Alelopati dan Masa Depan Bioherbisida Berbasis Tumbuhan: Pengaruh Genetik dan Lingkungan – Sebuah Tinjauan
Hariy Laksamana(1*), Atika Suri(2), Indra Purnama(3)
(1) Universitas Lancang Kuning
(2) Universitas Lancang Kuning
(3) Universitas Lancang Kuning
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Anggrayni, D., Purnama, I., Saidi, N. B., Novianti, F., Baharum, N. A., Mutamima, A., Razali, N. A. S. B & Boukherroub, R. 2025. Antifungal and phytotoxicity of wood vinegar from biomass waste against Fusarium oxysporum f. sp. cubense TR4 infecting banana plants. Discover Food, 5(1): 98. https://doi.org/10.1007/s44187-025-00377-8.
Anwar, T., Qureshib, H., Parveenc, N., Bashirc, R., Qaisard, U., Munazire, M., Yasmine, S., Basitf, Z., Mahmoodg, R.T., Nayyarh, B.G., Khani, S., Khanj, S.A., Qureshik M.M., Walii, M. 2020. Evaluation of bioherbicidal potential of Carica papaya leaves. Brazilian Journal of Biology. 80(3): 565-573. https://doi.org/10.1590/1519-6984.216359.
Alizadeh, Z., Motafakkerazad, R., Lisar, S.Y.S., & Zarrini, G., 2023. Evaluation of the allelopathic effect of wheat and redroot pigweed on growth indices and antioxidant system activity in intercropping. Journal of Plant Protection Research, 63(1): 97-112. https://doi.org/10.24425/jppr.2023.144508.
Arsa, A.J.W., Chozin, M.A., & Lontoh, A.P., 2020. Peningkatan Keefektifan Bioherbisida Berbahan Dasar Umbi Teki dengan Surfaktan dalam Menekan Perkecambahan. Jurnal Agronomi Indonesia, 48(1): 97-103. https://doi.org/10.24831/jai.v48i1.29209
Bari, I.N., Noguchi, H.K., Iwasaki, A., & Suenaga, K., 2019. Allelopathic Potency and an Active Substance from Anredera cordifolia (Tenore) Steenis. Plants, 8(134). https://doi.org/10.3390/ plants8050134.
Choopayak, C., Aranyakanon, K., Prompakdee, N., Nangngam, P., Kongbangkerd, A., & Ratanasut, K., 2022. Effects of Piper betle L. Extract and Allelochemical Eugenol on Rice and Associated Weeds Germination and Seedling Growth. Plants, 11(3384). https://doi.org/10.3390/plants11233384.
Erida, G., Saidi, N., Hasanuddin, & Syafruddin, 2019. Allelopathic Screening of Several Weed Species as Potential Bioherbicides. IOP Conference Series: Earth and Environmental Science, 334(012034). https://doi.org/10.1088/1755-1315/334/1/012034.
Ferraz, R.L.S., Costa, P.S., Dias, G.F., Silva, J.R., Viégas, P.R.A., Medeiros, A.S., Neto, J.D., & Melo, A.S., 2023. Allelopathy of Ricinus communis and Light Spectrum Variation Decrease Emergence and Growth of Cyperus rotundus. Bioscience Journal, 39(e39023).https://doi.org/10.14393/BJ-v39n0a2023-63062.
García-Romeral, J., Castanera, R., Casacuberta, J. Domingo, C. 2024. Deciphering the Genetic Basis of Allelopathy in japonica Rice Cultivated in Temperate Regions Using a Genome-Wide Association Study. Rice. 17(22). https://doi.org/10.1186/s12284-024-00701-3
Gaofeng, X., Shicai, S., Fudou, Z., Yun, Z., Hisashi, K.N., David, R.C. 2018. Relationship Between Allelopathic Effects and Functional Traits of Different Allelopathic Potential Rice Accessions at Different Growth Stages. Rice Science, 25(1): 32-41. http://dx.doi.org/10.1016/j.rsci.2017.09.001.
Hafsah, S., Hasanuddin, Erida, G., & Nura, 2020. Efek Alelopati Teki (Cyperus rotundus) Terhadap Pertumbuhan Tanaman Selada (Lactuca sativa). Jurnal Agrista, 24(1). https://doi.org/10.17969/agrista.v24i1.18843.
Ismaini, L., 2015. Pengaruh alelopati tumbuhan invasif (Clidemia hirta) terhadap germinasi biji tumbuhan asli (Impatiens platypetala). PROS SEM NAS MASY BIODIV INDON, 1(4): 834-837. https://doi.org/10.13057/psnmbi/m010429.
Kato-Noguchi, H. 2023. Defensive Molecules Momilactones A and B: Function, Biosynthesis, Induction and Occurrence. Toxins, 15(241). https://doi.org/10.3390/toxins150 40241
Khamare, Y., Chen, J., Marble, S.C. 2022 Allelopathy and its application as a weed management tool: A review. Front. Plant Sci. 13:1034649. https://doi.org/10.3389/ fpls.2022. 1034649.
Kim, Y., Son, J., Lee, Y.S., Wee, J., Lee, M., & Cho, K., 2020. Temperature-Dependent Competitive Advantages of an Allelopathic Alga Over Nonallelopathic Alga Are Altered by Pollutants and Initial Algal Abundance Levels. Scientific Reports, 10(4419). https://doi.org/10.1038/s41598-020-61438-9.
Kumar, N., Singh, H., Giri, K., Kumar, A., Joshi, A., Yadav, S., Singh, R., Bisht, S., Kumari, R., Jeena, N., Khairakpam, R., Mishra, G. 2024. Physiological and molecular insights into the allelopathic effects on agroecosystems under changing environmental conditions. Physiol Mol Biol Plants, 30(3): 417-433. https://doi.org/10.1007/s12298-024-01440-x.
Krumsri, R., Iwasaki, A., Suenaga, K., & Kato-Noguchi, H., 2022. Assessment of Allelopathic Potential of Senna garrettiana Leaves and Identification of Potent Phytotoxic Substances. Agronomy, 12(139). https://doi.org/10.3390/agronomy12010139.
Li, J., Lin, S., Zhang, Q., Zhang, Q., Hu, W., & He, H., 2019. Fine-Root Traits of Allelopathic Rice at the Seedling Stage and Their Relationship with Allelopathic Potential. PeerJ, 7(e7006). http://doi.org/10.7717/peerj.7006.
Li, J.Y., Lin, S.X., Ma, H.Y., Wang, Y.P., He, H.B., & Fang, C.X., 2022. Spatial-Temporal Distribution of Allelopathic Rice Roots in Paddy Soil and Its Impact on Weed-Suppressive Activity at the Seedling Stages. Frontiers in Plant Science, 13(940218). https://doi.org/10.3389/fpls.2022.940218.
Oksari, A.A., Wanda, I.F., & Wardhani, G.A.P.K., 2021. Alelopati Tumbuhan Invasif Dioscorea bulbifera L. dan Pengaruhnya Terhadap Perkecambahan Biji Shorea selanica (Lam.) Blume. AL-KAUNIYAH: Jurnal Biologi, 14(1): 101-114. http://dx.doi.org/10. 15408/kauniyah.v14i1.16160.
Otmani, R., Khene, B., Kemassi, A., Araba, F., Benaceur, F., & Houyou, Z., 2022. Phytochemical Screening, Allelopathic and Bioherbicidal Potentialities of Euphorbia guyoniana Boiss. and Reut. Leaf Extract. Al-Qadisiyah Journal for Agriculture Sciences (QJAS), 12(2): 26-34. https://doi.org/10.33794/qjas.2022.134311.1053.
Pannacci, E., Masi, M., Farneselli, M., & Tei, F., 2020. Evaluation of Mugwort (Artemisia vulgaris L.) Aqueous Extract as a Potential Bioherbicide to Control Amaranthus retroflexus L. in Maize. Agriculture, 10(642). https://doi.org/10.3390/agriculture1012 0642.
Pérez, J.A.G., Gámiz, B., & Celis, R., 2022. Granulated Organoclay as a Sorbent to Protect the Allelochemical Scopoletin from Rapid Biodegradation in Soil. Environmental Technology & Innovation, 28(102707). https://doi.org/10.1016/j.eti.2022.102707.
Popolizio, S., Fracchiolla, M., Leoni, B., Cazzato, E., Camposeo, S., 2022. Phytotoxic Effects of Retentates Extracted from Olive Mill Wastewater Suggest a Path for Bioherbicide Development. Agronomy, 12(1378). https://doi.org/10.3390/agronomy12061378.
Purnama, I., Swebocki, T., Ihsan, F., Mutamima, A., Boukherroub, R., Mechouche, M. S., & Fadilaturahmah, F. 2024a. Evaluation of Four Indonesian Leaf Extracts for Their Antimicrobial Activity against Staphylococcus aureus (MRSA) & Escherichia coli (K-12). In E3S Web of Conferences (Vol. 593, p. 05001). EDP Sciences. https://doi.org/ 10.1051/e3sconf/202459305001.
Purnama, I., Lestari, S. D., Lidar, S., Mutamima, A., Suri, A., Nelvia, N., & Malhat, F. M. 2024b. Effectiveness of wood vinegar from torrefied coconut shells as an eco-friendly pesticide against fall armyworm (Spodoptera frugiperda JE Smith). In E3S web of conferences (Vol. 593, p. 03004). EDP Sciences.https://doi.org/10.1051/e3sconf/202459303004.
Purnama, I., Malhat, F., Mutamima, A., Nelvia, N., & Amalia, A. 2025. Multiple Pesticide Residues in Rice and Chlorpyrifos Persistence in Peat Soils. Sustainable Chemistry One World, 100080. https://doi.org/10.1016/j.scowo.2025.100080
Robles, J.H.S., Enríquez, C.F.L., Reyes, A.G., Requena, M.C., González, L.J., Martínez, T.K., Valdés, J.A., & Morales, M.A., 2023. Initial Study of Fungal Bioconversion of Guishe (Agave lechuguilla Residue) Juice for Bioherbicide Activity on Model Seeds. Fermentation, 9(421): 2-14. https://doi.org/10.3390/fermentation9050421.
Scavo, A., Restuccia, A., Pandino, G., Onofri, A., & Mauromicale, G., 2018. Allelopathic Effects of Cynara cardunculus L. Leaf Aqueous Extracts on Seed Germination of Some Mediterranean Weed Species. Italian Journal of Agronomy, 13(1021): 119-125. https://doi.org/10.4081/ija.2018.1021.
Shehzad, T., Okuno, K. 2020. Genetic analysis of QTLs controlling allelopathic characteristics in sorghum. PLoS One, 15(7):e0235896.https://doi.org/10.1371/journal.pone.0235896.
Shrestha, S., Sharma, G., Stallworth, S., Redona, E.D., & Tseng, T.M., 2022. Exploring the Genetic Diversity among Weedy Rice Accessions Differing in Herbicide Tolerance and Allelopathic Potential. Diversity, 14(44). https://doi.org/10.3390/d14010044.
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Hariy Laksamana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
VEGETALIKA journal indexed by:
_(5).png)