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ABSTRACT. Using remote sensing data for hydrothermal alteration mapping besides sav-
ing time and reducing cost leads to increased accuracy. In this study, multispectral re-
mote sensing techniques have been compared for manifesting hydrothermal alteration
in Kokap, Kulon Progo. Three multispectral images, including ASTER, Landsat 8, and
Sentinel-2, were compared to find the highest overall accuracy using principal component
analysis (PCA) and directed component analysis (DPC). Several subsets band combina-
tions were used as PCA and DPC input to targeting the critical mineral of alteration. Mul-
tispectral classification with the maximum likelihood algorithm was performed to map the
alteration types based on training and testing data, followed by accuracy evaluation. Two
alteration zones were succeeded to be mapped: argillic zone and propylitic zone. Results
of these image classification techniques were compared with known alteration zones from
a previous study. DPC combination of band ratio images of 5:2 and 6:7 of Landsat 8 im-
agery yielded a classification accuracy of 56.4%, which was 5.05% and 10.13% higher than
those of the ASTER and Sentinel-2 imagery. The use of DEM and multispectral images
increased hydrothermal alteration mapping accuracy in the study area.

Keywords: Hydrothermal alteration - ASTER - Landsat 8 - Sentinel-2 - Principle compo-

nent analysis - Multispectral classification.

1 INTRODUCTION

Remote sensing is a typical application of min-
eral resource mapping activity and usually
covers a significant part of various studies
focused on spectral analysis, including hy-
drothermal alteration zone mapping. Rowan et
al. (2006) used the visible near-infrared (VNIR)
and shortwave infrared (SWIR) wavelength
region to detect the mineral assemblages asso-
ciated with the hydrothermal alteration zone.
VNIR bands provide some information about
the iron oxides, while SWIR bands measure
minerals’ reflectance (e.g., clays, phyllosilicates)
and are useful for detecting hydrothermal al-
teration (Gasmi, 2016). Some techniques such
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as principal component analysis (PCA) and
band rationing have been successfully applied
by researchers in various locations to map hy-
drothermal alteration (Tangestani and Moore,
2002; Carranza and Hale, 2002; Crosta et al.,
2003).

Kokap region in Kulon Progo is an impor-
tant region for the presence of gold mineraliza-
tion. Harjanto (2008) and Pramumijoyo (2017)
have proven this gold mineralization is asso-
ciated with low sulfidation epithermal deposit
due to hydrothermal alteration. This alteration
can sometimes be detected and mapped at a
zonal pattern using remote sensing on a re-
gional scale (Ferrier et al., 2001). The Advanced
Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), Landsat 8 OLI (Opera-
tional and Imager), and Sentinel-2 MSI (Multi-
Spcetral Instrument) have spectral ranges cov-
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ering the VNIR and SWIR wavelength region.
The current study demonstrates the potential
and applicability of remote sensing techniques
and data for hydrothermal alteration mapping
using three different optical sensors: ASTER,
Landsat 8, and Sentinel-2. Another aspect of
this research study is to perform principle anal-
ysis to map hydrothermal alteration zone and
find the best band combination based on accu-
racy.

2 GEOLOGICAL SETTING AND HYDROTHER-
MAL ALTERATION

The study area is located in the western part
of Kulon Progo Regency, Yogyakarta Special
Region, with around 80 square kilometers.
According to the Regional Geological Map
number 1408-2 and 1407-5 from the Geologi-
cal Agency of Republic Indonesia (Figure 1),
the study area is located in the Oligo-Miocene
andesite intrusion (a). This intrusion breaks
through Nanggulan Formation (Teon) and Ke-
bobutak Formation (Tmok) (Rahardjo et al.,
1995). In addition, some geological structures
are identified due to volcanism and secondary
processes (Widagdo et al., 2016). The hydrother-
mal fluid that is carrying mineralization is then
circulated through this geological structure.
These may be faults, joints, cracks or fissures,
or simply boundaries of grains (Pramumijoyo,
2017).

According to Harjanto (2008), Sulthoni
(2017), and Pramumijoyo (2017), there are three
groups of hydrothermal alteration zone found
in this study area: silicification, argillic, and
propylitic and is characterized by the differ-
ent mineral assembly. The Silicification zone
(highly altered) located in the center of alter-
ation is typically characterized by secondary
minerals of quartz and illite. Argillic zone
(medium altered) is typically characterized by
illite, montmorillonite, and kaolinite. Propylitic
alteration, the outermost zone formed in the
lower temperature, typically contains chlorite
and epidote as the altered secondary mineral.

3 METHODOLOGY

The methodology involves image processing,
tield observations and laboratory analysis (thin
section and X-ray diffraction analysis), multi-
spectral classification, and accuracy evaluation.
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3.1 Data preprocessing

Three types of multispectral imagery were
downloaded from the earth explorer website
and used in this study, ASTER image recorded
on September 9, 2003, Landsat 8 image (path
120 row 65) recorded on September 18, 2015,
and Sentinel-2 image recorded on July 28, 2018.
These images (ASTER, Landsat 8, and Sentinel-
2) have different spatial and spectral resolutions
(Table 1). In addition, one scene of SRTM (Shut-
tle Radar Topography Mission) DEM (digital
elevation model) with 12,5 m spatial resolu-
tion was downloaded from the Alaska Satellite
Facility (ASF) website. These scenes were geo-
referenced in the UTM zone 49S coordinate
system with the WGS-84 ellipsoid.

Image pre-processing such as radiometric
calibration (including atmospheric correction)
and masking were applied to the images. At-
mospheric corrections are used to eliminate
the influence of elements and molecules in the
atmosphere, so radians or reflections values
are close to their original values (Surface Re-
flectance) (Vermote et al., 2002; Wicaksono and
Danoedoro, 2012). The ASTER and Landsat 8
images were corrected using the FLAASH (Fast
Line-of-sight Atmospheric Analysis of Hy-
percubes) module. In contrast, the Sentinel-2
images are atmospherically corrected orthorec-
tified using the Sentinel Application Platform
(SNAP) software package. Masking processes
are then performed to crop the images only
at the research study area and eliminate other
objects such as the sea and clouds since they
interfere with the PC processes (Table 2).

3.2 Hydrothermal alteration identification
using remote sensing

The visible and shortwave bands are consid-
ered bands that can distinguish the type of min-
eral from its spectral reflection characteristics or
spectral signature (Abrams et al., 1977, Taranik
and Crosta, 1996; Carranza, 2002). To iden-
tify the mineral assembly of hydrothermal al-
teration, PCA was applied to subsets of multi-
spectral images. PCA (also known as the Crésta
method) transforms spectral values on images
to reduce data redundancy. Band selection as
PC input was based on the spectral response
of multispectral bands to each target mineral
(Table 3). The results of PCs that are contain-
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FIGURE 1. Geological map of Kokap and surrounding modified from Regional Geological Map created by
Geological Agency of Republic Indonesia (A). Index map of Yogyakarta Special Region. Study area marked
with the polygon in light green color (B). Landsat 8 true-color composite image (RGB: bands 4-3-2) (C) (Ra-
hardjo et al., 1995).
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TABLE 1. ASTER, Landsat 8, and Sentinel-2 detail sensor .

ASTER OLI Sentinel-2
Band Central Spatial Band Central Spatial Band Central Spatial
Wave- Resolution Wave- Resolution Wave- Resolution
length (m) length (m) length (m)
(nm) (nm) (nm)

1 0.5560 1 0.4430 1 0.4430 60

2 0.6610 15 2 0.4826 2 0.4900
3N 0.8070 3 0.5613 3 0.5600 10
3B 0.8070 4 0.6546 30 4 0.6650

4 1.6560 5 0.8646 5 0.7050

5 2.1670 6 1.6090 6 0.7400 20

6 2.2090 30 7 2.2010 7 0.7830

7 2.2620 8 0.5917 15 8 0.8420 10

8 2.3360 8A 0.8650 20

9 2.4000 9 1.3730 30 9 0.9450 60
10 8.2910 10 10.9000 10 1.3750

11 8.6340 100 11 1.6100

12 9.0750 90 20
13 10.6570 11 12.0000 12 2.1900

14 11.3180

TABLE 2. Images statistic after masking (the digital

number is in reflectance).

Band Min Max Mean  Stdev
Band 1 0.0 0382  0.032  0.029
Band2 0.0 0421 0.056  0.05
Band3 0.0 0465 014 0117
% Band4 00 0437 012  0.102
B Band5 0.0 0253  0.046  0.042
< Band6 0.0 0.29 0.05  0.046
Band7 0.0 027 0046  0.042
Band8 0.0 0224 0.031 003
Band9 0.0 0.142 0014 0016
Band 1 0.0 0559  0.027  0.036
w Band2 00 0593  0.029  0.037
% Band3 00 0.65 0042  0.045
¢ Band4 00 0.693  0.038  0.045
S Band5 00 081 0163  0.139
Band6 0.0 0.782  0.109  0.099
Band7 0.0 0.628  0.058  0.059
Band 1 0.0 0207 0.026  0.021
~ Band2 00 0466  0.025  0.021
< Band3 0.0 0462  0.028  0.025
£ Band4 00 0567 0.034  0.031
(%% Band8 0.0 0566  0.141  0.121
Band11 0.0 0.002  0.001  0.001
Band12 0.0 0399 009  0.079
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ing targeted minerals will have a high eigen-
vector loading value. Fraser and Green (1987)
and Loughlin (1991) used a combination of two-
band ratio images as PCA input (also known
as direct principle component or DPC method)
to increase the spectral detection capabilities.
When only two bands are used as input to PC
processes, the spectral contrast is mapped into
the second component. By limiting the number
of PC inputs, the result will be easier for visual
interpretation.

3.3 Multispectral classification

PC images generated from multispectral are
classified into hydrothermal alteration zones by
maximum likelihood classification, a standard
supervised classifier method in remote sensing.
This method assumes that each object on the
earth’s surface has different spectral reflectance
to be grouped based on its spectral value. Max-
imum Likelihood is one of the techniques used
in estimating a data distribution parameter and
remains dominantly used in developing new
tests (Lehmann and Casella, 1998). To exe-
cute maximum likelihood classification, train-
ing and testing samples were needed based on
the observation data. This observation data
(Figure 2) is divided into two sets of pixels used
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TABLE 3. Selected bands combination for PC input.

Method Target ASTER Landsat 8 Sentinel-2
Montmorillonite 1-3-5-7 3-5-7 t 3-8-12
Illite 1-3-5-6 3-5-7 3-8-12

PCA Kaolinite + smectite 1-4-6-9 3-6-7 t 3-11-12 1
Kaolinite 1-4-6-7 3-6-7 t 3-11-12 +
Limonitic alteration 1-3-4-7 2-4-5-6 2-4-8-11
Clay alteration 1-3-4-5 2-5-6-7 2-8-11-12
Limonitic alteration 2/1;3/1 4/2;5/4 4/2;8/4
Clay Alteration 3/2;4/6 5/4;6/7 8/4;11/12
Quartz 1/2;6/2 3/4;7/2 3/4;12/2

DPC Montmorillonite 1/2;4/1 3/4;6/2 3/4;11/2
Ilite 3/1;6/1 5/3;7/2 8/3;12/2
Chlorite 3/1;4/1 5/3;6/2 8/3;11/2
Epidote 3/1,4/6 5/2,6/7 8/2;11/12
Limonitic alteration 2/1;3/1 4/2;5/4 4/2;8/4

1 ASTER band 5-7 fall within band 7 of Landsat 8 and band 12 of Sentinel-2

for supervised classification: (a) training pix-
els (classification sample) and (b) testing pixels
(reference sample).

3.4 Accuracy evaluation

The classification performance was quantita-
tively assessed by computing the overall ac-
curacy, Kappa coefficient, and Z-statistic. The
overall accuracy is the ratio between the total
number of correct pixels and the total number
of pixels in the error matrix. The Kappa coeffi-
cient is a statistical measure that represents the
accord between classified maps and reference
data. Z-statistic is used to measure the level of
significance of the classification (Congalton and
Green, 1999).

4 RESULTS AND DISCUSSION

4.1 Datasamples

The selected field observation sites obtained
from each set were collected and subjected to
thin sections observations and analysis under
a microscope (Figure 3A) and X-ray diffraction
(XRD) analysis (Figure 3B-C). Some minerals
such as quartz, kaolinite, illite, and montmo-
rillonite were present (Table 4). In total, 133
samples were selected from observation, and
secondary data collection (Harjanto, 2008; Pra-
mumijoyo, 2017; and Sulthoni, 2017), then di-
vided into 65 classification samples and 68 test-
ing samples. Training and testing pixels also
contain information for a water body and un-
altered areas.
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TABLE 4. Rock samples representing altered miner-
als.

Analysis Sample  Altered Alteration
Number Mineral
008 Quartz, Illite  Silicification
011 Quartz Silicification
XRD 015 Quartz Silicification
020 Montmoril-  Argillic
lonite
039 Kaolinite, Argillic
Montmoril-
lonite
006 Chlorite, Propylitic
Carbonate
Thin 012 Chlorite, Propylitic
Section Carbonate
021 Chlorite, Propylitic
Carbonate
025 Chlorite, Propylitic
Carbonate
038 Chlorite Propylitic
041 Chlorite Propylitic

4.2 Targeting hydrothermal alteration miner-
als
PCA and DPC methods were used to identify
the critical mineral of hydrothermal alteration
based on subsets bands mentioned in Table 3.
The result of applying PCA and DPC is the
eigenvector loading. The selection of PCs im-
age that containing the target minerals shows
the highest eigenvector loadings. If the loading
of the reflective band is positive in sign, the tar-

Journal of Applied Geology
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FIGURE 2. Distribution of thin section location (diamond), XRD locations (circle), observation point (black
dot), training pixels (green square), and testing pixels (pink square) in the study area. Training and testing
samples were collected from primary and secondary data (Harjanto, 2008; Pramumijoyo, 2017; and Sulthoni,
2017).
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FIGURE 3. Thin-section analysis from sample 012 showed an altered rock. It is originally an igneous rock
with a porphyritic texture. Minerals consist of carbonate/Cb (40%), secondary quartz/Qz (10%), clay miner-
als/Cm (15%), chlorite/Chl (30%) and opaque minerals/Opx (5%) and indicated as propylitic alteration (A).
Some alteration minerals detected from samples 008 (B) and 039 (C) by XRD analysis contain quartz, illite,
kaolinite, and montmorillonite. This location is experienced silicification (sample 008) and argillic (sample
039) alteration.
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get area is shown by bright pixels; if the load-
ing of the reflective band is negative, the area is
shown by dark pixels (Crosta and Moore, 1989).

4.2.1 Result of ASTER image

Several combinations of PCA inputs were used
to map the distribution of alteration minerals.
The PCA combination of bands 1-4-6-7 is used
to map kaolinite. Illite has high reflectance val-
ues in ASTER bands of 1, 3, and 5 and low re-
flectance in ASTER bands 6. Hence, PCA com-
binations of ASTER bands 1-3-5-6 are used to
map illite minerals. PCs 1-3-5-7 are used to map
montmorillonite minerals. Montmorillonite has
high spectral responses in band 3 and band 7
and low spectral responses in band 1 and band
5. Clay alteration is mapped using a combina-
tion of PC bands 1-3-4-7.

Furthermore, limonitic alteration is mapped
using a combination of PC bands 1-3-4-5.
Limonite has a high spectral response in bands
4 and 5 and a low spectral response in bands
1 and 3. Several DPC combinations are used
to map quartz, montmorillonite, illite, chlorite,
and epidote. The DPCs result showed that
DPC1 for quartz, montmorillonite, illite, chlo-
rite, and epidote are all harmful, hence zones
where the spectral responses due to vegetation
and altered minerals cannot be differentiated.
DPC2 accounts for the contrast between zones
that contain altered minerals from those that
contain vegetation. The selected and used PCs
band to map the distribution of alteration min-
erals are indicated by “bold” text in Table 5 and
Table 6.

4.2.2  Result of Landsat 8 image

The combination of Landsat 8 band 3-6-7 was
used to identify the abundance of kaolinite and
montmorillonite. Both minerals have a high
spectral response on band 3 and band 6 and
have low reflectance on band 7. Combinations
of Landsat 8 band 3-5-7 are used to map illite.
Illite has a high spectral response in Landsat 8
band 3 and band 5 and has a low response on
band 7. To targeting clay alteration, a combina-
tion of band 2-5-6-7 is used as an input to the
PC. Limonitic alteration is mapped using Land-
sat 8 bands 2-4-5-6 that are sensitive to map fer-
ric ion elements.

Some DPC images were used to map the

Journal of Applied Geology

distribution of the secondary altered miner-
als. Quartz is mapped using band ratio images
band 7:2. DPC analysis with band ratio images
6:2 is used to mapped montmorillonite. Illite
has a high spectral response on band 7 and a
low spectral response on band 2, the combina-
tion of ratio images 7: 2 is chosen. Chlorite is
best mapped with band ratio image 6:2 because
they have a high spectral response on band 6
and a low spectral response on band 2. To sep-
arate vegetation from chlorite, a combination of
band ratio image 5:3 is selected. Thus, chlo-
rite is mapped with band ratio images of 6:2
and 5:3. Epidote is mapped using a combina-
tion of band ratio image 6:7. Target minerals in
the selected PCA and DPC are characterized by
eigenvector loadings in “bold” (Table 7 and Ta-
ble 8).

4.2.3 Result of Sentinel-2 image

Sentinel-2 images have spectral similarity with
the Landsat-8 images, so we need to adjust
PC combinations of Landsat 8 to the Sentinel-
2 band wavelength. Kaolinite and montmo-
rillonite are mapped using a PC band 3-11-12.
The PC combination of band 3-8-12 is used to
map illite minerals. Clay alteration is mapped
using combinations of Sentinel-2 band 2-8-11-
12, while limonitic alteration is mapped using
a combination of Sentinel-2 band 2-4-8-11. Im-
age transformation using the DPC method was
performed to map the abundance of secondary
altered minerals. The first band ratio image
should highlight the target mineral, and the
second band ratio should contain information
about another object interfering with the target
mineral. The first band ratio contains mapped
mineral information, while the second band ra-
tio accommodates vegetation response. The re-
sults show that all DPC calculations have strong
similarities based on loadings value (both neg-
ative value) in DPC1 so that vegetation and tar-
get minerals cannot be differentiated. DPC2 has
opposite loadings value sign (positive and neg-
ative); thus, map zones containing target min-
erals (characterized by eigenvector loadings in
bold in Table 9 and Table 10).
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TABLE 5. Eigenvector loadings for ASTER PCA combination.

PC1 PC2 PC3 PC4 Alteration Minerals
Band 1 0.37 -0.12 0.92 0.10
Band 4 0.78 0.58 -0.24 0.01
Band 6 0.37 -0.57 -0.21 -0.70 Kaolinite
Band 7 0.35 -0.57 -0.22 0.71
Eigen values (%) 93.6 3.37 2.5 0.53
Band 1 -0.34 -0.20 0.92 0.004
Band 3 -0.84 0.51 -0.20 -0.003
Band 5 -0.29 -0.57 -0.23 -0.73 lite
Band 6 -0.32 -0.61 -0.25 0.68
Eigen values (%) 91.85 6.12 1.58 0.45
Band 1 0.5 0.35 -0.79 -0.001
Band 3 0.49 0.64 0.59 0.02
Band 5 0.51 -0.47 0.12 -0.71 Montmorillonite
Band 7 0.5 -0.49 0.10 0.7
Eigen values (%) 89.24 7.12 2.55 1.09
Band 1 0.51 0.24 0.78 -0.29
Band 3 0.49 0.64 -0.34 0.49
Band 4 0.51 -0.17 -0.53 -0.66 Clay alteration
Band 7 0.49 -0.71 0.08 0.49
Eigen values (%) 91.91 4.77 1.75 1.57
Band 1 0.51 0.24 0.76 -0.33
Band 3 0.49 0.64 -0.31 0.5
Band 4 0.51 -0.17 -0.56 -0.63 Limonitic alteration
Band 5 0.49 -0.71 0.11 0.49
Eigen values (%) 92.02 4.62 1.75 1.61

Journal of Applied Geology
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TABLE 6. Eigenvector loadings for ASTER DPC
combination.
DPC1 DPC2 Alteration
Minerals
Band 1 : Band 2 -0.69 -0.72
Band 6 : Band 2 -0.72 0.69 Quartz
Eigen values (%) 94.24 5.76
Band 1: Band 2 -0.45 -0.89 Montmoril-
Band 4 : Band 1 -0.89 0.45 lorcl)ite 0
Eigen values (%) 97.46 2.54
Band 3 : Band 1 094 -0.33
Band 6 : Band 1 0.33 0.94 Illite
Eigen values (%) 96.05 3.95
Band 3 : Band 1 -0.33 -0.94
Band 4 : Band 1 -0.94 0.33  Chlorite
Eigen values (%) 96.05 3.95
Band 3 : Band 1 -049 -0.87
Band4:Band 6  -0.87 0.49 Epidote
Eigen values (%) 83.25 16.75

4.3 Multispectral classification and accuracy
assessment

The maximum likelihood classification is per-
formed to map the hydrothermal alteration
zone based on PC images and sample data.
Alteration zones are identified as silicification,
argillic, and propylitic based on the mineral as-
semblies. Although three types of alteration
zones have been identified, only two can be
mapped in this study because of image spa-
tial resolution limitations. These units are,
respectively, the argillic and propylitic zones.
Carranza (2002) studied that the application
of DEM can improve the multispectral classi-
fication result. SRTM is then used together
with PC images to improve the classification
of hydrothermal alteration zones. DEM values
which lay from 32 m to 622 m, were stretched to
0-1 scale, similar to multispectral images range.

The best multispectral classification for hy-
drothermal alteration of ASTER image was
given by the PCA 1-4-6-7 with an overall ac-
curacy of 50.28% and kappa coefficient of 0.26
(indicated in “bold” in Table 11). The DEM in-
clusion in multispectral classification increased
the overall accuracy to 54.45 % and the kappa
coefficient to 0.32. Z-statistic value before and
after DEM includes the critical value of 2.58 at
the 99 % confidence level, which implies that
this classification is better than a random clas-
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sification. The pairwise comparison is used to
compares the error matrices, two at a time, to
determine if they are significantly different. It
is showed that these two matrices, before and
after the inclusive of DEM, are significantly
different. Notice that the pairwise comparison
value from eight out of ten PC combinations ex-
ceeds the critical value at 95 % confidence level
(the critical value would be 1.96), characterized
in italic bold in Table 11. The final hydrother-
mal alteration map from ASTER before DEM
and after DEM is displayed in Figure 4A-B.

The highest multispectral classification accu-
racy of the Landsat 8 image was shown by com-
bining band ratios of 5:2 and 6:7 with an over-
all accuracy of 56.64 %, kappa coefficient of
0.36, and Z-statistic value of 17.93 (indicated
in “bold” in Table 11). Z-statistic value (17.93)
exceeds the critical value at a 99% confidence
level, implying that this classification is better
than random classification. The combination of
DEM and multispectral images were succeeded
increase the overall accuracy to 59.5 %, with
a kappa coefficient of 0.4 and Z-statistic value
of 20.35 (indicated in “bold” in Table 11). Z-
values for the pairwise comparison test showed
that these two matrices (before and after DEM)
are not significantly different, characterized in
italic bold in Table 11. The pairwise calculation
shows that only two out of ten PC combinations
exceed the critical value at a 95 % confidence
level. Figure 4 C-D is the final hydrothermal
alteration zone generated from Landsat 8 DPC
images of band 5:2 and band 6:7 exclusive and
inclusive of DEM.

The best result of Sentinel-2 multispectral
classification for hydrothermal alteration was
given by combining band rations of 8:3 and 11:2
with an overall accuracy of 46.61 % and a kappa
coefficient of 0.21. DEM was succeeded increase
the overall accuracy to 49.37 % with a kappa co-
efficient of 0.25. Z-statistic value before (26.72)
and after (32.04) the inclusive of DEM exceeds
the critical value at the 99 % confidence level,
which implies that this classification is better
than a random classification. The pairwise com-
parison test showed that eight out of ten combi-
nations exceed the critical value at 95 % confi-
dence level, indicate that the matric before and
after DEM are significantly different (marked as
italic bold in Table 11). Comparison of classi-
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FIGURE 4. Hydrothermal classification map from ASTER PC 1-4-6-7 before DEM (A) and after DEM (B),
Landsat 8 DPC image ratios of 5:2 and 6:7 before DEM (C) and after DEM (D), and Sentinel-2 DPC image

ratios of 8:3 and 11:2 before DEM (E) and after DEM (F).
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TABLE 7. Eigenvector loadings for Landsat 8 PCA combination.

PC1 PC2 PC3 PC4 Alteration minerals
Band 3 0.29 0.84 0.46 -
Band 6 0.95 022 -0.20 ) Kaolinite + montmorillonite
Band 7 0.06 -0.50 0.86 -
Eigen values (%) 99.00% 1.00% 0.00% -
Band 3 0.59 0.57 0.58 -
Band 5 0.19 -0.79 0.58 - ite
Band 7 0.79 0.23 -0.57 -
Eigen values (%) 94.00% 5.00% 1.00% -
Band 2 0.50 0.48 0.51 0.51
Band 5 0.52 -0.8 -0.03 0.29
Band 6 0.70 0.27 -0.38 -0.54 Clay alteration
Band 7 -0.04 0.23 -0.77 0.60
Eigen values (%) 93.00% 5.00% 2.00% 0.00%
Band 2 0.50 0.51 0.48 0.51
Band 4 0.47 0.39 -0.78 -0.11
Band 5 0.56 -0.17 0.36 -0.72 Limonitic alteration
Band 6 0.46 -0.75 -0.16 0.45
Eigen values (%) 93.00% 5.00% 1.00% 0.00%

TABLE 8. Eigenvector loadings for Landsat 8 DPC
combination.

DPC1 DPC2  Alteration

minerals
Band 3 : Band 4 -0.423  -0.906
Band 7 : Band 2 -0.906 0423  Quartz
Eigen values (%) 97.00%  3.00%
Band 3 : Band 4 -0.227 -0.974 Montmo-
Band 6 : Band 2 -0.974 0.227 rillonite
Eigen values (%) 99.20%  0.80%
Band 5 : Band 3 -0.899  -0.437
Band 7 : Band 2 -0.437 0.899 Illite
Eigen values (%) 97.70%  2.30%
Band 5 : Band 3 -0.704 -0.71
Band 6 : Band 2 -0.71 0.704  Chlorite
Eigen values (%) 98.40%  1.60%
Band 5 : Band 2 -0.978  -0.207
Band 6:Band 7  -0.207 0.978 Epidote
Eigen values (%) 99.10%  0.90%

tied hydrothermal alteration zone derived from
Sentinel-2 DPC 8:3 and 11:2 before DEM and af-
ter DEM is shown in Figure 4E-F.

5 DISCUSSION

In this research, the results of hydrothermal al-
teration mapping with PCA and DPC were at
a moderate level. According to Figure 4, the
combination of DEM with multispectral images
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was succeeded in decreasing the argillic zones
and increasing propylitic and unaltered zones
in all classification images. The increasing value
of overall accuracy and KHAT statistic calcu-
lated from the multispectral classification result
is proven by the increasing value of overall ac-
curacy, exclusive and inclusive of DEM. How-
ever, the misclassification between argillic and
propylitic zones is the main issue that delivers
moderate agreement between two hydrother-
mal alteration maps. Three factors become crit-
ical that limit the generation of an acceptable
classification of hydrothermal alteration: veg-
etation cover, number of training and testing
samples, and spatial and spectral resolution of
the multispectral images.

Vegetation cover will obstruct the penetration
of satellite sensors to the ground and lead to
the low hydrothermal alteration accuracy map-
ping. The distribution of field observations in
the study area and the number of training and
testing samples support the results obtained
from remote sensing techniques for hydrother-
mal alteration mapping. Danoedoro (2015)
studied the relationship between a number and
sample distribution used for the multispectral
classification with overall accuracy. The min-
imum sample required for multispectral clas-
sification with 15 classes or less is 8n, where
n is the class number. Since only four classes
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TABLE 9. Eigenvector loadings for Sentinel-2 PCA combination.

PC1 PC2 PC3 PC4 Alteration Minerals
Band 3 0.26 0.86 0.45 -
Band 11 0.00 -0.47 0.89 - .. . .
Band 12 0.97 023 012 i Kaolinite and montmorillonite
Eigen values (%) 98.76 0.65 0.59 -
Band 3 0.18 0.94 0.28 -
Band 8 0.33 -0.33 0.89 - it
Band 12 0.93 -0.06 -0.37 - ¢
Eigen values (%) 96.08 3.71 0.21 -
Band 2 0.14 0.81 0.52 0.26
Band 8 0.13 -0.58 0.62 0.51
Band 11 -0.89 -0.01 0.38 -0.26 Clay alteration
Band 12 -0.42 0.11 -0.45 0.78
Eigen values (%) 94.26 5.49 0.19 0.06
Band 2 0.14 0.19 0.82 0.52
Band 4 0.16 0.36 -0.57 0.72
Band 8 -0.52 -0.72 -0.03 0.45 Limonitic alteration
Band 11 0.82 -0.56 -0.05 0.06
Eigen values (%) 94.82 4.70 0.45 0.03

TABLE 10. Eigenvector loadings for Sentinel-2 DPC
combination.

DPC1 DPC2 Alteration

Minerals
Band 3 : Band 4 -0.39  -0.92
Band 12 : Band 2 -0.92 0.39 Quartz
Eigen values (%)  96.99 3.01
Band 3 : Band 4 -0.21  -0.98 Montmo-
Band 11 : Band 2 -0.98 0.21 rillonite
Eigen values (%)  99.43 0.57
Band 8 : Band 3 -0.27  -0.96
Band 12 : Band 2 -0.96 0.27  Illite
Eigen values (%) 0.97 0.03
Band 8 : Band 3 -0.54 -0.84
Band 11 : Band 2 -0.84 0.54  Chlorite
Eigen values (%)  96.10  3.90
Band 8 : Band 2 -095 -0.30
Band 11: Band 12 -0.30  0.95 Epidote
Eigen values (%)  99.32 0.68

of hydrothermal alteration classification were
used, the minimum sample used should be 32
(8n = 8 x 4). This research met the require-
ment because it used 133 samples divided into
65 classification samples and 68 testing sam-
ples. However, more training and testing used
for classification will lead to more accurate hy-
drothermal alteration mapping. Another fac-
tor that becomes a very critical aspect is the
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spatial and spectral resolution of multispectral
data. ASTER has the best spectral resolution for
the SWIR band to detect minerals reflectance
consisting of six bands, while Sentinel-2 has
the best spatial resolution in the SWIR region.
However, in this research, the best hydrother-
mal alteration mapping accuracy was given by
the Landsat-8 image. This condition happens
because of the selection of input combinations
used for the PC process. This research compares
the same wavelength combination in three dif-
ferent multispectral images so that the advan-
tages of ASTER SWIR bands did not optimize
properly.

From the spatial resolution aspect, Sentinel-2
failed to map the hydrothermal alteration be-
cause of inadequate training and test sample
used for multispectral classification. The more
detail and high spatial resolution of the multi-
spectral images will lead to the more complex
and various objects (mixed objects) found in
a single training or testing area. In addition,
the last factor that is also important in find-
ing mineral prospects using remote sensing is
the knowledge of interpreters about the study
area. Knowing the location of hydrothermal al-
teration and its associated minerals in the field
will give more information to compare the clas-
sification result with the actual condition.

Journal of Applied Geology
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TABLE 11. Accuracy assessment of Landsat 8 multispectral classification.

N Before DEM After DEM Pairwise
Images Band combination
Accuracy (%) Kappa Z Accuracy (%) Kappa Z test
PCA 1-4-6-7 50.28 0.26 13.24 54.45 0.32 16.47 2.25
PCA 1-3-5-6 45.78 0.2 10.41 51.32 028  14.46 2.89
PCA 1-3-4-7 44.49 0.19 9.63 50.44 027 139 3.06
v PCA 1-3-4-5 45.05 0.19 9.98 49.64 026  13.21 2.33
E DPC b1/b2-b6/b2 44.57 0.19 9.75 49.08 0.25 12.7 218
2 DPC b3/b1-b6/bl 45.78 0.2 10.17 49.96 026 1317 3.01
DPC b3/b1-b4/b1 43.86 0.17 9.0 47.55 022 1137 2.16
DPC b3/b1-b4/b6 46.58 022  11.23 49.00 025 127 1.76
DPC b3/b2-b4/b6 45.94 021  10.81 50.36 027  13.52 1.11
DPC b2/b1-b3/bl 42.89 0.16 8.54 48.11 023  11.84 2.25
PCA 3-5-7 51.57 028  13.86 54.37 032  16.11 1.54
PCA 3-6-7 51.41 028  13.83 55.09 033  16.68 1.98
PCA 2-5-6-7 54.55 0.32 16.39 57.58 0.37 18.7 1.62
® PCA 2-4-5-6 52.61 029  14.88 57.34 037  18.49 2.52
jéa DPC b3/b4-b7/b2 54.63 033 165 57.10 036  18.53 1.37
= DPC b5/b3-b7 /b2 56.15 035 17.73 58.94 039  19.92 1.51
— DPC b5/b3-b6/b2 54.87 033  16.62 58.22 0.38  19.35 1.85
DPC b5/b2-b6/b7 56.64 0.36 17.93 59.50 04 20.35 1.61
DPC b5/b4-b6/b7 53.10 0.3 15.33 53.97 032 16.11 1.5
DPC b4/b2-b5/b4 55.67 034 17.21 58.62 039 19.72 1.67
PCA 3-11-12 45.53 0.18 23.05 46.17 0.2 25.15 1.32
PCA 3-8-12 44.50 0.17  21.05 46.38 0.2 25.34 2.89
PCA 2-8-11-12 46.44 0.2 24.65 46.79 021 2586 0.75
a PCA 2-4-8-11 46.89 0.2 25.22 48.65 023  29.02 2.58
g DPC b3/b4-b12/b2 40.33 011  13.98 43.14 016  16.32 3.69
E DPC b8/b3-b12/b2 44.55 017  21.89 46.32 0.2 21.08 2.35
B DPC b8/b3-b11/b2 46.61 0.21 26.72 49.37 0.25 32.04 3.74
DPC b8/b2-b11/b12 44.98 019 24.74 47.16 022  23.34 2.44
DPC b8/b4-b11/b12 44.21 018 238 46.87 022  23.08 2.89
DPC b4/b2-b8/b4 44.79 018 2256 46.89 021 2212 2.73
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6 CONCLUSION

In this work, ASTER, Landsat 8, and Sentinel-
2 were evaluated in hydrothermal alteration
mapping. Analysis of multispectral images,
ASTER, Landsat 8, and Sentinel-2 provide
promising findings. PC technique is a fast and
straightforward method to detect the abun-
dance of alteration minerals in the study area.
In the area of heavily vegetated terranes, DPC
works better than PCA in mapping mineral
images. This provides information that band
ratios can reduce the vegetation effect in dense
vegetation. From the comparison, it can be con-
cluded that in this research, Landsat 8 works
better than ASTER and Sentinel-2 in the hy-
drothermal alteration mapping. The combina-
tion of Landsat 8 images ratio of 5:2 and 6:7 suc-
ceed in mapping the hydrothermal alteration
with an accuracy of 56.64 % and a kappa coef-
ficient of 0.36. The DEM data were used and
applied to all multispectral images and succeed
in increasing the overall accuracy. However,
despite the multispectral classification result is
moderate level, this study provides informa-
tion about hydrothermal alteration mapping
accuracy that can be achieved using multispec-
tral images. This method needs to be improved
to increase accuracy, especially by developing a
new method that can highlight minerals in the
dense vegetation, i.e., vegetation suppression.
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