Pengukuran Permitivitas Dielektrik Bahan Kain Non Woven Menggunakan Kapasitansi Meter Arduino Uno Dan Prinsip Kerja Kapasitor Plat Sejajar
Andrian Wijayono(1*), Valentinus Galih Vidia Putra(2)
(1) Politeknik STTT Bandung
(2) Politeknik STTT Bandung
(*) Corresponding Author
Abstract
Pada penelitian ini telah dilakukan penentuan konstanta permitivitas dielektrik bahan kain non woven secara eksperimen dengan menggunakan kapasitansi meter berbasis Arduino Uno dan prinsip kerja kapasitor plat sejajar. Penentuan konstanta permitivitas bahan kain non woven dilakukan dengan cara mengukur nilai kapasitansi yang divariasikan terhadap jarak antara plat yang berisi bahan dielektrik kain non woven. Pengukuran kapasitansi dilakukan dengan prinsip pengisian dan pengosongan kapasitor menggunakan perangkat mikrokontroler Arduino Uno. Proses pengisian dan pengosongan dilakukan dengan menggunakan susunan seri rangkaian resistor-kapasitor (RC) dengan tegangan sumber 5 Volt. Pada eksperimen ini telah digunakan sebuah plat sejajar dengan ukuran 29 × 30 cm sebagai elektroda kapasitor, serta sebuah perangkat resistor dengan ukuran 125 megaOhm. Hasil penelitian menunjukan bahwa perilaku pengisian dan pengosongan perangkat kapasitor plat-sejajar memiliki nilai R square > 0,9, yang menunjukan korelasi cukup baik antara hasil prediksi dan eksperimen pada pengukuran kapasitansi. Terdapat lima bahan dielektrik kain yang ditentukan dengan hasil dari yang terkecil sampai yang terbesar berturut-turut yaitu kain non woven polipropilen 31,44 gsm sebesar 1,0598, kain non woven polipropilen 43,72 gsm sebesar 1,0996, kain non woven polipropilen 52,31 gsm sebesar 1,1288, kain non woven polipropilen 74,12 gsm sebesar 1,1963, kain non woven polipropilen 80,87 gsm sebesar 1,2279. Telah ditemukan hubungan antara parameter gramasi (GSM) kain non woven polipropilen terhadap besaran nilai konstanta dielektrik terukur.
Keywords
dielektrik, kapasitor plat sejajar, kapasitansi meter, Arduino Uno
Full Text:
PDFReferences
- Allagui, A., Elwakil, A. S., Fouda, M. E., & Radwan, A. G. 2018. Capacitive behavior and stored energy in supercapacitors at power line frequencies. Journal of Power Sources, 390,142–147. https://doi.org/10.1016/j.jpowsour.2018.04.035
- Arshad, A., Khan, S., Alam, A. H. M. Z., Tasnim, R., Gunawan, T. S., Ahmad, R., & Nataraj, C. 2016. An activity monitoring system for senior citizens living independently using capacitive sensing technique. In IEEE International Instrumentation and Measurement Technology Conference Proceedings. https://doi.org/10.1109/I2MTC.2016.7520405
- ASTM. 2013. Standard test methods for mass per unit area (weight) of fabric, ASTM D3776/ D3776M – 09a. [Online] www.astm.org/DATABASE.CART/HISTORICAL/D3776-07.htm [diakses 10 Februari 2015]
- Bayraktar, Ö., Uzer, D., Gültekin, S. S., & Top, R. 2019. Usage of T-Resonator Method at Determination of Dielectric Constant of Fabric Materials for Wearable Antenna Designs. Materials Today: Proceedings, 18, 1796-1802. https://doi.org/10.1016/j.matpr.2019.06.666
- Cheng, J., Amft, O., Bahle, G., & Lukowicz, P. 2013. Designing Sensitive Wearable Capacitive Sensors for Activity Recognition. IEEE Sensors Journal, 13(10), 3935–3947. https://doi.org/10.1109/JSEN.2013.2259693
- Cholewińska, P., Michalak, M., Wyrostek, A., Czyż, K., & Łuczycka, D. 2019. Influence of the content of impurities and greasy on the results of heat resistance and hair cover dielectricity on the basis of wool from Huacaya alpaca and Racka sheep. Animal Science No 58 (1) 2019, 58, 5.
- David, D. J. & Mishra, A. 1999. Relating Material Properties to Structure: Handbook and Software for Polymer Calculations and Materials Properties. CRC Press.
- Eccleston, K. W., Scott, S. M., Brooksby, P. A., Fowler, I., & Sevier, S. A. 2018. Wool-Air Mix Permittivity Measurement. In 2018 Asia-Pacific Microwave Conference (APMC) (pp. 902-904). IEEE. https://doi.org/10.23919/APMC.2018.8617546
- Feller, P. 1977. U.S. Patent No. 4,051,722. Washington, DC: U.S. Patent and Trademark Office.
- Gang, Y., Entao, Y., Shencun, H., & Ning, J. 2016. The research on high sensitivity and anti-saturation of capacitance sensors for measuring yarn evenness. In 2016 10th International Conference on Sensing Technology (ICST) (pp. 1-6). IEEE. https://doi.org/10.1109/ICSensT.2016.7796299
- Guers, C., Garet, F., Xavier, P., Huber, P., Depres, G., Artillan, P., & Vuong, T. P. 2018. Moisture Effect on the Characteristics of Cellulosic Material Made RF Lines. In 2018 91st ARFTG Microwave Measurement Conference (ARFTG) (pp. 1-4). IEEE. https://doi.org/10.1109/ARFTG.2018.8423835
- Halliday, D., Resnick, R., Walker. 1997. Fundamentals of Physics-Extended, 5th, John Wiley & Sons, New York.
- Hearle, J. W., & Morton, W. E. 2008. Physical properties of textile fibres. Elsevier.
- Hoffmann, T., Eilebrecht, B., & Leonhardt, S. 2011. Respiratory Monitoring System on the Basis of Capacitive Textile Force Sensors. IEEE Sensors Journal, 11(5), 1112–1119. https://doi.org/10.1109/JSEN.2010.2082524
- Ivanovska, A., Cerovic, D., Tadic, N., Castvan, I. J., Asanovic, K., & Kostic, M. 2019. Sorption and dielectric properties of jute woven fabrics: Effect of chemical composition. Industrial Crops and Products, 140, 111632. https://doi.org/10.1016/j.indcrop.2019.111632
- Knott, E. F. 1993. Dielectric constant of plastic foams. IEEE Transactions on Antennas and Propagation, 41(8), 1167–1171. https://doi.org/10.1109/8.244664.
- Kombolias, M., Obrzut, J., Postek, M. T., Poster, D. L., & Obeng, Y. S. 2020. Contactless Resonant Cavity Dielectric Spectroscopic Studies of Cellulosic Paper Aging. Analytical Letters, 53(3), 424-435. https://doi.org/10.1080/00032719.2019.1655648
- Kondalkar, V. V., Ryu, G., Lee, Y., & Lee, K. 2019. Development of highly sensitive and stable humidity sensor for real-time monitoring of dissolved moisture in transformer-insulating oil. Sensors and Actuators B: Chemical, 286, 377-385. https://doi.org/10.1016/j.snb.2019.01.162
- Lee, H. J., Hwang, S. H., Yoon, H. N., Lee, W. K., & Park, K. S. 2015. Heart Rate Variability Monitoring during Sleep Based on Capacitively Coupled Textile Electrodes on a Bed. Sensors, 15(5), 11295–11311. https://doi.org/10.3390/s150511295
- Liu, Y., Li, W., & Zhao, X. 2019. Influence of the Yarn Fineness and Stitch Length of Polyester Knitted Fabric on the Dielectric Constant. Fibres & Textiles in Eastern Europe. http://dx.doi.org/10.5604/01.3001.0013.4469
- Lv, H., Wang, X., Ma, C., & Ma, L. 2017. Estimating the Dielectric Constant of Cellulose Acetate Fiber Aggregation with Its Components Volume Fraction. Journal of Engineered Fibers and Fabrics, 12(3). https://doi.org/10.1177/155892501701200309
- Matsuda, Y., Oishi, T., Barique, M. A., & Tasaka, S. 2019. Crystalline structure and the unusual dielectric behavior of nylon 93. Polymer Journal, 51(4), 433-438. https://doi.org/10.1038/s41428-018-0158-z
- Min, S.D., Yun, Y., & Shin, H. 2014. Simplified Structural Textile Respiration Sensor Based on Capacitive Pressure Sensing Method. IEEE Sensors Journal, 14(9), 3245–3251. https://doi.org/10.1109/JSEN.2014.2327991
- Mirzaee, M., & Noghanian, S. 2017. 3D printed antenna using biocompatible dielectric material and graphene. In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 2543-2544). IEEE. https://doi.org/10.1109/APUSNCURSINRSM.2017.8073314
- Mukai, Y., Dickey, E. C., & Suh, M. 2020. Low frequency dielectric properties related to structure of cotton fabrics. IEEE Transactions on Dielectrics and Electrical Insulation, 27(1), 314-321. https://doi.org/10.1109/TDEI.2019.008511
- Mukherjee, P. K. 2019. Dielectric properties in textile materials: a theoretical study. The journal of the Textile Institute, 110(2), 211-214. https://doi.org/10.1080/00405000.2018.1473710
- Mukhopadhyay, S. C. 2015. Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sensors Journal, 15(3), 1321–1330. https://doi.org/10.1109/JSEN.2014.2370945
- Putra, V. G. V., & Purnomosari, E. 2016. Pengantar Listrik Magnet Dan Terapannya. CV. Mulia Jaya. ISBN 978-6020-72713-2-6.
- Putra, V. G. V., Wijayono, A., Purnomosari, E., Ngadiono, N., & Irwan, I. 2019. Metode Pengukuran Kapasitansi Dengan Menggunakan Mikrokontroler Arduino Uno. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 3(1), 36-45. https://doi.org/10.30599/jipfri.v3i1.425
- Raghunathan, S. P., Narayanan, S., Poulose, A. C., & Joseph, R. 2017. Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties. Carbohydrate polymers, 157, 1024-1032. https://doi.org/10.1016/j.carbpol.2016.10.065
- Salvo, P., Di Francesco, F., Costanzo, D., Ferrari, C., Trivella, M. G., & De Rossi, D. 2010. A Wearable Sensor for Measuring Sweat Rate. IEEE Sensors Journal, 10(10), 1557–1558. https://doi.org/10.1109/JSEN.2010.2046634
- Senthilkumar, M., & Kumar, L. A. 2016. Non destructive fabric weight measurement using capacitance principle. International Journal of Clothing Science and Technology, 28(5), 690–698. https://doi.org/10.1108/IJCST-04-2015-0053
- Takechi, S., Teramoto, Y., & Nishio, Y. 2016. Improvement of dielectric properties of cyanoethyl cellulose via esterification and film stretching. Cellulose, 23(1), 765-777. https://doi.org/10.1007/s10570-015-0852-3
- Walker, P. H. 1950. The Electronic Measurement of Sliver, Roving, and Yarn Irregularity, With Special Reference to The Use of The Fielden Bridge Circuit. Journal of the Textile Institute Proceedings, 41(7), 446-466. https://doi.org/10.1080/19447015008664878
- Yuan, D., Xu, Y., Huang, L., Ma, J., Peng, Q., Ren, Y., ... & Cai, X. 2019. Novel prominent nylon-1 with excellent dielectric properties and a high Curie point. Journal of Materials Chemistry C, 7(6), 1641-1650. https://doi.org/10.1039/C8TC04985H
DOI: https://doi.org/10.22146/jfi.v24i3.55797
Article Metrics
Abstract views : 5667 | views : 5330Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Andrian Wijayono, Valentinus Galih Vidia Putra
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.