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Abstract

We solve the solution of the Time-Dependent Schrödinger Equation (TDSE) using the higher-order
Trotter-Suzuki Decomposition. We use The Gaussian function as a stationary state in a linear potential system.
The TDSE solution using Baker-Campbell-Hausdorff was used to validate the results and to measure the accuracy
of the Trotter-Suzuki decomposition. So that the difference between the Baker-Campbell-Hausdorff result and
the Suzuki-Trotter decomposition is considered an error. The error of the TDSE solution by the Trotter -
Suzuki second-order decomposition was lower than the first order. Meanwhile, the error of the TDSE solution
by second-order hybrid will be lower than the second-order Trotter - Suzuki decomposition when the value of
dx = 0.1 and 0.05 with dt ≤ 0.0001. The error comparison of these three methods is only valid when time
t < 1.

Keywords: Time-Dependent Schrödinger Equation; Trotter – Suzuki decomposition high order; Baker –
Campbell – Hausdorff

1 INTRODUCTION
In quantum mechanics, the wave equation can explain
the behavior of particle systems. The information
obtained from the wave equation is the probability
of a particle’s position and the particle’s energy.
We can find the wave equation by solving the
Schrödinger equation. Solution of the Time-dependent
Schrödinger Equation (TDSE) contains a lot of
dynamic information. Schrödinger’s equation for one
dimension can be written as follows

iℏ
∂Ψ(x, t)

∂t
= − ℏ2

2m

∂2Ψ(x, t)

∂x2
+ V (x, y)Ψ(x, t) (1)

The solution of equation (1) for a dynamic system can
be written as

Ψ(x, t) = eitĤΨ(x, 0) = Û(t)Ψ(x, 0) (2)

Û(t) the time evolution operator, Ψ(x, 0) the

initial state when time t = 0 and Ĥ the
Hamiltonian operator. Hamiltonian operators have
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unitary properties that must be maintained [1]. So that
to complete the TDSE, a unitary numerical solution is
needed [2].
There have been many attempts to solve the

time-dependent Schrödinger’s equation. One and
two-dimensional solutions of the Time Dependent
Schrödinger Equation (TDSE) have been carried out
by Becerril et al., (2008) using the finite difference
method. However, this method cannot maintain the
unitary properties of the Hamiltonian Operator. There
is a unitary algorithm such as Crank-Nicholson,
but this algorithm involves a large matrix size[2].
The TDSE solution has found by Soto-Eguibar and
Moya-Cessa [3] with the extended Baker - Campbell
- Hausdorff method. The TDSE solution obtained
from this method is explicit, so this method requires
precision in mathematical derivation.
Suzuki [4] introduced the generalized Trotter

equation (1959). Which is now known as the
Trotter-Suzuki equation. The advantage of the Trotter
- Suzuki decomposition is that it can maintain the
unitary properties of the Hamiltonian operator. So
we can use this method to solve dynamic quantum
and Hamilton dynamic problems [1]. Trotter-Suzuki
decomposition has implemented a lot. Among them
are [5] and [2]. In general, the Trotter - Suzuki
decomposition equation can be written with the
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following equation [6].

ex(A+B) = ep1xAep2xBep3xAep4xB ...epmxB+O(xm+1)

(3)

To solve the TDSE with the Trotter - Suzuki
decomposition we construct the Hamiltonian operator
in the form of a matrix. First, we need to discretize
equation (1) by replacing the second derivative with
respect to x with the finite-difference approach [7].
By assuming − 1

∆x2 = w and V (l∆x) + 2
∆x2 = vl,

Hamiltonian operators in the form of a tri-diagonal
matrix can be written as

Ĥ =



v1 w 0 0 · · · 0

w v2 w 0 · · ·
...

0 w v3 w 0
...

0 · · · w
. . . w 0

...
... 0 w vl−1 w

0 0 · · · 0 w vl


(4)

Hamiltonian matrix can be decomposed into 3
matrices H = H0 + H1 + H2. The diagonal matrix
H0 is written as

H0 =


v1 0 · · ·
0 v2 0 · · ·
... 0

. . . 0
· · · 0 vl

 (5)

The block diagonal Matrices H1 and H2 are written as
[2]

H1 =



0 w
w 0 0

0 0 w
w 0

. . .
. . .

0


(6)

and

H2 =



0 0
0 0 w

w 0
. . .

0 w
w 0


(7)

H1 andH2 contains a matrix containing a block matrix
2× 2. The exponent of the 2× 2 matrices are written
as [2]

exp

(
−iτ

[
w o
0 w

])
=M =

[
cos τ |w| −i sin τ |w|

−i sin τ |w| cos τ |w|

]
(8)

Matric decomposition makes it easy to solve the TDSE
with the Trotter - Suzuki method.
Form of the Trotter - Suzuki first order

decomposition is given by [?]

ex(A+B) = exAexB +O
(
x2

)
(9)

So that the solution of the time evolution operator
with the Trotter - Suzuki first-order decomposition is
written as

e−iτĤ = e−iτĤ0e−iτĤ1e−iτĤ2 (10)

The higher order Suzuki – Trotter decomposition
can be constructed in various ways, including
fractal decomposition and Trotter – Suzuki Hybrid
decomposition. Constructing a Trotter-Suzuki higher
order from the symmetrized Trotter-Suzuki lower
order [6]. The approximation equation for the
second-order exponential operator can be written as
[?]

ex(A+B) = e
x
2AexBe

x
2A +O(x3) (11)

So that the solution of the time evolution operator
with the second-order Trotter-Suzuki decomposition
can be written as

e−iτĤ = e−
iτ
2 Ĥ0e−

iτ
2 Ĥ1e−ıτĤ2e−

iτ
2 Ĥ1e−

iτ
2 Ĥ0 (12)

The second-order hybrid Trotter-Suzuki
decomposition is a second-order Trotter-Suzuki
decomposition involving the exponential of the
commutator matrix in its correction term [?]. In
general, the second-order hybrid Trotter – Suzuki
decomposition equation can be written as [1].

exAexBe
x2

2 [A,B] = ex(A+B)+O(x3) (13)

From the explanation above, we can implement the
Trotter – Suzuki decomposition method to solve TDSE
and see the effect of higher-order on the TDSE
solution. With the higher correction term of this
method, we expect the stability and the accuracy to
complete the TDSE will be higher.
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2 EXPERIMENTAL METHOD
From equation(12), we can construct the
Trotter–Suzuki second order to solve the
Time-dependent Schrödinger Equation (TDSE).
The equation of Trotter-Suzuki second order to solve
TSDE written as:

|ψ(x, t)⟩ = e−
iτ
2 Ĥ0e−

iτ
2 Ĥ1e−ıτĤ2e−

iτ
2 Ĥ1e−

iτ
2 Ĥ0 |ψ(x, 0)⟩

(14)

From equation (14), the Time-dependent
Schrödinger Equation (TDSE) solution using the
second-order approach can be expressed by the
flowchart in Figure 1. We illustrate the TDSE solution
by plotting the probability |ψ(x, t)|2 as a function of
position x and as a function of time t.
To get Trotter – Suzuki hybrid formula for three

operators H = H0 + H1 + H2, first, write a Trotter
– Suzuki hybrid decomposition for H0 +H1.

exp (−iτ(H0 +H1)) = exp (−iτD)

= exp (−iτH0) exp (−iτH1)×

exp

(
−1

2
(−iτ)2[H0, H1]

)
(15)

After obtaining the formula for exp (−iτ(H0 +H1))
then finding the Trotter - Suzuki hybrid decomposition
for exp (−iτ(H0 +H1 +H2))

exp (−iτ(H0 +H1 +H2)) = exp(−iτ(D +H2)) (16)

exp(−iτ(D +H2)) = exp(−iτD) exp(−iτH2)×

exp

(
−1

2
(−iτ)2[D,H2]

)
(17)

Substitute exp(−iτD) in the above equation with
equation (14). The equation of Trotter-Suzuki hybrid
second order to solve TSDE written as:

|ψ(x, t)⟩ = exp(−iτH0) exp(−iτH1)×

exp

(
−1

2
(−iτ)2[H0, H1]

)
· · · ×

exp(−τH2)×

exp

(
−1

2
(−iτ)2[H0 +H1, H2]

)
|ψ(x, 0)⟩

(18)

The TDSE solution using the second-order hybrid
approach can be expressed by the flowchart in Figure
2.

The TDSE solution using the Baker – Campbell –
Hausdorff method has been described by Soto-Eguibar
and Moya-Cessa as an explicit solution, so it tends
to be easy to recalculate. Therefore, to validate and
measure the accuracy, the TDSE solutions using
second order method and the second order hybrid
method compared with TDSE solutions using the
Baker – Campbell – Hausdorff method. The difference
between the two methods and the Baker – Campbell
– Hausdorff method will be considered an error. The
accuracy of both methods measured by Root Mean
Square Error (RMSE). The RMSE equation is written
as in the following equation

RMSE =

√
1

N
(ψTS − ψBCH)

2
(19)

where ψTS is the result of Trotter – Suzuki
decomposition and ψBCH is the result of Baker –
Campbell – Hausdorff.

3 RESULTS AND DISCUSSIONS
The TDSE solution affect by dx and dt. The smaller
the value of dx, the larger the size of the Hamiltonian
matrix used and the value of dt affects the number of
iterations. The values of dx are varied to dx = 0, 1,
dx = 0, 05 and dx = 0, 02, with the values of dt
are varied to dt = 0, 01, dt = 0, 001, dt = 0, 0005,
dt = 0, 0001 dan dt = 0, 00005. The accuracy of the
Trotter–Suzuki first order, second order, and second
order hybrids is compared in the RMSE table.
The TDSE solution from Baker – Campbell –

Hausdorff with a value of dx = 0, 1 in a
three-dimensional graph can be seen in Figure 3. The
TDSE solution from Trotter – Suzuki decomposition
with dx = 0, 1 and dt = 0, 01 can be seen in Figure 4.
There is a relatively significant difference between the
solutions by the Baker–Campbell–Hausdorff method
with the Trotter–Suzuki decomposition of second order
and second order hybrid. Especially when time t > 1.
In Table 1, we show an errors comparison of Trotter
– Suzuki decomposition first order, second order, and
second order hybrid. The RMSE of the second order
is smaller than the first order but the RMSE second
order hybrid is greater than the first order. When
the value of dt is reduced to 0, 001, then the TDSE
solution can be seen in Figure 5. If the solution by
second order with dt = 0, 001 is compared with the
solution by second order with dt = 0.01, then there is
no significant difference between the two. However, if
the second order hybrid with dt = 0, 001 is compared
to the second order hybrid with dt = 0, 01 then there
will be differences, especially at t > 1. In Table 2,
RMSE second order with dt = 0, 001 is smaller than
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RMSE second order with dt = 0, 01, This also applies
to second order hybrids. When the RMSE second
order and second order hybrids are compared, the
second-order hybrid gives more accurate results than
the second order at state t < 1. Likewise, when the
value of dt continues to be reduced, the RMSE of the
first order, second order, and second order hybrid is
getting smaller. Although the error reduction is not
significant. This RMSE comparison can be seen in
Table 3, Table 4, and Table 5.
When value of dx is 0, 05 and dt = 0, 01, the

TDSE solution by the Baker – Campbell – Hausdorff
method can be seen in Figure 6 and the TDSE
solution by the Trotter – Suzuki decomposition can
be seen in Figure 7. The TDSE solution by the
Trotter–Suzuki decomposition second order in Figure
7(b) has not yet produced a solution that fits to the
comparison method. When the value of dt ≤ 0.01, the
solutions by second order and second order hybrids
look the same on the three-dimensional graph. This
solution can be seen at Figure 8. If we compared
the RMSE second order to the RMSE second order
hybrid, then the TDSE solution by second order is
more accurate than the second order hybrid when the
dt = 0, 01,dt = 0, 001, and dt = 5×10−4. We show this
RMSE comparison in Table 6, Table 7, and Table 8.
Meanwhile, when we reduce the value of dt to 1×10−4

and 5 × 10−5, the TDSE solution by second-order
hybrid is more accurate than the second order. We
show RMSE comparison in Table 9 and Table 10.
We show the TDSE solution by the Baker –

Campbell - Hausdorff method with the value of dx =
0, 02 and dt = 0, 01 in Figure 9 and the TDSE
solution by the Trotter – Suzuki second-order and
second-order hybrid method in Figure 10. In Figure
10(a) and 10(b), the solution has not fitted with the
comparison method. Figure 11 is a TDSE solution
when the value of dt = 0, 001, the TDSE solution
by the Trotter-Suzuki second order and second order
hybrid still has a relatively large error. We show the
TDSE solution when the value of dt = 0, 0005 in Figure
12. We present the RMSE table to show the magnitude
of the error when when dt = 0, 001 and dt = 5× 10−4

in Table 11 and Table 12. Both tables show relatively
large error. so, when we use dx = 0, 02 and dt = 0, 001
and dt = 5× 10−4, that both methods cannot be used
to solve the TDSE. However, if we reduce the value
of dt to 1 × 10−4 and 5 × 10−5, the TDSE solution
by the Trotter-Suzuki second order and second-order
hybrid at state t < 1, 5 will be more accurate. We
can see it in Figure 13. To compare the RMSE second
order and second-order hybrid, we present the RMSE
table in Table 14 and Table 15. RMSE value is smaller
than the RMSE with the previous dt, which means

the accuracy of the Trotter - Suzuki second order and
second order hybrid increases with a small dt value. If
we compare the RMSE of the second order and second
order hybrid when dx = 0, 02, the TDSE solution by
second order will be more accurate than the TDSE
solution by a second order hybrid approach.
In this paper, we also consider the time required

for the calculation process. The time comparison for
the second order and second-order hybrid to process
the calculation is presented in Table 16. The time
to process the calculation depends on the selection
of dx and dt. When the value of dx is large, the
size of the Hamiltonian matrix is small so that the
time needed to process calculations is shorter. When
dx = 0, 1, the size of Hamiltonian matrix is 100 ×
100 so that the processing time required for both
approaches is relatively short. When dx is reduced to
0, 05, the Hamiltonian matrix size is doubled from the
matrix size when dx = 0, 1 so that the processing
time required is longer. From the comparison of
Trotter–Suzuki second order and second order hybrid,
the time to process the calculation by the Trotter
– Suzuki second-order hybrid is almost twice the
processing time for the first order approach. Likewise,
when the value of dx continues to be reduced, the time
required to process the calculation will be longer.
Of the three methods, the second-order hybrid takes

longer to process the calculations. This method takes
a long time to process the calculations because it
involves a commutator matrix. So that the exponential
matrix involves a large matrix size.

4 CONCLUSION
In summary, we can use Trotter-Suzuki decomposition
first-order, second-order or second-order hybrid to
solve the Time Dependent Schrödinger Equation
(TDSE) equation with the condition t < 1.
Meanwhile, when t > 1, there is instability in the
three methods. Because of this instability, the three
tested methods have the same error size in the
condition t > 1. The accuracy of the second order
Trotter-Suzuki decomposition is more accurate than
the first order for each selection of the tested dx
and dt values. Meanwhile, the second-order hybrid
Trotter-Suzuki decomposition will be more accurate
than the second-order Trotter-Suzuki decomposition
only if the value of dx = 0, 1 and 0, 05 with dt ≤
1 × 10−4. The second order hybrid Trotter-Suzuki
Decomposition calculation process takes longer than
the second order.
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Table 1: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0.1 and dt = 0.01 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 1,5723,E-03 7,4891,E-04 3,7357,E-03
1 1,5797,E-03 1,0096,E-03 4,4561,E-03
1,5 1,5434,E-03 1,0424,E-03 4,5917,E-03
2 2,7772,E-03 2,5787,E-03 6,9277,E-03
2,5 6,2799,E-03 6,3180,E-03 8,8812,E-03
3 8,8526,E-03 8,9728,E-03 8,9069,E-03

Table 2: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0.1 and dt = 0.001 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 1,3584,E-04 4,0846,E-05 2,0787,E-05
1 1,2776,E-04 4,7364,E-05 3,5441,E-05
1,5 1,7679,E-04 1,3756,E-04 1,3827,E-04
2 1,8679,E-03 1,8670,E-03 1,8947,E-03
2,5 6,0134,E-03 6,0177,E-03 6,0543,E-03
3 9,2677,E-03 9,2716,E-03 9,2850,E-03

Table 3: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0.1 and dt = 5× 10−4 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 7,9600,E-05 4,6093,E-05 4,0844,E-05
1 7,9330,E-05 5,2585,E-05 4,7360,E-05
1,5 1,5021,E-04 1,3956,E-04 1,3871,E-04
2 1,8796,E-03 1,8799,E-03 1,8868,E-03
2,5 6,0537,E-03 6,0558,E-03 6,0650,E-03
3 9,3045,E-03 9,3062,E-03 9,3095,E-03

Table 4: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0.1 and dt = 1× 10−4 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 4,9566,E-05 4,7780,E-05 4,7569,E-05
1 5,5657,E-05 5,4362,E-05 5,4137,E-05
1,5 1,4125,E-04 1,4082,E-04 1,4077,E-04
2 1,8935,E-03 1,8937,E-03 1,8940,E-03
2,5 6,0904,E-03 6,0909,E-03 6,0912,E-03
3 9,3349,E-03 9,3352,E-03 9,3353,E-03
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Table 5: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0.1 and dt = 5× 10−5 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 4,8302,E-05 4,7833,E-05 4,7780,E-05
1 5,4748,E-05 5,4418,E-05 5,4361,E-05
1,5 1,4105,E-04 1,4094,E-04 1,4093,E-04
2 1,8955,E-03 1,8956,E-03 1,8957,E-03
2,5 6,0953,E-03 6,0955,E-03 6,0956,E-03
3 9,3387,E-03 9,3389,E-03 9,3389,E-03

Table 6: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0,05 and dt = 0, 01 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 5,0862,E-04 8,8718,E-04 8,1583,E-03
1 1,0927,E-03 1,0755,E-03 8,7488,E-03
1,5 1,4336,E-03 6,9704,E-04 5,3455,E-03
2 1,5980,E-03 1,0888,E-03 6,8796,E-03
2,5 2,6546,E-03 2,5792,E-03 6,5830,E-03
3 3,8845,E-03 4,0020,E-03 6,4843,E-03

Table 7: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0,05 and dt = 0, 001 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 9,7713,E-05 5,5425,E-05 2,4765,E-04
1 1,0992,E-04 7,6011,E-05 3,2700,E-04
1,5 1,7353,E-04 1,1364,E-04 3,5731,E-04
2 1,0058,E-03 1,0013,E-03 1,2945,E-03
2,5 3,0238,E-03 3,0255,E-03 3,3294,E-03
3 4,5669,E-03 4,5703,E-03 4,6592,E-03

Table 8: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0,05 and dt = 5× 10−4 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 4,1180,E-05 9,4825,E-06 5,5276,E-05
1 4,2665,E-05 1,5708,E-05 7,6008,E-05
1,5 9,9431,E-05 7,4762,E-05 1,1502,E-04
2 9,6013,E-04 9,5920,E-04 1,0231,E-03
2,5 2,9966,E-03 2,9975,E-03 3,0742,E-03
3 4,5801,E-03 4,5813,E-03 4,6073,E-03
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Table 9: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0,05 and dt = 1× 10−4 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 9,6704,E-06 5,3765,E-06 3,67073E-06
1 1,0264,E-05 1,5708,E-05 7,6008,E-05
1,5 7,1913,E-05 7,0708,E-05 7,1087,E-05
2 9,5624,E-04 9,5629,E-04 9,5872,E-04
2,5 3,0112,E-03 3,0114,E-03 3,0145,E-03
3 4,6022,E-03 4,6024,E-03 4,6035,E-03

Table 10: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0,05 and dt = 5× 10−5 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 7,0748,E-06 5,8125,E-06 5,3765,E-06
1 7,9663,E-06 6,8968,E-06 6,4780,E-06
1,5 7,1083,E-05 7,0781,E-05 7,0862,E-05
2 9,5772,E-04 9,5776,E-04 9,5837,E-04
2,5 3,0154,E-03 3,0155,E-03 3,0163,E-03
3 4,6057,E-03 4,6058,E-03 4,6061,E-03

Table 11: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0,02 and dt = 0, 01 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 1,4319,E-03 1,4347,E-03 4,0222,E-03
1 2,9432,E-03 2,9504,E-03 2,9134,E-03
1,5 3,7912,E-03 3,8010,E-03 2,7630,E-03
2 4,2857,E-03 4,2966,E-03 2,3926,E-03
2,5 4,6035,E-03 4,6149,E-03 2,3430,E-03
3 4,8195,E-03 4,8316,E-03 2,4858,E-03

Table 12: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0,02 and dt = 0, 001 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 1,8149,E-03 1,8018,E-03 3,0665,E-03
1 1,8563,E-03 1,8505,E-03 3,8772,E-03
1,5 2,1065,E-03 2,1103,E-03 1,5378,E-03
2 1,9833,E-03 1,9867,E-03 2,1407,E-03
2,5 1,6497,E-03 1,6536,E-03 2,1269,E-03
3 1,5513,E-03 1,5578,E-03 1,7617,E-03
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Table 13: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0,02 and dt = 5× 10−4 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 2,7961,E-04 2,7014,E-04 1,3099,E-03
1 3,4929,E-04 3,4444,E-04 1,4156,E-03
1,5 3,6774,E-04 3,6361,E-04 1,6686,E-03
2 7,9552,E-04 7,9439,E-04 1,9776,E-03
2,5 1,5341,E-03 1,5349,E-03 1,7541,E-03
3 1,8736,E-03 1,8752,E-03 1,7503,E-03

Table 14: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0,02 and dt = 1× 10−4 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 1,5798,E-05 9,0443,E-06 3,7903,E-05
1 1,6544,E-05 1,2391,E-05 5,0788,E-05
1,5 3,4908,E-05 3,3321,E-05 6,4716,E-05
2 3,8812,E-04 3,8801,E-04 4,3049,E-04
2,5 1,2016,E-03 1,2017,E-03 1,2506,E-03
3 1,8276,E-03 1,8277,E-03 1,8433,E-03

Table 15: RMSE of Trotter–Suzuki decomposition first-order, second-order, and second-order hybrids with values
of dx = 0,02 and dt = 5× 10−5 at a certain time

time (t) RMSE 1st order approach RMSE 2nd order approach RMSE 2nd order hybrid approach

0,5 6,7536,E-06 1,9714,E-06 9,0426,E-06
1 6,2653,E-06 3,0350,E-06 1,2391,E-05
1,5 2,9620,E-05 2,9160,E-05 3,3482,E-05
2 3,8025,E-04 3,8024,E-04 3,9015,E-04
2,5 1,1943,E-03 1,1943,E-03 1,2065,E-03
3 1,8271,E-03 1,8272,E-03 1,8313,E-03

Table 16: The time of computing the Trotter–Suzuki decomposition second-order and the Trotter–Suzuki hybrid
decomposition second-order at each value of dx and dt

dx=0,1 dx=0,05 dx=0,02

dt Time 2nd Times 2nd Time 2nd Times 2nd Time 2nd Time 2nd
order order hybrid order order hybrid order order hybrid
(sec) (sec) (sec) (sec) (sec) (sec)

0,01 0,258287 0,295155 0,402231 0,669569 0,832481 2,738176

0,001 1,56749 1,265472 2,168436 3,107487 4,708539 8,576393

0,0005 2,229103 2,503294 3,659846 4,804617 8,849544 19,105147

0,0001 8,494141 8,269577 15,58965 22,204065 44,677553 92,593644

0,00005 16,225401 16,135152 30,553682 43,449828 81,828591 186,72913
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Figure 1: the flowchart of TDSE solution with Trotter – Suzuki second-order decomposition
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Figure 2: the flowchart of TDSE solution with Trotter – Suzuki hybrid second-order decomposition
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Figure 3: The solution |ψ(x, t)|2 using Baker – Campbell – Hausdorff method (Soto-Eguibar and Moya-Cessa,
2015) with dx=0,1 dan dt=0,01

Figure 4: The solution |ψ(x, t)|2 using (a) Trotter – Suzuki decomposition second order and (b) second order
hybrid with dx=0,1 dan dt=0,01
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Figure 5: The solution |ψ(x, t)|2 using (a) Trotter – Suzuki decomposition second order and (b) second order
hybrid with dx=0,1 dan dt=0,001

Figure 6: The solution |ψ(x, t)|2 using Baker – Campbell – Hausdorff method with dx=0,05 dan dt=0,01



Dhea Chita Octavianty and Pekik Nurwantoro Page 35

Figure 7: The solution |ψ(x, t)|2 using (a) Trotter – Suzuki decomposition second order and (b) second order
hybrid with dx=0,05 dan dt=0,01

Figure 8: The solution |ψ(x, t)|2 using (a) Trotter – Suzuki decomposition second order and (b) second order
hybrid with dx=0,05 dan dt=0,001
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Figure 9: The solution |ψ(x, t)|2 using Baker – Campbell – Hausdorff method with dx=0,02 dan dt=0,01

Figure 10: The solution |ψ(x, t)|2 using (a) Trotter – Suzuki decomposition second order and (b) second order
hybrid with dx=0,02 dan dt=0,01
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Figure 11: The solution |ψ(x, t)|2 using (a) Trotter – Suzuki decomposition second order and (b) second order
hybrid with dx=0,02 dan dt=0,001

Figure 12: The solution |ψ(x, t)|2 using (a) Trotter – Suzuki decomposition second order and (b) second order
hybrid with dx=0,02 dan dt = 5× 10−4

Figure 13: The solution |ψ(x, t)|2 using (a) Trotter – Suzuki decomposition second order and (b) second order
hybrid with dx=0,02 dan dt = 1× 10−4
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Figure 14: The solution |ψ(x, t)|2 using (a) Trotter – Suzuki decomposition second order and (b) second order
hybrid with dx=0,02 dan dt = 1× 10−4
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