NRMSE on MVEM identifier. 

From shape, its contour as presented in Fig. 16 can be 

estimated that NRMSE is worth of minimum at        

(             )              by substituting two points 

        (        )           and         (        )  

         into the equation of the straight line given two 

points, then it is obtained transport delay    𝑓        
     −            . 

 

Fig. 16 Contour effect of variable (y1,y2) in function of τd= f(n) against 

NRMSE results of MVEM. 

D. Validation of Results 

Error criteria value obtained from the validation of 

estimator AFR the open-loop is satisfactory, with two data for 

validation generate NRMSE value below 0.1, or 10%, and the 

average RMSE = 0.07196 and NRMSE = 0.06831. Value 

criteria error and the average are presented in Table III. 
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TABLE III 
PARAMETER VALUES-PARAMETER NON MVEM RESULTS IDENTIFICATION 

Data set Estimator RMSE NRMSE 

1st  Validation  ̂  0.08221 0.07568 

2nd Validation  ̂  0.06170 0.06094 

Mean 0.07196 0.06831 

Pattern of the output signal MVEM, estimator  ̂ , 
indicating a trend that leads similar to the target data 

(measurement  ̂ ). Graph error estimation and  ̂  the first 

model presented in Fig. 17. There are certain points that lead 

to errors of great value, marked with a circle, which for 

certain conditions, the model still cannot represent the 

dynamics of the accurately plant, since  the system is open-

loop so that no correction of the difference between  ̂  and 

    to fix the state. 

 

Fig. 17 Estimation graph  ̂ , error and transport delay using the first 
validation data. 

While the area is placed inside the box indicates that the 

estimated  ̂  is able to predict unmeasured values by 

measuring  ̂ , because of the limitations of measuring 

instruments (UEGO sensor) itself, with λ   [0.685,1.285]. 

E. Research Findings 

The aim of this study is to develop models or algorithms for 

estimating the AFR in the cylinder (combustion chamber) SI 

engine without the effect of the transport delay. From the 

experiment, the delay transport is influenced by the engine 

speed n (krpm), ie     −              seconds. Value 

criteria error (RMSE and NRMSE) can only be calculated if 

the actual target value is identified, not an estimate. In this 

case, the variable λ can not be measured because it is in the 

state. Therefore, the error criterion, estimator  ̂, is approached 

by calculating error estimators  ̂   of the  measurement. It is 

assumed that if the estimator model output  ̂  produces a high 

success rate, it can be stated that the success rate in the 

variable estimation state (estimator λ) is also high where the 

value of  ̂   is obtained from λ delayed by transport delay 

  .Variable     represents normalized readable AFR UEGO 

sensor and λ represents a normalized value of AFR in the 

combustion chamber. 

It is presented a graph estimator  ̂ displayed along with the 

measurement    of the first, second, and third with the use of 

validation data, presented in Fig. 18. Two graph on the right is 

the result of zooming the graph on the left in the circled area. 

From the graph, it appears that the estimator λ move forward 

(faster) and is followed by a measurement signal   . It can be 

seen more clearly in the transient conditions. 

 

Fig. 18 Estimation  Graph  ̂ ,  without delay to the measurement of the first 
model using the first validation data. 

The graph in Fig. 18 shows the transport delay between 

estimators   and measurement   . In accordance with 

previous discussion, with the transport delay, the sensor    

can only be used as a feedback for control of "correction" 

AFR, not as a feedback for control of the "main" stand-alone 

AFR. With the development of the estimator algorithm  ̂, the 

estimator  ̂ without the effect of the transport delay is 

expected to be used as a feedback to the control system of the 

"main" stand-alone. 

F. Comparison with Other Research 

Until now, it has not been in the literature on previous 

studies that are identical to this current study. There are some 

publications that discuss the same issue regarding the 

estimation of the AFR, but the method, the approach of 

models, input systems, and data sets are different from this 

present research. Additionally previous studies use the same 

method for the estimation, but the estimated variable or 

system is different, and several studies even build a new 

model for estimating the AFR with the effect of transport 

delay or not.  

Research that produces the highest success rate among 

other research using methods based on NN [1], which is the 

criterion error MRE = 0976%, higher compared to this paper 

with NRMSE = 6,831% with a model estimator equally open-

loop (so called  virtual AFR sensor). The difference is in the 

way research data collected. In previous research, data 

retrieval to obtain data set of studies were conducted by plant 

simulation, not plant actually [1]. And of course, the model 

(simulation) certainly has errors against the real plant, in 

which in that paper it is not explained the criteria for error 

model (simulation) itself. 

VII. CONCLUSION 

The experiment produces estimator  ̂ with a success rate 

that is calculated using criteria value of error estimation  ̂   to 

the UEGO sensor measurement (  ). The error criteria used 

are the RMSE and NRMSE, respectively, generated by their 

average value of 0.0720 and 0.0683 = 6.831%. The result of 

experiment shows that the position signal  ̂ is preceded  ̂  in 

the time domain graph t because it is influenced by the 
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transport delay    which the value changes influenced by 

engine rotation speed n, that is      −             . 

The estimator AFR ( ̂) generated needs to be tested in future 

studies as feedback in the control of the "main" AFR to obtain 

the output AFR accuracy and precision, both during 

conditions transient or steady state, both offline and online, 

where in the study discusses the special AFR control system, 

not on the estimated AFR. 
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