NUMERICAL MODELLING AND SIMULATION OF CO₂ –ENHANCED COAL-BED METHANE RECOVERY (CO₂-ECBMR): THE EFFECT OF COAL SWELLING ON GAS PRODUCTION PERFORMANCE

Ferian Anggara^{*1}, Kyuro Sasaki², and Yuichi Sugai²

¹Department of Geological Engineering, Gadjah Mada University, Yogyakarta, Indonesia ²Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395 Japan

Abstract

This presents study investigate the effect of swelling on gas production performances at coal reservoirs during CO₂-ECBMR processes. The stressdependent permeability-models to express effect of coal matrix shrinkage/swelling using Palmer and Mansoori (P&M) and Shi and Durucan (S&D) models were constructed based on present experimental results for typical coal reservoirs with the distance of 400 to 800 m between injection and production wells. By applying the P&M and S&D models, the numerical simulation results showed that CH₄ production rate was decreasing and peak production time was delayed due to effect of stress and permeability changes caused by coal matrix swelling. The total CH₄ production ratio of swelling effect/no-swelling was simulated as 0.18 to 0.95 for permeability 1 to 100 mD, respectively. It has been cleared that swelling affects gas production at permeability 1 to 15 mD, however, it can be negligible at permeability over 15 mD.

Keywords: *Coal swelling in CO*₂*, Permeability, Low rank coal, CO*₂*-ECBMR*

1 Introduction

In regard to simulate the effect of swelling and others factors in field scale, a numerical modelling of CO₂-ECBMR has been constructed. The reservoir simulator used for the study was ECLIPSE E300, 2012.1 by Schlumberger (Schlumberger, 2012) which have incorporated dual porosity model, sorption and diffusion processes, as well as coal shrinkage and compaction effects. A modified Warren and Root model (Warren and Root, 1963) have been used to describe dual porosity process in coal bed methane model. The adsorbed concentration on micro-pore in coal surface is assumed to be a function of pressure only and described by Langmuir isotherm. To accommodate different gases on CO₂-ECBMR project, an extended Langmuir isotherm is used to describe the coal sorption for different components. The diffusive flow of gas from the matrix to cleat system is given by Fick's law while from cleat to well be governed by Darcy law. Rock compaction is used to model the compression and expansion of the pore volume and its effect on permeability.

The main objectives of this study was to examine the swelling effect on coal permeability based on stress-dependent permeability model related to gas production.

^{*}Corresponding author: F. ANGGARA, Department of Geological Engineering, Gadjah Mada University. Jl. Grafika 2 Yogyakarta, Indonesia. E-mail: ferian@ugm.ac.id

2 Reservoir Model Construction

Some parameters determined from experimental results as well as synthetic data were used as input parameters for numerical simulations as described in Table 1. A sensitivity study have been conducted to investigate the effects of some parameters on gas production. The values of parameters in base case were set and either lower or higher values were determined for sensitivity studies.

To reduce total grid cell and to optimize the computational speed, well spacing were modelled as ¹/₄ model as shown in Figure 1. Synthetic data and isotropic block model were used instead of real field data. Thus full model data was based on a multiply of ¹/₄ model.

3 Numerical Model Result

One of the main objectives to carry CO_2 injection into coal reservoir is to enhance CH_4 production (CO_2 -ECBMR) compared to primary CH_4 recovery. Figure 2 shows the comparison of CH_4 production rate for the primary recovery and CO_2 -ECBMR processes as function of time. The results indicate the enhancement of CH_4 gas production due CO_2 injection.

Since the purpose of CO₂-ECBMR is also to store CO₂ in coal reservoirs, thus after CO₂ breakthrough occurs in a production well, the injected CO₂ will stop. In this study, a threshold of 10% CO₂ in production well was applied to shut off the injection well. Detail of numerical simulation results could be checked on Table 2. With this scenario, the maximum CH4 production rate was $48.80 \times 106 \text{ m}^3$ for primary recovery, while 5 spot base model resulted 74.40×106 m³. This means it was increasing up to 65.59 %. Moreover, gas recovery with 5-spot base model was 83% for 17 years well operation compared to 54 % by CBM processes for 25 years. Moreover, in case of CO₂-ECBMR base model, $146.40 \times 106 \text{ m}^3$ of CO₂ was injected to the coal reservoir. This was the advantage of CO₂-ECBMR which not only to enhance CH₄ production but also to store CO₂ in the reservoirs. In this study, total CO₂ injection was around 1.5 to 2 times higher than total CH₄ production. It is due to the fact that CO₂ is adsorb higher than CH_4 at given pressure. Additionally, higher total CH_4 production rate was achieved in faster time by CO_2 -ECBMR processes.

In Figure 2, peak production for CO_2 -ECBMR was higher than the CBM processes. However, it was reached slightly slower than the CBM processes. In CO_2 -ECBMR, CO_2 displace CH_4 and cleat pressure is kept high, thus faster flow is resulted. Hence, slower achieving peak production is mainly due to the higher CH_4 production rate in CO_2 -ECBMR model compared to the case by primary recovery.

As shown in Anggara et al. (2014), matrix shrinkage and swelling due to CH₄ desorption and CO₂ adsorption are observed when CO₂ is injected into coal reservoir. The estimation of the effects of swelling and effective stress on permeability is more important rather than estimated absolute permeability which is highly sensitive to the scale of measurement and has been shown to be a property which can only reliably be determined from well testing and history matching (Pan et al., 2010). In this study, those effects on coal permeability is expressed by both of Palmer and Mansoori (P&M) and Shi and Durucan (S&D) models as referred to Palmer and Mansoori (1998); Shi and Durucan (2005).

The permeability ratio calculated using P&M as well as S&D model as function of pressure is plotted in Figure 3. Stress-dependent permeability was used in numerical modelling to simulate the effect of swelling as well as effective stress on production performance.

Figure 4 shows the comparison of production performances as a function of time in respect to Young's modulus effect based on the P&M model. It was observed that CH₄ production rate was lower and peak production was delayed due to stress and matrix shrinkage/swelling in numerical simulations.

Furthermore, lower initial CH₄ production rate was observed in case of lower Young's modulus and it mainly due to larger compaction effect in the region near producer well when the pressure decrease. Compared to the result by the S&D model in Figure 5, CH₄ production rate was lower than the P&M model

Coal properties			
Coal seam thickness (m)	10		
Top of coal seam (m)	1000		
Density (kg/m³)	1320		
Porosity	0.008		
CH_4 Langmuir pressure (P_L , MPa)	3.16		
CO_2 Langmuir pressure (P_L , MPa)	2.10		
$ m CH_4$ Langmuir volume (V_L , m ³ /kg)	0.0151		
CO ₂ Langmuir volume (V _L , m ³ /kg)	0.0361		
CO_2 Langmuir strain (\mathbb{Z}_L , %)	2.53		
CO_2 Langmuir pressure (P_L , MPa)	4.17		
CH_4 Langmuir strain (\mathbb{Z}_L , %)	1.28		
Poisson's ratio (🛛)	0.39		
Initial reservoir condition			
Temperature (°C)	55		
Pressure (MPa)	7.5		
Initial water saturation (%)	100		
Operating condition (full well, 5-spot model)			
CO_2 injection rate (ton/d)	40		
Maximum bottom-hole pressure (MPa)	10		
Maximum gas production rate (m^3/d)	100,000		
Minimum bottom-hole pressure (MPa)	0.275		
Sensitivity study		Base case	
Young modulus (MPa)	1.60x10 ³	No effect	3.068x10 ³

Table 1: Input parameters for present numerical simulations.

Figure 1: ¹/₄ 5-spot model, well spacing diagram (PW: production well, IW: injection well).

Figure 2: The comparison of gas production by CBM and CO₂-ECBMR processes.

Figure 3: Stress-dependent permeability used in the numerical simulation.

Figure 4: The comparison of the effect of volumetric strain on well performance as function of time using the P&M model.

	Table 2: Summary of n	umerical simulation re	sults.			
	Total CH ⁴ production	Total CO ₂ injection			Peak production	Life time
Parameters	(x 106 m ³)	$(x 106 m^3)$	RF (%)	Rate	Time (ware)	(vearc)
				$(x \ 10^3 \ m^3)$		(cms ()
Primary	48.80	I	54.45	11.46	2.36	25.00
Base model	74.40	146.40	83.02	18.00	2.63	16.87
Vourne's modulus (v 106 l/b2). D.e.M 1.6	50 70.80	187.60	79.00	10.37	3.73	21.53
$\frac{10000}{3.0}$	<u>)1</u> 73.60	149.20	82.12	14.63	3.86	17.15
Young's modulus (x 106 kPa); S&D 3.0	<u>)1</u> 72.40	161.20	80.78	13.03	5.10	19.75
CID (v 106 m3)	80 acre	Base mode		320 ac	re	
	45.03	89.62		180.13		

with same Young's modulus value. It was caused by the S&D model that has matrix shrinkage/swelling effect 1.6 to 2.1 stronger than the P&M model that depends on the Poisson's ratio.

4 Discussion

Published permeability data for coals in Indonesia are limited. Sosrowidjojo (2006) reported coal permeability from South Palembang basin varies between 2–10 mD. In comparison, Zarrouk and Moore (2009) reported coal permeability of Huntly coal seams, New Zealand between 1–15 mD for identical coal rank.

A comparison between total CH_4 productions as function of coal permeability was shown in Figure 6. As discussed previously that initial higher permeability tend to achieve rapid increase of gas production, it also confirmed that increasing total CH_4 productions was achieved with increasing permeability.

The ratio of total CH₄ productions with swelling/no-swelling effect by P&M and S&D model was presented in Figure 7 to examine the effect of coal swelling. The coal swelling affect total CH₄ production at permeability between 1–10 mD. However, in the case of permeability higher than 15 mD, the swelling effect was negligible.

Total CO₂ injection as function of permeability are shown in Figure 8. There is a tendency of decreasing total CO₂ injection with increasing permeability. It is due to the fact that in permeability higher than 15 mD, CO₂ will breakthrough faster in production well and contaminate the CH₄ production. As mentioned previously that injection well will be shut-in when 10% of CO₂ was detected in production well. Thus, decreasing total CO₂ injection with increasing permeability was in correlation with well-life time. As shown in Figure 9, welllife time decrease with increasing permeability. However, in the low permeability (less than 5 mD), total CO₂ injection was quite low and it is due to low CO₂ injectivity.

Figure 5: Comparison of the effect of volumetric strain on well performance as function of time based on the P&M and S&D model.

Figure 6: Total CH₄ production vs permeability.

Figure 7: Total CH₄ production ratio of swelling effect/no-swelling.

Figure 8: Total CO₂ injection vs time.

Figure 9: Well-life time vs permeability.

5 Summarizes

In general, CO₂-ECBMR makes increase of CH₄ production rate by 65%, from 48.80 to 74.40 m3 and store CO₂ up to 146.40×106 m³ in the base case model. Based on the numerical simulation results, it can be summarized that swelling affects gas production at permeability 1 to 15 mD as the reported of coal permeability for low rank coal, however, it can be negligible at permeability over 15 mD. Thus, economic evaluation of CO₂-ECBMR could be conducted based on the numerical simulation presented in this study.

References

- Anggara, F., Sasaki, K., Rodrigues, S., Sugai, Y. (2014) The effect of megascopic texture on swelling of a low rank coal in supercritical carbon dioxide. International Journal of Coal Geology. doi:10.1016/j.coal.2014.02.004
- Palmer, I., Mansoori, J. (1998) How Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model. SPE

Reservoir Evaluation & Engineering 1. doi:10.2118/52607-PA

- Pan, Z., Connell, L.D., Camilleri, M. (2010) Laboratory characterisation of coal reservoir permeability for primary and enhanced coalbed methane recovery. International Journal of Coal Geology 82, 252–261. doi:10.1016/j.coal.2009.10.019
- Schlumberger (2012) Eclipse Reference Manual 2012.1.
- Shi, J., Durucan, S. (2005) A Model for Changes in Coalbed Permeability During Primary and Enhanced Methane Recovery. SPE Res Eval & Eng 8, 291–299. doi:10.2118/87230-PA
- Sosrowidjojo, I.B. (2006) Coalbed methane potential in the South Palembang Basin, in: Proceedings of the International Geosciences Conference and Exhibition, IPA, 33th Annual Convention. Jakarta.
- Warren, J.E., Root, P.J. (1963) The Behavior of Naturally Fractured Reservoirs. Society of Petroleum Engineers Journal 3, 245–255. doi:10.2118/426-PA
- Zarrouk, S.J., Moore, T.A. (2009) Preliminary reservoir model of enhanced coalbed methane (ECBM) in a subbituminous coal

NUMERICAL MODELLING AND SIMULATION OF CO2-ENHANCED CBM RECOVERY

seam, Huntly Coalfield, New Zealand. International Journal of Coal Geology 77, 153–161. doi:10.1016/j.coal.2008.08.007