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Abstract

Linear response theory in quantum theory with its linear response function and its quantization process has
been formulated. The relation between the linear response function with its generalized susceptibility, its
symmetry properties, and its analyticity has been studied. These properties produce the dispersion relation or
Kramers-Kronig relation. The explicit form of the quantum response function and generalized susceptibility also
been reviewed. Applications of linear response functions have been described for three elementary processes. The
process discussed is the magnetic field disturbance in the magnetic system that generates magnetic susceptibility,
and the electric field disturbance in the electrical system that generates electrical conductivity tensor and the
ferromagnet Heisenberg that generates its generalized susceptibility.
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1 Introduction
Response functions describe the response of a material
due to the external field. The external field can be in
the form of an electric field and a magnetic field or
others. An example of a response function that is well
known is the susceptibility of matter, both due to the
electric field or magnetic field. Electric susceptibility of
an object illustrates the ease of object to be polarized
in response to an electric field applied to it. Similar to
the electric susceptibility, magnetic susceptibility is a
measure of the ease of objects affected by the external
magnetic field, and the influence of external fields
generate magnetic dipole moment per unit volume in
the field.

Electric susceptibility gives an overview of the
electric polarization, and magnetic susceptibility
objects give an idea of the formation of the magnetic
dipole moment. Both describe the response of objects
on the external field (either electric or magnetic)
applied to the objects. The response of the material
due to the external field determines the properties
of objects that are very important to know. As an
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example, in the material that has a positive magnetic
susceptibility (called paramagnetic material), the
magnetic field inside the material will be gained by
the magnetic dipole moment formed by an external
magnetic field. On objects with negative susceptibility
(called diamagnetic material), the reverse process
occurs. The magnetic field inside the material will be
weakened. This weakening is caused by the formation
of magnetic dipole moments in the opposite direction
of the external magnetic field.

Generally, the response function can provide an
overview of the properties of the considered material.
Therefore, knowledge about the response function
is becoming essential in science and technology.
Previously, research on the formulation of the response
function is using the classical theory, without the use
of quantum theory. As a result, the validity of the
formulation of response function has a limited scope,
only in classical cases. These limitations, for instance,
are for materials in large quantities and large size only.
Therefore, the formulation of response functions using
quantum theory is needed to support the development
of science and technology began to spread to those
quantum cases. Thus, in this study will be redefined
response function in quantum theory, along with its
application to some elementary processes.
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The linear response function of a system due
to external stimuli is associated with a Green’s
function, as stated by Rickayzen (1980)[1] and
Cottam-Tiley (1989)[2]. In the Green’s function was
found that the correlation function has a dominant
role. It can be said that the Green’s function is a
generalization that is appropriate for the concept of
correlation functions. The correlation function is a
function of the distribution in statistical mechanics,
which describes the relationship between the two
operators[3]. Therefore, the response function of the
system can be determined if the correlation function
can be determined.

The formulation of the linear response function
involves the Green’s function, and the correlation
function is given the prominence of the method that
is easy and simple, even though for many-particle
systems. Green’s function contains complete and
sufficient information about the many-particle
systems. Calculations involving correlation function
involving the boundary conditions can be facilitated
using the spectral theorem[3].

Some essential applications of the linear response
theory include the formulation of a common
susceptibility to the quantum system, as has been
stated by Jensen-Mackintosh (1991)[4] in his book
on rare earth magnetism. In the same book,
Jensen-Mackintosh also gives another example that
is applied to Heisenberg ferromagnet. Another vital
application is the study of spin waves in objects
antiferromagnet and ferrimagnet[5]. We also discuss
other applications of the theory of linear function in
magnetic susceptibility, electrical conductivity[3], and
linear response in the Heisenberg ferromagnet.

2 Basic Definition and Properties Of
Linear Response Function

In general, a physical system will respond if stimulus
or interference is given. The higher the stimulus is
given, the system response is higher. This is called
a linear response. Most physical systems fall into
this category, although this applies only to relatively
small disturbances. If the given interference is large
enough, the response produced by the system is no
longer linear. The response also depends on the time
behavior of the stimuli. For example, if the stimulus is
in the form of an oscillating voltage (AC voltage), then
the system’s response will be different when compared
to systems stimulated with DC voltage. The response
system will depend on the time dependency of the
stimulus, which in general is an arbitrary function
of time. This problem will be more easily analyzed
if the initial stimulus is broken down according to
its frequency components using Fourier transform in

Fourier analysis. Each component of this stimulus will
be sought for the response. Then these responses are
summed (superposition principle applies considering
linear response). This is the basis of reasoning that
will be used.

Consider the system response is written as R(t), and
stimulation or ”forces” as f(t) which is given to the
system. The assumptions are used:

1 The system will start to respond if the stimulus
started. In this case, causality applied. Responses
should not precede stimulation.

2 The response is linear, so it applies the principle
of superposition.

The general relationship between responses at time t
to the stimuli f(t′) which is working from time t = −∞
to t is in the form of a superposition of f(t′)

R(t) =

∫ t

−∞
φ(t, t′)f(t′)dt′ (1)

with φ(t, t′) is the response per unit stimulus that is
called as response function. Equation (1) shows that
the response at time t can only be caused by previous
stimulation. Therefore, this response is called a causal
response. Stimulation at a time greater than t, will not
give any influence to the current response R(t).

A change needs to be made to our equation,
considering the response does not depend on absolute
time, but only depends on the time difference between
the stimulus and the response measurements, so
φ(t, t′) = φ(t− t; ) and

R(t) =

∫ t

−∞
φ(t− t′)f(t′)dt′ (2)

The form of the response function φ(t−t′) will conform
with the stimulus and the response. If they are scalar,
then the response function is a scalar function. If they
are vectors, then the response function is a 2-degree
tensor. In general, if the stimulus and the response
is an n-degree tensor, then the response function is a
2n-degree tensor.

Response function should behave as a decaying
function with time. If the new force just worked,
then the response was great, at a later time after
the force worked, the response will be decreased and
became more stable. A response function can oscillate,
or at some time have negative value, as long as the
function shape is progressively decayed towards zero
or a specific value. Clearly, a response function also
should not increase over time if no more force applied.
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2.1 Generalized Susceptibility

The response equation in Eq. (2) can be transform to
frequancy domain using standard Fourier transform

∫ ∞
−∞

eiωtR̄(ω)dω =

∫ t

−∞
φ(t−t′)

∫ ∞
−∞

eiωt
′
f̄(ω)dωdt′

(3)

Then by changing the order of integration and
introducing τ = t− t′ we get

R̃(ω) =

 ∞∫
0

eiωτφ(τ)dτ

 f̃(ω), ∀ ω ∈ < (4)

with < is set of real number and by defining

R̃(ω) ≡ χ(ω)f̃(ω), ∀ ω ∈ < (5)

This χ(ω) is called as generalized susceptibility.
This term is analogous with electric or magnetic
susceptibility, which is a measure of the response of
a material in an external field.

2.2 The Symmetry and Analytic Properties of
Generalized Susceptibility

This is the equation that relates generalized
susceptibility to its response function:

χ(ω) =

∞∫
0

eiωτφ(τ)dτ with τ ≥ 0. (6)

This equation is also called the Fourier-Laplace
transform of the response function. Function φ(τ) is
a real function, so in general χ(ω) is a complex-valued
function. The equation above can be seen that

Re χ(−ω) = Re χ(ω), and (7)

Im χ(−ω) = −Im χ(ω) (8)

for real ω. This shows that generalized susceptibility
is symmetric.

The function χ(ω) is an analytic function in the
upper half-plane of the complex plane, as well as the
real line (based on the initial assumption). Thus, for
any closed loop in the upper half-plane ω, the integral
contour obey∮

C

χ(ω)dω = 0 (Cauchy’s Integral Theorem). (9)

2.3 The Dispersion Relation
Analytic properties of χ(ω) permit the formulation
χ(ω′)(with ω′ is a real physical value) that can be
expressed in another real number ω, and this is called
as a dispersion relation. We start by defining

f(ω′) =
χ(ω′)

ω′ − ω
(10)

The equation has a simple pole on the real axis in
ω-plane.

Gambar 1: Contour integration on ω-plane.

The function in Eq. (10) have contour shape of the as
shown in Fig. 1, and by applying the Cauchy Integral
theorem, then we have

χ(ω) =
P

iπ

∫ ∞
−∞

χ(ω′)dω′

ω′ − ω
=
−iP
π

∫ ∞
−∞

χ(ω′)dω′

ω′ − ω
(11)

which is an integration of all real ω′ from minus infinity
towards infinity. If the real and imaginary components
are separated, it become

Re χ(ω) =
P

π

∫ ∞
−∞

Im χ(ω′)dω′

ω′ − ω
(12)

and

Im χ(ω) = −P
π

∫ ∞
−∞

Re χ(ω′)dω′

ω′ − ω
. (13)

This form of both equations is called a Hilbert
transform pair.

Equation (12) can be rewritten into

Re χ(ω) =
2P

π

∫ ∞
0

dω′ ω′ Im χ(ω′)

ω′2 − ω2
. (14)

Equation (13) can be written in a similar way

Im χ(ω) = −2Pω

π

∫ ∞
0

dω′ Re χ(ω′)

ω′2 − ω2
. (15)
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Both of equations is called dispersion relation or also
called Kramers-Kronig relation.

2.4 Changing from Classical Linear Response Theory
toward Quantum Mechanics

Changing from the classical to the quantum theory
can begin by reviewing a classical system and its
response function, followed by the first quantization
to obtain quantum theory. This discussion refers to
Kubo (1957)[6].

In a closed system, the system Hamiltonian is
written as H. Dynamical motion of a system
determined by H is called a natural motion. Consider
an external force imposed on the system. Its energy
can represent the impact of this perturbation,

H′(t) = −AF (t). (16)

In this discussion, the perturbation is limited to a
weak force only. The response system will be sought
at the linear rate approach. System response is in the
changes the physical quantities ∆B(t) from its original
B. Next, ∆B(t) will be stated in terms of the natural
motion of the system.

At first, consider the classical mechanics perspective.
Suppose the system is in a statistical ensemble
represented by the distribution function f(p, q) in
phase space. The equations of motion describe the
natural motion of the system is

∂f

∂t
= −

∑(
∂f

∂q

∂H
∂p
− ∂f

∂p

∂H
∂q

)
= (H, f) (17)

with p and q is the set of canonical momentum
and canonical coordinate, while the parenthesis is the
Poisson bracket

(A,B) =
∑(

∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q

)
. (18)

Assume the distribution function is f at t = −∞.
Suppose that system is in a state of equilibrium, so
(H, f) = 0. Then disturbance in Eq. (16) is given to the
system adiabatically at t = −∞(with F (t = −∞) =
0). The distribution function satisfies

∂f ′(t)

∂t
= (H, f ′) + (H′(t), f). (19)

a linear approach causes

f ′(t) = f + ∆f

which can replace (19) with

∂∆f

∂t
= (H,∆f)− F (t)(A, f). (20)

The solution is

∆f(t) = −
∫ t

−∞
ei(t−t

′)L(A, f)F (t′)dt′, (21)

where the operator L is defined as an operation

iLg ≡ (H, g). (22)

So the change in ∆B(t) to a dynamic quantity B is
given statistically by

∆B(t) =

∫
∆f(t) ·B(p, q)dΓ

= −
∫
dΓ

∫ t

−∞

{
ei(t−t

′)L(A, f)
}
· F (t′)B(dt′)

= −
∫
dΓ

∫ t

−∞
(A, f)B(t− t′)F (t′)dt′

(23)

where dΓ is the volume element in the phase space[7].
The last equation is obtained from the second equation
by remembering that the transformation of eiLt is a
natural motion that conserves the size of the phase
space and B(t) is the dynamic motion of the phase
function B(p, q) that satisfies the equation

Ḃ(p, q) = (B,H).

The above equation is related to the Heisenberg
equation of motion in quantum mechanics. The
equation (23) means that the response ∆B(t) is a
superposition of the impact of the stimulus F (t′)dt′,
for −∞ < t′ < t. The response for each stimulus unit
is referred to as response function or after-effect
function φBA(t). The form of this response function
can be known from Equation (23)

φAB(t) = −
∫
dΓ(A, f)B(t) (24)

which explains the response of ∆B when t after the
stimulus is given. The response ∆B(t) to the equation
(23) is written as

∆B(t) =

∫ t

−∞
φAB(t− t′)F (t′)dt′. (25)

The above review applies even to the very sharp
initial distribution, as long as the disturbance is
quite small. Applied response functions are needed
for macro-scale systems, which in these cases, the
statistical average requires real meaning. If Â and
B̂ are both macro-scale quantities, then the average
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ensemble ∆B̂(t) can be observed. It is because a
macro-scale system can be considered to consist of
smaller systems so that the observed value of ∆B̂ is
the number of components, and the change is relatively
minimal.

The change to quantum mechanics can also be
done, based on the classic formulation above. The
distribution function in the classical phase space is
then replaced by the ρ density operator matrix.
The original ensemble that statistically represents the
initial state of the system is determined by this density
operator and satisfies [Ĥ, ρ] = 0, while the ensemble
dynamic is affected by interference (16 ) is represented
by ρ′(t), which satisfies the equation

d

dt
ρ′(t) =

1

i~
[Ĥ+ Ĥ′(t), ρ′(t)]. (26)

The initial conditions are

ρ′(−∞) = ρ

and ρ′(t) are listed as

ρ′(t) = ρ+ ∆ρ(t).

The same steps as (20) direct the results to

∆ρ(t) = − 1

i~

∫ t

−∞
e−i(t−t

′)Ĥ/~[Â, ρ]ei(t−t
′)Ĥ/~F (t′)dt′.

(27)

Then, ease of work can be obtained by introducing the
a× operator that works on other operators b with the
following definition

a×b = [a, b], (28)

which from the definition applies

ea
×
b = eabe−a (29)

Equations (26) and (27) can be written with this new
notation to

d

dt
ρ′(t) =

1

i~
(Ĥ× + Ĥ′(t)×)ρ′(t) (30)

∆ρ(t) = − 1

i~

∫ t

−∞
e−i(t−t

′)Ĥ×/~[Â, ρ]F (t′)dt′. (31)

This form will later show clearly the similarity between
(21) and (27).

The response ∆B̂(t) to the amount of B̂ statistically
is

∆B̂(t) = Tr ∆ρ(t)B̂

= − 1

i~
Tr

∫ t

−∞
e−i(t−t

′)Ĥ/~[Â, ρ]×

ei(t−t
′)Ĥ/~B̂F (t′)dt′

= − 1

i~
Tr

∫ t

−∞
[Â, ρ]B̂(t− t′)F (t′)dt′ (32)

where B̂(t) is the Heisenberg representation for the B̂
operator that satisfies the equation

dB̂(t)

dt
=

1

i~
[B̂(t), Ĥ], B̂(0) = B̂. (33)

The equation (32) is a quantum mechanical version of
(23).

So, the response function is

φBA(t) =
1

i~
Tr[Â, ρ]B̂(t) (34)

or can be written (because of the trace invariance
nature) as

φBA(t) =
1

i~
Tr[Â, ρ]B̂(t) (35)

which is the quantum mechanical version of Equation
(24). The General susceptibility (according to the
equation (6)) is

χBA(ω) =

∫ ∞
0

e−iωt
(

1

i~
Tr[ρ, Â]B̂(t)

)
dt. (36)

2.5 Linear Responses in Quantum Theory
A response function for the macroscopic order
associates the physical changes in the ensemble means
of the physical observables 〈B(t)〉 with an external
force f(t). The application of linear response theory
is limited to cases where 〈B(t)〉 changes linearly with
force. Therefore assume that f(t) is weak enough to
ensure that the response is linear. Assume that the
system is in thermal equilibrium before the external
forces work.

In the thermal balanced state, the system is
characterized by a density operator

ρ0 =
1

Z
e−βĤ0 ; Z = Tr e−βĤ0 , (37)

where Ĥ0 is Hamiltonan (effective), Z is a large
canonical ensemble partition function, and β =
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q/kBT . The review is only in the linear part of the
response, so it can be considered a form of f(t) which
results in a linear time-time disorder in the total
Hamiltonian Ĥ is:

Ĥ1 = −Âf(t) ; Ĥ = Ĥ0 + Ĥ1, (38)

where Â is a fixed operator. As a result, the operator
density ρ(t) becomes a time-catcher, and so does the
ensemble average of the operator B̂:

〈B̂(t)〉 = Tr{ρ(t)B̂}. (39)

Linear response (as in Eq. (2)) is

〈B̂(t)〉 − 〈B̂〉 =

t∫
−∞

dt′ φBA(t− t′)f(t′), (40)

with 〈B̂〉 = 〈B̂(t = −∞)〉 = Tr{ρ0B̂}, f(t) considered
vanishing on t → ∞. The nature of this equation is
the same as the equation (2).

The general susceptibility (after undergoing the
Fourier transform in the equation (40)) can be
expressed as

χBA(z) =
1

2π

∫ ∞
0

φBA(t)eiztdt. (41)

where z = z1 + iz2 is a complex variable. If∫∞
0
|φBA|e−εtdt is considered to be finite (finite) at

the ε→ 0+ limit, the opposite relationship is

φBA(t) =

∫ ∞+iε

−∞+iε

χBA(z)e−iztdz; ε > 0. (42)

This equation shows that χBA(z) is an analytic
function in the upper half of the complex plane z.

The changes of the system can be uniquely
determined by ρ0 = ρ(−∞) and f(t), provided the
external interference is given slowly or adiabatically.
This can be done by replacing f(t′) in (40) with
f(t′)eεt

′
, ε > 0. This style disappears at t′ → −∞,

and additional unwanted effects can be removed by
taking the ε → 0+ limit. So, in terms of this ’general’
Fourier transformation

〈B̂(ω)〉 = lim
ε→0+

1

2π

∫ ∞
−∞

(
〈B̂(t)〉 − 〈B̂〉

)
eiωte−εtdt,

(43)

equation (40) transforms into

〈B̂(ω)〉 = χBA(ω)f(ω), (44)

where χBA(ω) is the boundary condition for the
analytic function χBA(z) on the real axis:

χBA(ω) = lim
ε→0+

χBA(z = ω + iε). (45)

This is the general susceptibility[4].

2.6 Quantum Response Function
The equation for the response function in terms of
operator B̂ and Â, and unperturbed Hamiltonian Ĥ0,
is

〈B̂(t)〉 − 〈B̂〉 = Tr{(ρ(t)− ρ0)B̂}

=
i

~
Tr

{∫ t

−∞
[Â0(t′ − t), ρ0]B̂f(t′) dt′

}
and by using the invariance on track experiencing
cyclic permutation, then obtained the low-order terms

〈B̂(t)〉 − 〈B̂〉 =
i

~

∫ t

−∞
Tr{ρ0[B̂, Â0(t′ − t)]}f(t′)dt′

=
i

~

∫ t

−∞
〈[B̂0(t), Â0(t′)]〉0f(t′)dt′

(46)

analogous with response function defition, which
produce

φBA(t− t′) =
i

~
θ(t− t′)〈[B̂(t), Â(t′)]〉, (47)

with a unit step function are introduced, namely for
and for t = 0. This equation, which is expressed in
microscopic quantity, called the Kubo formula for the
response function[8].

2.7 Quantum Green Function
The Green function is defined as:

GBA(t− t′) ≡ 〈〈B̂(t); Â(t′)〉〉

≡ − i
~
θ(t− t′)〈[B̂(t), Â(t′)]〉

= −φBA(t− t′). (48)

This Green function is also called double-time
Green function or retarded Green function,
which is the previous response function, but with the
opposite sign. Laplace transform of the function using
(41), is

GBA(ω) ≡ 〈〈B̂; Â〉〉ω = lim
ε→0+

GBA(z = ω + iε)

= lim
ε→0+

GBA(t)ei(ω+iε)tdt = −χBA(ω).

(49)
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If Â and B̂ are dimensionless operators, then GBA(ω)
or χBA(ω) has the inverse dimension of energy .

At t′ = 0, the derivative of the Green function above
to t is

d

dt
GBA(t) =− i

~

(
δ(t)〈[B̂(t), Â]〉+

θ(t)〈[dB̂(t)/s, Â]〉
)

=− i

~

(
δ(t)〈[B̂, Â]〉−

i

~
θ(t)〈[[B̂(t), Ĥ], Â]〉

)
. (50)

The Fourier transform of the above equation into the
Green function motion equation:

~ω〈〈B̂; Â〉〉ω − 〈〈[B̂, Ĥ]; Â〉〉ω = 〈[B̂, Â]〉. (51)

The ω labels indicate the Fourier transform (49),
and ~ω is short for ~(ω + iε) with ε → 0+.
In many applications, Â and B̂ are the same
Hermitian operator, so the right side of the equation
(51) above disappears, and the equation can be
derived a second time. Because 〈[[[Â(t), Ĥ], Ĥ], Â]〉
equals −〈[[Â(t), Ĥ], Â]〉, Green equation of motion for
〈〈[Â, Ĥ]; Â〉〉ω to be

(~ω)2〈〈Â; Â〉〉ω + 〈〈[Â, Ĥ]; [Â, Ĥ]〉〉ω = 〈[[Â, Ĥ], Â]〉.
(52)

The pair of equations (51) and (52) will underlie the
applied linear response theory.

In accordance with the understanding about the
response function KBA(t),

KBA(t) =
i

~
〈[B̂(t), Â]〉 =

i

~
〈[B̂, Â(−t)]〉 (53)

and KBA(z) = 2iχ′′BA(z) we get

KBA(ω) = 2iχ′′BA(ω) = −2iG′′BA(ω). (54)

This equation can be written down

2i

∫ ∞
−∞

χ′′BA(ω)e−iωtdω =
i

~
〈[B̂(t), Â]〉 (55)

and by selecting t = 0, we will get the following
addition rule

2~
∫ ∞
−∞

χ′′BA(ω)dω = 〈[B̂, Â]〉, (56)

The Green function in (51) must meet these
summation rules, and the thermal equalization of (51)

and (56) must be the same. The equation (56) is only
the first term of this whole series of addition rules.

The n-time derivative of B̂(t) can be written as

dn

dtn
B̂(t) =

(
i

~

)n
LnB̂(t) with LB̂(t) ≡ [Ĥ, B̂(t)].

(57)

A n derivative on both sides of the equation (55)
results

i

π

∫ ∞
−∞

(−iω)nχ′′BA(ω)e−iωtdω =

(
i

~

)n+1

〈[LnB̂(t), Â]〉.

(58)

Then the normalized ”spectral weight function” was
introduced

FBA(ω) =
1

χ′BA(0)

1

π

χ′′BA(ω)

ω
,

∫ ∞
−∞

FBA(ω)dω = 1.

(59)

The FBA(ω) normalization is the result of the
Kramers-Kronig relationship. The n-order of ω of the
FBA(ω) spectral weight function, is defined

〈ωn〉BA =

∫ ∞
−∞

ωnFBA(ω)dω. (60)

which permits a link between the n-derivative at t = 0
is written

χ′BA(ω)〈(~ω)n+1〉BA = (−1)n〈[LnB̂, Â]〉. (61)

This is an addition rule that associates spectral
frequencies with thermal expectation values of
operators obtained from B̂, Â, and Ĥ. If B̂ = Â = Â†,
then FBA(ω) is an even function in ω, and all the odd
parts are gone. In this case, the even part is

χ′AA(0)〈(~ω)2n〉AA = −〈[L2n−1Â, Â]〉. (62)

2.8 Relaxation Function
This section will discuss the behavior of the φBA(t)
response function in the t → ∞ approach. It can go
to a certain value or it can not. If it goes to a certain
value, then according to Kubo (1957)[6], it must fulfill

lim
t→∞

φBA(t) = 0 (if there is a limit). (63)

If the application of continuous interruption (f is
constant) from t = −∞ to t = 0 is stopped at t = 0,
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then the ∆B response will stretch according to the
following equation

∆B(t) =

∫ 0

−∞
φBA(t− t′)fdt′

= f

∫ ∞
t

φBA(t′)dt′, t > 0. (64)

So functions can be defined

ΦBA(t) = lim
ε→0+

∫ ∞
t

φBA(t′)e−εt
′
dt′ (65)

which is called relaxation function. This function
explains the relaxation of ∆B after the outside has
been removed.

Theorem and form of this relaxation function,
according to Kubo (1957)[6] is: The χBA(ω)
acceptability can be calculated using the following
formula:

χBA(ω) = lim
ε→0+

∫ max

min

φBA(t)e−iωt−εtd

= lim
ε→0+

1

iω + ε

{
φ̇BA(0) +∫ ∞

0

φBA(t)e−iωt−εtdt

}
= ΦBA(0)− iω

∫ ∞
0

ΦBA(t)e−iωtdt. (66)

The form of the relaxation function is:

ΦBA(t) =
i

~

∫ ∞
t

Tr{ρ[B(t′), A]}dt′ (67a)

=

∫ β

0

Tr{ρA(−i~λ)B(t)dλ} − β Tr{ρA0B0}

(67b)

3 Application of Linear Response Theory
3.1 Magnetic Susceptibility

A uniform magnetic field of H(t) is applied to
a magnetic system, the total magnetic moment is
written as M. The energy perturbation caused by H(t)
is

Ĥ′(t) = −MH(t). (68)

The natural motion of the magnetic moment when
there is no external field is represented by M(t). Then,
the φµν(t) response function for magnetization in the
µ-direction when the external field H(t) points in the

ν-direction, according to (46) is

φµν(t) =
i

~
〈[Mµ(t),Mν ]〉

=

∫ β

0

〈Ṁν(−i~λ)Mµ(t)〉dλ, (69)

and according to (67), the relaxation function is

Φµν(t) =

∫ β

0

〈(Mµ(−i~λ)−M0
µ)(Mµ(t)−M0

µ)〉dλ (70)

where M0
ν and M0

µ are the diagonal portion of Mν and

Mµ of unperturbed Hamiltonan Ĥ.
If a system is measured in one volume, this

admittance will become a magnetic susceptibility. So
the magnetic susceptibility tensor can be expressed in
either φµν(t) or Φµν(t). The simplest equation is to use
the equation (66)

χµν(ω) = Φµν(0)− iω
∫ ∞

0

Φµν(t)e−iωtdt. (71)

The static susceptibility is obtained in the form

χµν(0) =

∫ β

0

〈(Mν(−i~λ)−M0
ν )(Mµ−M0

µ)〉dλ (72)

which is a susceptibility for an isolated system, and
does not have to be the same as an isothermal
susceptibility in the form

χTµν =

∫ β

0

〈(Mν(−i~λ)Mµ)〉dλ− β〈Mν〉〈Mµ〉. (73)

In the equation χµν(0), the diagonal portion of Mν

and Mµ is subtracted. This is related to the fact
that magnetization in an isolated system takes place
adiabatically, the chance of occupation from its energy
levels remains unchanged. But in the isothermal
process these levels change to χTµν . This difference will
diminish if the environmental role is taken into account
on a larger scale.

In the classic approach, Equation (72) becomes

χµν(0) =
1

kT
〈(Mν −M0

ν )(Mµ −M0
µ)〉. (74)

meanwhile Equation (73) becomes

χTµν =
1

kT
〈(Mν〈Mν〉)(Mµ − 〈Mµ〉)〉. (75)

The last equation was first revealed by Kirkwood
(Kirkwood, 1939)[9] for the classical theory of
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dielectric polarization. Equation (74) is its extension to
adiabatic susceptibility, and Equation (71) for complex
susceptibility which is common for unequilibrium
states. This is proof that similar equations are also
obtained for dielectric polarization.

3.2 Electric Conductivity Tensor

As an applied example, the link between the electrical
conductivity tensor and the Green function will be
reviewed. Assume that the electric field E(t) is given
adiabatically, which is uniform in space and changes
periodically with a frequency of ω

E(t) = E cosωt.

The perturbation operator is

Ĥ1
t = −

∑
ej(Êxj) cosωt eεt (76)

(where ej is the jth particle load, and the sum includes
all particles with coordinates xj). The perturbation
(76) causes an electric current to appear in the system

ĵµ(t) =

∞∫
−∞

〈〈jµ(t); H1
τ (τ)〉〉dτ, (77)

with

Ĥ1
τ (τ) = Ĥ1(τ) cosωτ eετ ,

Ĥ1(t) = −
∑
j,µ

ejEµ ˙̂xµ(τ),

ĵµ(t) =
∑
j

ej ˙̂xµ(t),

(78)

ĵµ is the current density operator, if the system volume
is considered one unit volume. Integration of each part
makes the equation (77) writeable in form

jµ(t) = −Re


∞∫
−∞

〈〈jµ;
˙̂
H1(τ)〉〉e

iωt+ετdτ

iω + ε

+〈[jµ(0), H1(0)]〉eiωt+εt 1

ω − iε

}
. (79)

It should be noted that

˙̂
H1(τ) = −(Êj(τ)), and

[ ˙̂xµ1 , x̂νj2 ] = − i

m
δµνδj1j2 (~ = 1) (80)

so from this equation is obtained

jµ(t) = Re{σµν(ω)Eνe
iωt+εt}, (81)

σµν(ω) = − ie
2n

mω
δµν +

∞∫
−∞

〈〈jµ(0); jν(τ)〉〉e
iωt+ετ

iω + ε
dτ

(82)

where σµν(ω) is the tensor of electrical conductivity,
and n is the number of electrons per unit volume.
The first term in (82) is related to the electrical
conductivity of a system that has a free charge and
does not interact with other particles. As ω → ∞
increases the second term decreases faster than the
first term ( lim

ω→∞
Im ωσµν(ω) = −e2nδµν/m), and the

system behaves as a collection of free loads. Equation
(82) can be written in a different but equivalent form,
and integrating it byτ , it becomes

σµν(ω) = − ie
2n

mω
δµν+

e−
ω
β − 1

ω

∞∫
−∞

〈jµ(0)jν(t)〉e−iωtdt.

(83)

This equation is known as Nyquist theorem, which
is then generalized by Callen and Welton for the
case of quantum mechanics[10]; this equation connects
electrical conductivity with changes in current.

3.3 Linear Responses to Heisenberg Ferromagnet

In this section, we will review the linear response
function which is applied to the Heisenberg
ferromagnet case in three dimensions, with
Hamiltonian

Ĥ = −1

2

∑
i 6=j

J (ij)Si · Sj , (84)

where Si is the spin on the i ion, which is placed on
a Bravais lattice at the position of Ri. The Fourier
transform of the exchange coupling, provided J (ii) ≡
0, is

J (q) =
1

N

∑
ij

e−iq·(Ri−Rj) =
∑
j

J (ij)e−iq·(Ri−Rj),

(85)
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and vice versa

J (ij) =
1

N

∑
q

J (q)eiq·(RiRj)

=
V

N(2π)3

∫
J (q)eiq·(Ri−Rj)dq, (86)

relies on the review of q (which is defined in the
primitive Brillouin zone) as a discrete or continuous
variable, and will be considered as a discrete variable.
N is the number of spins, V is the volume, and the
reversal of symmetry from the Bravais lattice causes
that J (q) = J (−q) = J ∗(q). The maximum value of
J (q) is considered to be J (q = 0), which in that state
the equilibrium state occurs at zero temperature, or in
other words at the ground state, i.e. the ferromagnet:

〈Si〉 = Sẑ on T = 0, (87)

where ẑ is the unit vector on the z-axis, which is
constructed as the direction of magnetization caused
by an infinitesimal magnetic field. This result is
appropriate, but as the temperature rises above zero,
a number of approaches are needed. As a first step, the
〈Si〉 = 〈S〉 thermal expectation value can be written
(after the rearrangement of the terms)

Ĥ =
∑
i

Ĥi−
1

2

∑
i 6=j

J (ij)(Si−〈S〉) ·(Sj−〈S〉), (88a)

with

Ĥi = −Szi J (0)〈Sz〉+
1

2
J (0)〈Sz〉2, (88b)

and 〈S〉 = 〈Sz〉ẑ. The second term is ignored based
on the average field approach, which results in the
original multi-fold Hamiltonian being the sum of the
N Hamiltonian free single spin (88b). In this approach,
〈Sz〉 is determined by self-consistence equations is

〈Sz〉 =

+S∑
M=−S

M eβMJ (0)〈Sz〉/

+S∑
M=−S

eβMJ (0)〈Sz〉

(89a)

(the last term in (88b) does not affect thermal
averages). The equation (89a) in the low temperature
approach is

〈Sz〉 ' S − e−βSJ (0). (89b)

Review the Green function, to include initial order
effects on two-place correlations, with

G±(ii′, t) = 〈〈S+
i (t);S−i′ 〉〉. (90)

According to (51), the change in time according to
G±(ii′, t) depends on the operator

[S+
i , Ĥ] = −1

2

∑
j

J (ij)(−2S+
i S

z
j + 2Szi S

+
j ). (91)

The inclusion of this commutator in the equation
(51) leads to the link between the original Green
function and the new Green function more clearly.
Through this equation of motion the new function can
be stated with further new functions, thus forming
infinite coupled equations. The answer to the approach
can be obtained by using the condition that the
expected value of Szi is close to the saturation value
when it is at a low temperature. So in this approach,
Szi has to be almost timeless, in other words Szi '
〈Sz〉. In ’this phase-random approach’ (random phase
approximation (RPA)) the commutator shrank to

[S+
i , Ĥ] ' −

∑
j

J (ij)〈Sz〉(S+
j − S

+
i ) (92)

and the equation of motion leads to the following set
of linear equations:

~ωG±(ii′, ω) +
∑
j

J (ij)〈Sz〉{G±(ji′, ω)−

G±(ii′, ω)} = 〈[S+
i , S

−
i′ ]〉 = 2〈Sz〉δii′ . (93)

4 Conclusion
4.1 Linear Response Theory
1 The response R(t) given by an order because the

external force f(t′) given to him at time t′ can be
described by the response function φ(t − t′) with
the equation :

R(t) =

∫ t

−infty
φ(t− t′)f(t′)dt′ (94)

assuming the style and response meet the rule of
causality and the assumption of linearity the
response to its style.

2 The link between general susceptibility and
the response function is

χ(ω) =

∫ ∞
0

φ(τ)eiωτdτ (95)

3 The properties possessed by general susceptibility
are:
(a) The real and imaginary parts have properties

Reχ(−ω) = Reχ(ω), and (96)

Imχ(−ω) = −Imχ(ω) (97)
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(b) χ(ω) is analytic in the upper half of the
complex plane ω, which is caused by the rule
of causality.

(c) Dispersion relation / Kramers-Kronig
relation connecting real and imaginary
parts to general susceptibility is

Reχ(ω) =
2P

π

∫ ∞
0

dω′ ω′ Imχ(ω′)

ω′2 − ω2
(98)

and

Imχ(ω) = −2Pω

π

∫ ∞
0

dω′ Reχ(ω′)

ω′2 − ω2
. (99)

4.2 Linear Responses in Quantum Theory
1 The form of the link between responses and

disturbances in quantum theory is

〈B̂(t)〉 − 〈B̂〉 =
i

~

∫ t

−∞
Tr{ρ0[B̂, Â0(t′ − t)]}×

f(t′)dt′

=
i

~

∫ t

−∞
〈[B̂0(t), Â0(t′)]〉0f(t′)dt′

(100)

2 The form of the quantum response function is

φBA(t− t′) =
i

~
θ(t− t′)〈[B̂(t), Â(t′)]〉, (101)

3 The form of the fluctuation-dissipation theorem
in this theory viz

SBA(ω) = 2~
1

1− eβ~ω
χ′′BA(ω), (102)

4 The link between the snooze function and the
response function is

GBA(t− t′) ≡ 〈〈B̂(t); Â(t′)〉〉

≡ − i
~
θ(t− t′)〈[B̂(t), Â(t′)]〉

= −φBA(t− t′). (103)

5 The link between the Green delay function and
general susceptibility is

GBA(ω) ≡ 〈〈B̂; Â〉〉ω = lim
ε→0+

GBA(z = ω + iε)

= lim
ε→0+

GBA(t)ei(ω+iε)tdt = −χBA(ω).

(104)

4.3 Application of Response Function in Some
Elementary Processes

1 Magnetic susceptibility to systems with a total
magnetic moment of M that has external
interference H(t) is:
(a) The static susceptibility is:

χµν(0) =

∫ β

0

〈(Mν(−i~λ)−M0
ν )(Mµ−M0

µ)〉dλ

(105)

(b) The isothermal susceptibility is

χTµν =

∫ β

0

〈(Mν(−i~λ)Mµ)〉dλ−β〈Mν〉〈Mµ〉.

(106)

2 The form of the electrical conductor tensor that
is experiencing outside interference in the form of
an electric field E(t) = E cosωt. is

σµν(ω) = − ie
2n

mω
δµν+

∞∫
−∞

〈〈jµ(0); jν(τ)〉〉e
iωt+ετ

iω + ε
dτ

(107)

or it can also be written in a different form, known
as the Nyquist theorem, viz

σµν(ω) = − ie
2n

mω
δµν+

e−
ω
β − 1

ω

∞∫
−∞

〈jµ(0)jν(t)〉e−iωtdt.

(108)

3 Linear response to Heisenberg Ferromagnet, with
the general form of susceptibility is

χxx(q, ω) = χyy(q, ω) =
1

4
{χ+−(q, ω)+χ−+(q, ω)}.

(109)

with

χ+−(q, ω) =
2〈Sz〉
Eq − ~ω

+ iπ2〈Sz〉δ(~ω − Eq).

(110a)

and

χ−+(q, ω) =
2〈Sz〉
Eq + ~ω

− iπ2〈Sz〉δ(~ω + Eq),

(110b)
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4.4 Future Study
The discussion that has been carried out in this article
is limited to a linear process. Further research can be
developed to examine non-linear response functions,
the more general response functions. This non-linear
response function is expected to have a wider scope
of coverage and a better level of accuracy than the
response function, which is limited to linear areas only.
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