

Optimizing Red Tilapia Juvenile (*Oreochromis niloticus*) Nursery in Recirculating Aquaculture with Ultrafine Bubbles System at Variable Stocking Densities

Ujang Subhan^{1,2*}, Isni Meisani³, Azka Reyza Afriza³, Isni Nurruhwati¹, Roffi Grandiosa¹ & Muhammad Abdul Aziz Al Mujahid⁴

¹Department of Fisheries, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Jatinangor, Sumedang, West Java, Indonesia

²Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Jatinangor, Sumedang, West Java, Indonesia

³Fisheries Department, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Jatinangor, Sumedang, West Java, Indonesia

⁴The University of Tokyo, Graduate School of Agricultural and Life Science, Tokyo, Japan

*Corresponding author, email: ujang.subhan@unpad.ac.id

Submitted: 27 May 2025; Revised: 28 June 2025; Accepted: 02 July 2025; Published: 19 December 2025

ABSTRACT The increased demand for red tilapia (*Oreochromis niloticus*) production requires a sufficient supply of high-quality juveniles. Technological innovation is crucial for developing quantifiable, highly productive, efficient, environmentally sustainable, and ecologically sound juvenile production systems. This study aimed to analyse the effect of high stocking density on the growth performance of red tilapia juveniles cultured using ultrafine bubble technology in a recirculating aquaculture system (UFBs-RAS). A completely randomised experimental design was used with four stocking density treatments: one control treatment (4 fish/L with aeration) and three treatments under the UFBs-RAS system at 4, 6, and 8 fish/L densities. Each treatment was replicated four times. The juvenile red tilapia used in this study had an average initial total length of 4.34 ± 0.23 cm and a weight of 1.47 ± 0.31 g. They were obtained from fishpond research at the FINDER UCoE Experimental Station, Universitas Padjadjaran. The findings indicated that UFBs-RAS facilitated optimal production performance, even at the maximum stocking density of 8 fish per liter. The performance metrics comprised a survival rate of 98.75%, a specific growth rate in weight of $4.93 \pm 0.062\%$ /d, a specific growth rate in length of $3.88 \pm 0.05\%$ /d, a protein efficiency ratio of 2.48 ± 0.02 , a feed conversion efficiency of $96.5 \pm 0.58\%$, and a coefficient of variation of $33.7 \pm 1.2\%$. These data validate that incorporating UFBs-RAS is a viable and efficient method to improve the quality and productivity of red tilapia juveniles.

Keywords: High density; production; red tilapia; ultrafine bubbles

INTRODUCTION

Red tilapia (*Oreochromis niloticus*) is an aquaculture commodity with high economic value in domestic and export markets. This has increased tilapia production in 2021 by 9.63%, with a production of 1.35 million tonnes valued at Rp33.62 trillion (KKP, 2021). The substantial expansion of tilapia aquaculture demands a reliable and adequate supply of high-quality juvenile fish. Therefore, there is a need for a technological breakthrough that can produce tilapia juveniles that are measurable, highly productive and efficient, as well as environmentally friendly and sustainable (Hernández et al., 2021).

One strategic and potential fish farming system to be developed is the Recirculating Aquaculture System (RAS) (Ahmed & Turchini, 2021). RAS allows fish farming in a controlled environment, thereby minimizing direct interaction with the external environment. Rearing fish in a RAS offers relatively high productivity, as this system can maintain optimal water quality even at high stocking densities (Timmons et al., 2002) and uses water very efficiently (Murray et al., 2014).

The success of fish farming in the RAS must consider biofiltration, circulation, aeration, and degassing (Malone, 2013). Ultrafine bubbles become very important to be integrated into the system to improve the performance of the RAS system. Ultrafine bubbles (UFBs) are air bubbles with very small sizes (≤ 500 nm) (Subhan et al., 2022) that function to increase dissolved oxygen, reduce ammonia nitrogen ($\text{NH}_3\text{-N}$), and control parasites (Subhan et al., 2021). The device also functions to float suspended particles and has antibacterial capabilities (Wang & Zhang, 2017; Temesgen et al., 2017) as well as being able to influence physiological effects, increasing blood flow (Tsuge, 2015) and fish growth

(Murray et al., 2014).

Research on integrating UFBs generators in RAS can improve the survival rate and specific growth rate of catfish larvae (Subhan et al., 2022). Furthermore, Hanif (2021) reported that the use of nano bubbles in RAS can enhance the growth performance of *Epinephelus* sp., yielding an SGR value of $4.25 \pm 0.07\%$ /d, FCR of 1.11, SR of 100%, and productivity of 2.78 kg/m². Furthermore, using a nanobubble generator in *Litopenaeus vannamei* culture has proven effective in increasing productivity to 8.7 kg/m³ (Rahmawati et al., 2021). This research aims to evaluate the effectiveness of integrating the UFBs-RAS system in enhancing the production performance of red tilapia juveniles at varying stocking densities. The expected outcomes include improved growth rates, survival, and system efficiency. The findings of this study are anticipated to provide practical insights for optimising intensive aquaculture practices, thereby contributing to increased productivity and reduced operational costs for fish farmers.

MATERIALS AND METHODS

Installation of equipment

The UFBs-RAS system setup used for red tilapia juveniles in this study (Figure 1) comprised three primary media: two ultrafine-bubble tanks (20 L capacity), 16 cylindrical rearing containers (15 L capacity), and a single water-holding container (80 L capacity). These components were integrated into a single RAS designed for juvenile rearing and water treatment. Aeration was provided by an ultrafine-bubble generator (125-Watt cap), which was supplied with pure oxygen at a 0.1 L min^{-1} (Subhan et al., 2022). Water was delivered to each rearing container at 0.5 L min^{-1} , maintaining a

constant volume of 15 L. Effluent from each aquaculture rearing unit was collected through PVC piping and directed into a filtration chamber containing Japanese mat, filter cotton, bioballs, and zeolite. To stabilize the water temperature for tilapia culture (25°C), four thermostats

equipped with a 100-watt capacity were used.

Juvenile tilapia preparation

The red tilapia juveniles used in this study were relatively uniform in size, measuring 3.5 ± 0.23 cm in total length

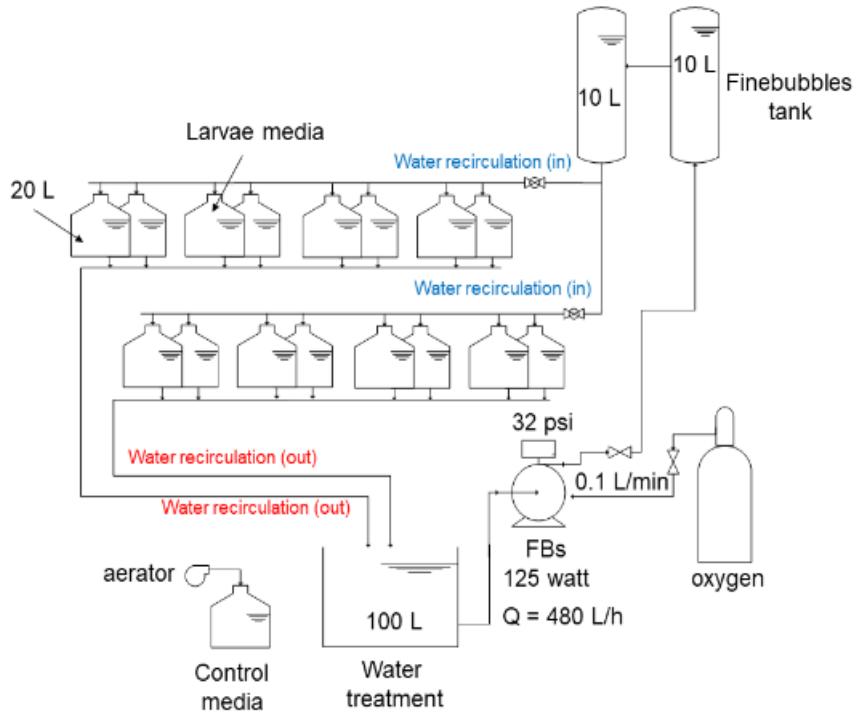


Figure 1. Instalasi UFBs-RAS (Subhan *et al.*, 2021).

and $0.7-1.2 \pm 0.31$ g in body weight. The seed was obtained from fishpond research conducted at the Centre of Excellence for Functional Nano Powder, Universitas Padjadjaran. The red tilapia was acclimatized in a fibre tank measuring $100 \times 50 \times 30$ cm with aeration for 2 hours. Thereafter, coarse salt and Redbluedox were added to the tank at concentrations of 0.5 g/L and 0.1 mL/L, respectively, to maintain the fish's osmotic balance and prevent parasitic growth.

Feeding management

Two types of artificial feed were used in this study. During the acclimation period (7 days), the red tilapia juvenile was fed a commercial feed of PF 500, with a pellet size of 0.5-0.7 mm. This feed contained a minimum of 39% protein, 5% fat, a maximum of 4% crude fibre, 11% ash, and 10% moisture. For the main feeding period, which lasted 28 days from the beginning to the end of the experiment, the fish were fed on PF 1000 with a pellet size of 1.3-1.7 mm. This feed had a protein content of 39-41%, a minimum of 5% fat, 6% crude fibre, 12% ash, and 10% moisture. Feed was administered to apparent satiation, three times daily.

Water quality measurement

Water quality parameters were measured using several instruments: dissolved oxygen (DO) and temperature were assessed with a Milwaukee M1605 portable DO meter; pH was measured using a Milwaukee MW 101 pH meter; total dissolved solids (TDS) were determined using the Milwaukee EC59/EC60 device; and nitrogenous compounds-including total ammonia nitrogen (TAN), nitrite, and nitrate-were analyzed using the Sera Aqua Test Box water testing kit.

Methods

The method employed in this study was an experimental approach using a Completely Randomised Design (CRD), consisting of four stocking density treatments with four replications. The stocking density treatments tested were as follows: A (Stagnant Aeration Water/SAW, 4 fish/L), B (UFBs, 4 fish/L), C (UFBs, 6 fish/L), and D (UFBs, 8 fish/L). The stocking densities for treatments A and B were referred to by Dawood *et al.* (2023), who reported that a density of 4 fish/L in a RAS system provided optimal growth rates for red tilapia juveniles ranging from 2.72 ± 0.03 to 2.90 ± 0.02 per day.

Survival rate

The survival rate of red tilapia juvenile was determined by counting the number of fish at the beginning and at the end of the experiment. According to Goddard (1996), survival rate can be calculated using the following formula:

$$SR(\%) = \frac{Nt - n}{Nt - o} \times 100$$

SR, Survival Rate (%); Nt-n, Total number of live fish at the end of the experiment; Nt-0, Total number of juveniles at the beginning of stocking.

Specific growth rate

The production performance of red tilapia juvenile was determined based on specific growth rate (SGR). The measured growth parameters included individual average weight and daily biomass gain. The calculation of growth rate followed the formula proposed by Bidlack (2000).

Specific Growth Rate (SGR) for weight is calculated using the formula:

$$SGR(\%g/day) = \left(\frac{\ln W_t - \ln W_0}{t} \right) \times 100$$

W_t, Final average individual weight (g); W₀, Initial average individual weight (g); t, Duration of rearing period (days)

The specific growth rate for length is calculated using the formula:

$$SGR(\%mm/day) = \left(\frac{\ln L_t - \ln L_0}{t} \right) \times 100$$

L_t, Final average individual length; L₀, Initial average individual length; t, Duration of the rearing period.

Protein efficiency ratio

This parameter represents the ratio of fish biomass to the amount of protein consumed. The Protein Efficiency Ratio (PER) is calculated using the formula according to [Slembrouck et al. \(2009\)](#):

$$PER = \left(\frac{W_t - W_0}{P_i} \right)$$

W_t, Final biomass weight (g); W₀, Initial biomass weight (g); P_i, Weight of protein consumed (g).

Feed conversion efficiency

Feed conversion efficiency (FCE) is calculated using a formula based on the increase in the ratio of the seed red tilapia biomass to the total biomass of feed used ([Kim & Lee, 2016](#)):

$$FCE = \left(\frac{W_t - W_0}{F_i} \right) \times 100\%$$

W_t, Final biomass weight (g); W₀, Initial biomass weight

Table 1. Water quality performance during the experiment.

Parameter	Aeration system culture	
	SAW	UFBs-RAS
DOsat (%)	55.76-61.67	70.51-74.34
Temperature (°C)	26	26
pH	6.58-6.70	7.0-7.4
TDS (mg/L)	147-182	219-413
TAN (mg/L)	4-8	0.5-8
NH ₃ -N (mg/L)	0.01-0.012	0-0.002
NO ₂ -N (mg/L)	1-2	0.5-2.00
NO ₃ -N (mg/L)	5-10	0-10

oxygen saturation is very important in affecting the specific growth rates of fish.

The temperature during the study remained within the optimal range for the growth of red tilapia juveniles in both the SAW and UFBs-RAS systems, consistently at 26 °C. A thermostat was installed to stabilize the temperature. According to SNI 6141-2009, the recommended temperature range for tilapia juveniles is between 25 °C

(g); F_i, Biomass weight of feed given (g).

Coefficient of variation

Coefficient of variation is the ratio of the standard deviation to the mean size, expressed as a percentage. The coefficient of variation (CV) for the test fish is calculated using the formula by [Warwick et al. \(1995\)](#) as follows:

$$CV(\%) = \left(\frac{SD}{\bar{x}} \right) \times 100\%$$

CV, Coefficient of Variation (%); SD, Standard Deviation; \bar{x} , Average Size.

Statistical analysis

Survival rate, specific growth rate, protein efficiency ratio, feed conversion efficiency, and coefficient of variation of seed red tilapia were analyzed using ANOVA at a 95% confidence level. If the calculated F value > the table F value, the Tukey test is followed. Meanwhile, the observation of water quality is conducted through descriptive analysis.

RESULTS AND DISCUSSION

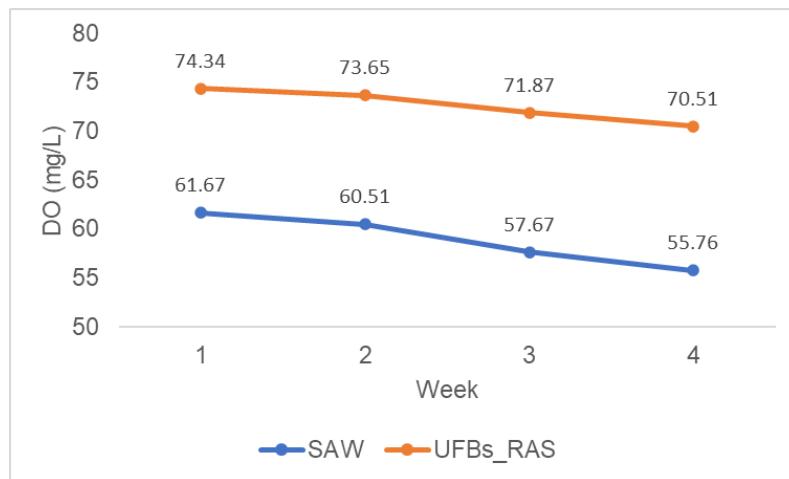

Water quality

Table 1 presents the results of this study's water quality observation. The parameters of water quality showed a difference in the aeration system culture between SAW and UFBs-RAS.

Dissolved oxygen saturation (DOsat) levels in the UFBs-RAS system were higher than the SAW ([Figure 2](#)) due to the UFBs generator, which can enrich dissolved oxygen in media culture according to [Subhan et al. \(2021\)](#). The DOsat levels decreased during the observation period, likely due to the increased biomass of fish, which raises the oxygen demand for metabolic processes ([Tanjung et al., 2019](#)). High dissolved oxygen levels can stimulate fish growth because increased oxygen availability enhances metabolic rates. According to [Thorarensen et al. \(2017\)](#),

and 30 °C. The maintained temperature during the experiment supports fish health and feeding behaviors. Water temperature affects all aspects of fish physiology, such as respiration, reproduction, and growth. It also influences appetite, digestion, and metabolic rate, ultimately affecting growth ([Burggren et al., 2019](#)).

Measuring pH in the SAW and UFBs did not show significant fluctuations and remained within optimal levels ([Fig-](#)

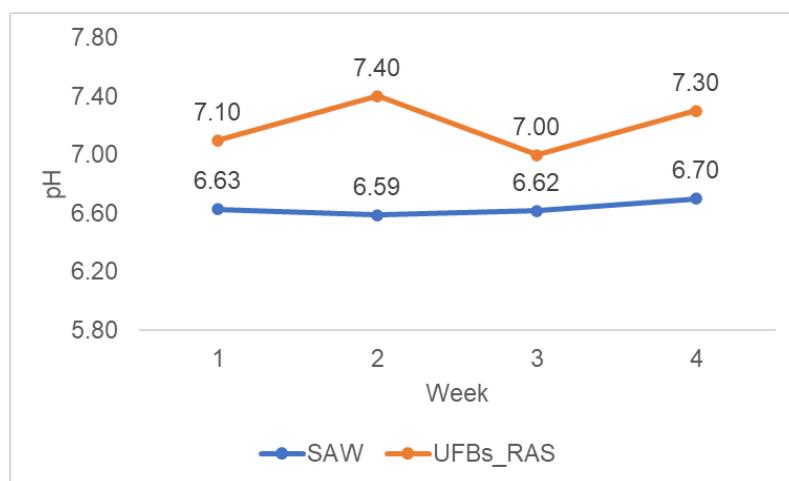


Figure 2. Comparison of dissolved oxygen (DO) levels between SAW and UFBs-RAS.

ure 3). According to SNI 6141-2009, the optimal pH for tilapia juveniles is 6.5 to 8.5. Maintaining this pH value can support healthy fish; however, the suboptimal pH value affects stress, disease, reduced productivity, and poor growth (Danaher *et al.*, 2013). In addition, the pH value greatly affects the concentration of ammonia (NH_3N), which is very dangerous for aquaculture conditions (Timmons & Ebeling, 2010).

The UFBs-RAS system exhibited relatively higher TDS concentrations, although a declining trend was observed over the final research (Figure 4). This trend aligns with findings reported by Pratama *et al.* (2021), who noted a

gradual reduction in TDS levels during tilapia rearing in RAS. The TDS levels observed are likely influenced by the RAS's efficiency and the filtration media's effectiveness in removing dissolved solids (Sulastri & Nurhayati, 2014). Elevated TDS levels initially may be attributed to heightened fish activity, residual feed, and metabolic waste. Nevertheless, TDS values across all treatments remained below 1000 ppm, which falls within the acceptable range for aquaculture operations. Under Government Regulation 82 of 2001, the threshold for TDS in Class III water bodies designated for aquaculture is set at less than 1000 ppm (Effendi *et al.*, 2015).

Figure 3. Comparison of pH levels between the SAW and UFBs-RAS.

Observations of TAN and ammonia over 30 days showed differences between SAW as the control and the UFBs system treatments (Figure 5). The SAW system without filtration media exhibited higher concentrations of TAN (4 to 8 mg/L) and ammonia (0.01 to 0.012 mg/L), which decreased in subsequent weeks. However, UFBs-RAS had lower levels of TAN and ammonia with values ranging from 0.5 to 8 ppm and 0 to 0.0002 mg/L, respectively. This is due to the role of the UFBs generator, which can reduce ammonia from aquaculture effluent by 40% (Subhan *et al.*, 2021). Additionally, it is supported by a filtra-

tion medium that encourages the growth of nitrifying bacteria, which break down ammonia. It is the most toxic and poses a greater danger to fish because it diffuses easily through the gills into the blood (Randall & Tsui, 2002). The excessive ammonia levels cause fish mortality, as excessive ammonia interferes with oxygen transport in the blood, potentially leading to death (Monalisa & Min-

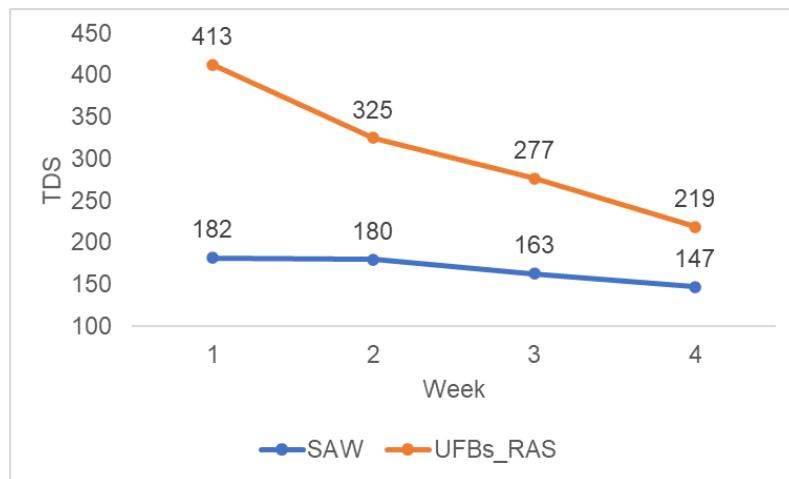
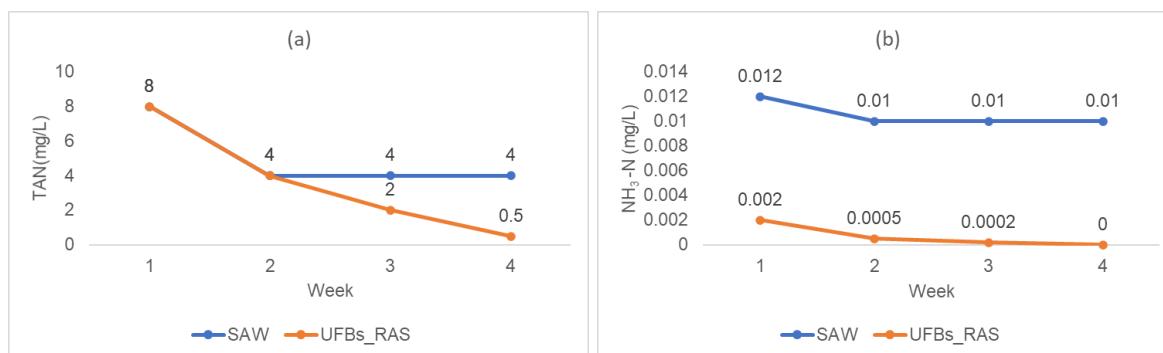


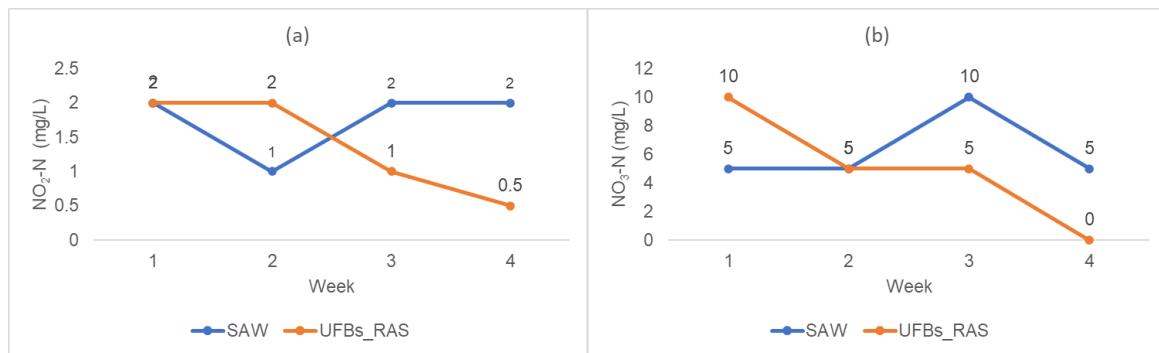
Figure 4. Comparison of TDS between aeration and UFBs-RAS systems.

ggawati, 2010). Ammonia levels in UFBs-RAS were below 0.02 mg/L, which is acceptable for tilapia culture based on SNI 6139-2009.

Based on Figure 5, the nitrite and nitrate content in the UFBs-RAS system is lower compared to the SAW system. Nitrite and nitrate levels in the UFBs-RAS treatment were initially high but declined in later observations, which may be linked to ammonia reduction facilitated by sufficient oxygen for nitrification. This aligns with Danaher *et al.* (2013) that nitrification is ineffective without adequate

DO. High nitrite levels in the SAW system (1 to 2 mg/L) negatively affect fish appetite due to reduced oxygen-carrying capacity of the blood. This occurs because nitrite oxidizes hemoglobin into methemoglobin, which cannot transport oxygen (Dawood, 2021) and causes brown blood disease, leading to fish suffocation (Chappell, 2008).




Figure 5. (a) Comparison of total ammonia nitrogen (TAN) levels between SAW and UFBs-RAS systems (b) comparison of unionized ammonia ($\text{NH}_3\text{-N}$) between SAW and UFBs-RAS systems.

Growth performance

The growth performance results are presented in Table 2. There were significant differences ($p < 0.05$) in survival rate (SR), specific growth weight (SGR weight), specific growth length (SGR length), protein efficiency ratio (PER), and feed conversion efficiency (FCE) between the SAW system (treatment A) and the UFBs-RAS systems (treatments B, C, and D). In contrast, the coefficient of variation was significantly lower ($p < 0.05$) in treatment A compared to the UFBs-RAS treatments.

Survival rate

Based on the study's results (Figure 7), the survival rate of red tilapia juveniles ranged from $65.83 \pm 10.63\%$ to $98.75 \pm 1.97\%$. Analysis of variance (ANOVA) showed a statistically significant difference among treatments ($P < 0.05$). Further analysis using Tukey's post-hoc test revealed a significant difference ($P < 0.05$) between treatment A with SAW and the UFBs-RAS treatments: B, C, and D. However, no significant differences ($P > 0.05$) were observed among the UFBs-RAS treatments themselves.

Figure 6. (a) Comparison of $\text{NO}_2\text{-N}$ levels between SAW and UFBs-RAS systems (b) comparison of levels $\text{NO}_3\text{-N}$ between SAW and UFBs-RAS systems.

The highest survival rate was shown in the treatment of stocking density in UFBs-RAS, reaching 94.45% to 98.75%. This outcome is attributed to the high availability of dissolved oxygen (>70%) and low ammonia concentration ($\leq 0.002 \text{ mg/L}$). Similarly, Dawood *et al.* (2023) re-

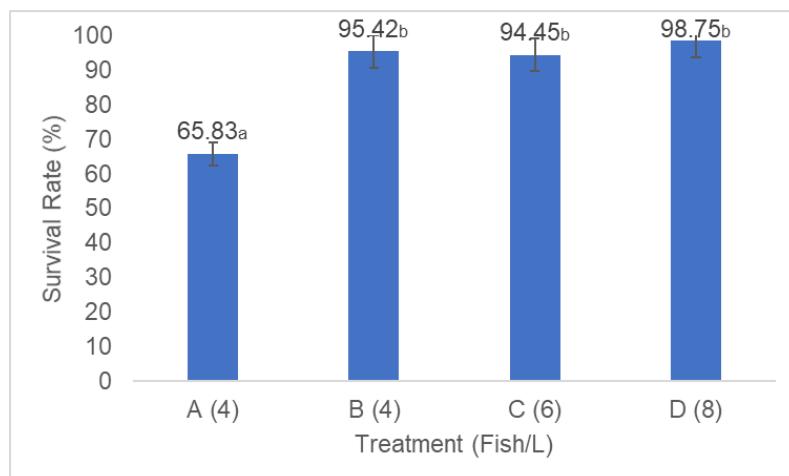

ported findings where we observed a 97.9% survival rate at a stocking density of 3 fish/L for seed tilapia reared in a conventional RAS. Enhancing oxygen levels can reduce glucose and lactate concentrations in the liver, indicating that tilapia reared under these conditions are healthy

Table 2. Growth performance parameters of red tilapia juvenile.

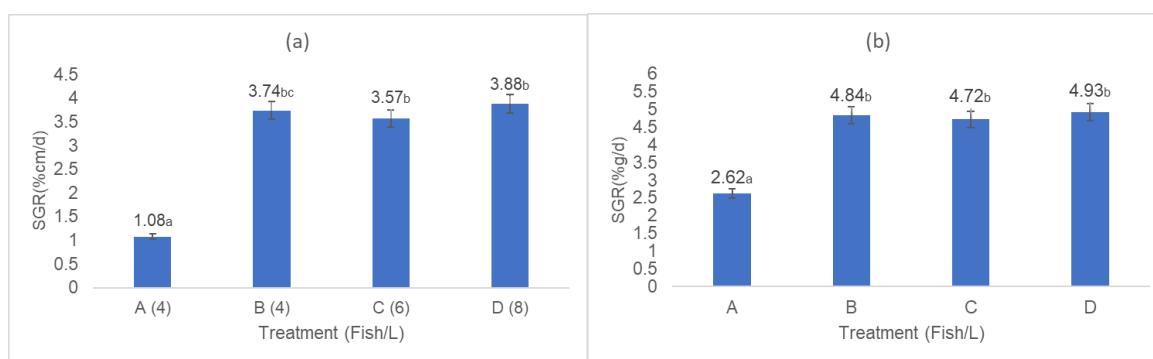
Parameter	Treatment			
	A (SAW, 4 fish/L)	B (UFBs, 4 fish/L)	C (UFBs, 6 fish/L)	D (UFBs, 8 fish/L)
SR (%)	65.83 ± 10.2^a	95.42 ± 2.84^b	94.44 ± 3.14^b	98.75 ± 1.98^b
SGR in body weight (%) per day)	2.62 ± 0.09^a	4.84 ± 0.12^{bc}	4.72 ± 0.1^b	4.93 ± 0.062^b
SGR in total length (% per day)	1.08 ± 0.29^a	3.74 ± 0.071^b	3.57 ± 0.035^b	3.88 ± 0.05^b
PER	1.84 ± 0.09^a	2.38 ± 0.009^b	2.33 ± 0.036^c	2.48 ± 0.02^d
FCE (%)	72 ± 3.7^a	92.75 ± 0.5^{bc}	90.5 ± 1.3^b	96.5 ± 0.58^c
CV weight (%)	28.3 ± 0.01^a	31.9 ± 0.02^{ab}	32.6 ± 0.02^b	33.70 ± 1.55^b

and possess a high well-being index (Li *et al.*, 2023). In contrast, low survival was observed at treatment A (65.83%), which was caused by insufficient dissolved oxygen, due to a failure to support the hematological performance. This is supported by Li *et al.* (2020), who reported

that low dissolved oxygen levels can elevate stress in fish, as indicated by increased glucose, lactic acid concentrations, and red blood cell counts. In addition, the primary factor contributing to the reduced survival rate was the accumulation of ammonia (0.012 mg/L) derived from

Figure 7. Survival rate of juvenile red tilapia at different stocking densities in SAW and UFBs-RAS systems.

metabolic waste. This is due to the absence of a filtration system that supports bacteria in reducing ammonia. Ammonia accumulation due to gill epithelial damage makes them more susceptible to disease and high mortality (Bernardi *et al.*, 2018). Excess ammonia is primarily problematic because it alters the cell pH, depletes vital components required for energy production, and disrupts nerve signaling (Bombardelli *et al.*, 2004).


Specific growth rate

The growth performance of red tilapia juveniles (Figure 8) showed SGR weight ranging from $2.62 \pm 0.09\%$ to $4.93 \pm 0.062\%$ /d/d and SGR length of $1.08 \pm 0.29\%$ to $3.88 \pm 0.05\%$ /d/d. ANOVA analysis indicated significant differences among treatments for weight and length growth rates ($p < 0.05$). Tukey's post hoc test revealed that the control treatment (SAW at 4 fish/L) had significantly lower SGR (weight and length) compared to the stocking density at UFBs-RAS system (A, B and D $p < 0.05$) and there was no significant difference between treatments at UFBs-RAS system ($p > 0.05$). These results suggest that the UFBs-RAS system supports better growth performance in red tilapia juveniles compared to SAW as con-

ventional aeration systems, even under higher stocking densities.

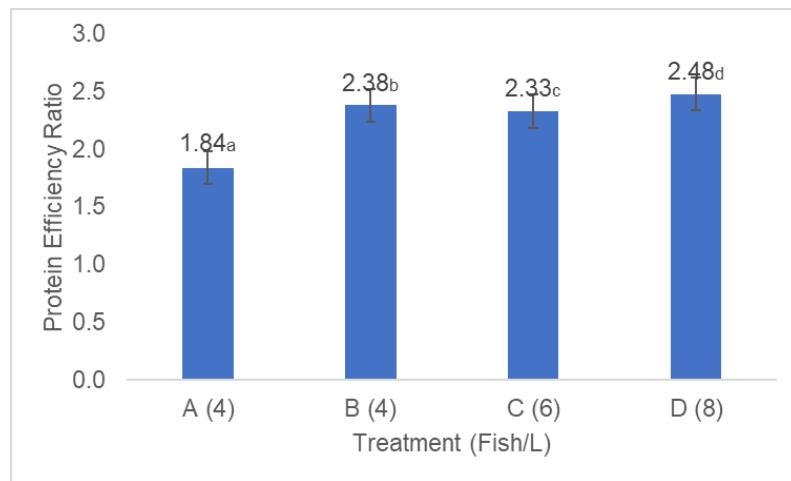
Juvenile red tilapia raised in the UFBs-RAS system showed much better growth in both length and weight compared to those in the control group (SAW), especially in treatment D. In this treatment, the fish had a weight growth rate of 4.93% /d and a length growth rate of 3.88% /d. This is much higher than the control group, which only reached 2.62% per day in weight and 1.08% per day in length. These results were also better than those reported by Dawood *et al.* (2023) and Dahlan *et al.* (2022). The growth rate in the UFBs-RAS system is better because the oxygen levels were well-saturated (above 70%), which helps fish breathe more easily and use their energy for growth. According to Howerton (2001), when oxygen levels are high, fish do not need much energy to breathe, so more energy can go toward growing. Also, the ammonia levels in this system were very low (≤ 0.002 mg/L), which is important because even small amounts of ammonia can affect fish growth (Ijaz *et al.*, 2010).

On the other hand, fish in the SAW system (control) grew

Figure 8. (a) Specific length growth rate of red tilapia juveniles at different stocking densities in SAW and UFBs-RAS systems. (b) Specific weight growth rate of red tilapia juveniles at different stocking densities in SAW and UFBs-RAS systems.

more slowly because the oxygen levels were low (only 50-60%), which is not enough to support healthy metabolism. Thorarensen *et al.* (2017) stated that oxygen levels below 65% (hypoxia) can harm fish growth. In such conditions, fish struggle to get enough oxygen, which makes them breathe harder and use more energy, leaving less for growth (Chatvijitkul *et al.*, 2017; Buentello *et al.*, 2000; Lakani *et al.*, 2013). Another reason for the poor growth is the SAW treatment's high ammonia levels (about 0.012 mg/L). Elevated ammonia can reduce appetite and slow growth by lowering the blood's oxygen capacity (Ijaz *et al.*, 2010). It can also damage tissues, reduce the immune system, and increase the risk of death (Lemarie *et al.*, 2004; Kim & Kang, 2015). The significant difference in ammonia levels between the two systems clearly impacted fish growth, highlighting the importance of maintaining low ammonia concentrations for healthy and efficient aquaculture.

Protein efficiency ratio


Protein efficiency ratio (PER) is a parameter used to determine the utilization of protein in feed for fish growth and is closely related to the nutritional content of the feed. This study's protein source came from commercial

feed containing 39% - 41% protein. Based on the calculations, the PER values in this study ranged from 1.84 ± 0.09 to 2.48 ± 0.02 . Statistically, all treatments showed significant differences ($p < 0.05$). The highest PER value was observed in treatment D, followed by treatment B, C, and A, as the control treatment with SAW.

The PER values of red tilapia juveniles reared in the UFBs-RAS system under normoxic conditions showed high results, ranging from 2.33 ± 0.04 to 2.48 ± 0.02 , compared to the SAW system (control), which was 1.82 ± 0.09 . The treatment with the highest stocking density (D) yielded the highest PER value. Based on these findings, it can be concluded that a stocking density of 8 fish/L represents the optimal density for rearing juvenile red tilapia in the UFBs-RAS system to achieve high productivity per unit volume while maintaining efficient protein utilization. The PER values obtained in this study were higher than those reported by Nguyen *et al.* (2021), where rearing juvenile red tilapia in a RAS system resulted in PER values ranging from 1.8 to 1.9. This proves that adequate oxygen levels in the water can maintain normal metabolic functions, including digestion and protein synthesis, and maximal-

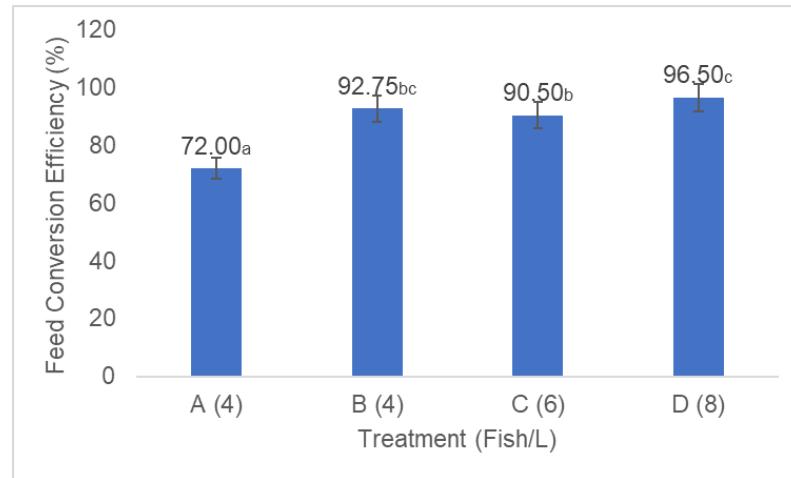
ly utilize protein for growth (Nguyen *et al.*, 2021; Li *et al.*, 2020). According to Olusola & Nwanna (2014), a high

protein efficiency ratio is due to the breakdown of protein into amino acids and its components, which makes

Figure 9. Protein efficiency ratio (PER) of juvenile red tilapia at different stocking densities in SAW and UFBs-RAS systems.

protein absorption in fish more efficient. A higher protein efficiency ratio indicates that the feed is more efficient, as the protein content can be optimally utilized (Li *et al.*, 2012).

In contrast, based on the data obtained, the lowest Protein Efficiency Ratio (PER) was observed in the control treatment (SAW with a stocking density of 4 fish/L). This outcome is likely attributed to reduced nutrient absorption associated with elevated concentrations of ammonium chloride, which adversely affects feed intake. Foss *et al.* (2009) reported that increased ammonia levels can impair intestinal absorption efficiency, leading to a decline in the assimilation of digested nutrients. Consequently, this results in prolonged feed retention within the gastrointestinal tract, ultimately reducing the effectiveness of protein utilization for growth.


Feed conversion efficiency

The study's results (Figure 10) showed that the FCE ranged from $72 \pm 3.7\%$ to $96.5 \pm 0.58\%$. ANOVA analysis indicated that the treatments had a statistically significant effect ($P < 0.05$). Tukey's post hoc test revealed that treatment D achieved the highest FCE, which was significantly different ($P < 0.05$) from treatments A and C, but

not significantly different ($P > 0.05$) from treatment B. In contrast, treatment A exhibited the lowest FCE and significantly differed ($P < 0.05$) from all stocking density treatments in the UFBs-RAS system: treatments B, C, and D.

The Feed Conversion Efficiency (FCE) observed in the UFBs-RAS system under high oxygen (hyperoxic) conditions showed excellent results, especially in treatment D, which reached an FCE of $96.5 \pm 0.58\%$. This value is much higher than the FCE reported by Shofura *et al.* (2016), ranging from 73.57% to 85.01%, and by Li *et al.* (2020), who recorded only 67% at an oxygen level of 5 mg/L (equivalent to 67% saturation at 28 °C). These findings support the results of Abdel-Tawwab *et al.* (2015), who found that tilapia grow better under high dissolved oxygen levels, especially when ammonia is well controlled. Saturated oxygen levels can increase feed intake (Duan *et al.*, 2011) and improve digestion and nutrient absorption by inducing a hypermetabolic state (Howerton, 2001). In contrast, low oxygen (hypoxic) conditions lead to stress, reduced feed intake, and slower growth (Sheng *et al.*, 2019).

Oxygen saturation in the SAW system is lower at level %. It makes FCE (Li *et al.*, 2020) and limits feed intake

Figure 10. Feed conversion efficiency (FCE) of red tilapia juveniles at different stocking densities in SAW and UFBs-RAS systems.

(Buentello *et al.*, 2000). Additionally, the SAW system's higher ammonia concentration (≥ 0.012 mg/L) further contributed to the reduced FCE. This is reinforced by the opinion of Briggs & Fing-Smith (2002) that elevated ammonia levels can lower appetite and shift nitrogen excretion toward less efficient forms such as urea. These factors combined suggest that high oxygen and low ammonia levels are essential for maximizing feed efficiency in intensive tilapia culture.

Coefficient of variation

In this study, the coefficient of variation was measured for weight. The results showed treatment A of $28.3 \pm 0.01\%$, treatment B of $31.9 \pm 0.02\%$, treatment C of $32.6 \pm 0.02\%$, and treatment D of $33.70 \pm 1.55\%$. Based on statistical analysis, treatment A was not significantly different from treatment B ($P > 0.05$), but was significantly different ($P < 0.05$) from treatments C and D. Meanwhile, treatments B, C, and D did not differ significantly from each other ($P > 0.05$).

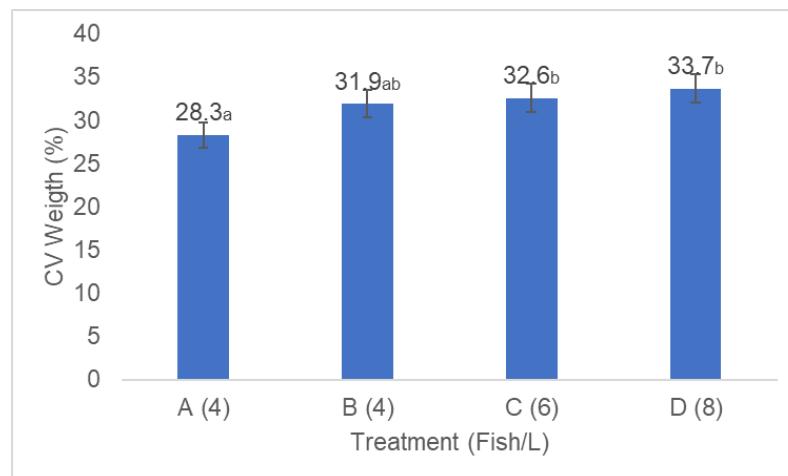


Figure 11. Weight variation of red tilapia juveniles at different stocking densities in SAW and UFBs-RAS systems.

Tibile *et al.* (2016), heterogeneous size variation might be linked to the formation of social hierarchies within each stocking density group, regardless of the adequacy of food availability and individual growth suppression. These results suggest that rearing using the UFBs-RAS system under normoxic conditions may be a promising strategy to improve size uniformity during the first nursing phase of tilapia hatchery production, thus enhancing product quality and market value.

CONCLUSION AND RECOMMENDATION

Conclusion

The present study demonstrated that the UFB-RAS system effectively maintained optimal water quality by increasing dissolved oxygen levels and reducing concentrations of ammonia and total dissolved solids (TDS), thereby enhancing the growth performance of red tilapia juveniles even at a high stocking density of 8 fish/L (twice as high as referred to Dawood *et al.* (2023)). The achieved performance indicators included a survival rate of 98.75% , specific growth rate in total weight of $4.93 \pm 0.062\%$ per day, specific growth rate in total length of $3.88 \pm 0.05\%$ per day, protein efficiency ratio of 2.48 ± 0.02 , feed conversion efficiency of $96.5 \pm 0.58\%$, and a coefficient of variation in weight of $33.7 \pm 1.2\%$. These

Figure 11 shows that treatment A's diversity is lower than that of treatments B, C, and D. This is related to the low survival rate (65.83%), resulting in a very low stocking density. Thus, the level of competition among the fish becomes low. Unlike the conditions in the density treatment in the UFBs-RAS system, the SR in each treatment is relatively high, resulting in stronger competition among the fish in the cultivation medium. However, the treatment's overall CV value (31.9 to 33.7%) still indicates good quality. According to Almazan-Rueda *et al.* (2004), the uniformity level of the fish is still good if it is below 30%.

The finding in this study is that the maintenance of juvenile red tilapia in the UFBs-RAS system can improve fish diversity at high stocking densities of up to 8 fish/L. This refers to Borbolla *et al.* (2006), which indicates that tilapia juveniles raised at higher stocking densities (2 fish/L) show a high size variability. It results from competition for food supply (Borbolla *et al.*, 2006) and fish behaviour (Carbonara *et al.*, 2019). Furthermore, according to

results successfully addressed the research objective by confirming that the UFBs-RAS system enables optimal and sustainable juvenile production under intensive culture with a cost-effective and economically beneficial approach for fish farmers.

Recommendation

Based on the research results, it is recommended that UFBs-RAS be used to produce juvenile red tilapia at a high stocking density of 8 fish/L, which can improve productivity and efficiency. Furthermore, further research should be conducted with a higher density in the UFBs-RAS system.

AUTHORS' CONTRIBUTION

Conceptualizations, U.S., I.N.; methodology, U.S., I.M., I.N., A.R.A., R.G., and MAAM; validation, U.S. and I.M.; writing-original draft preparation, U.S., and I.N.; writing-review and editing, U.S., R.G., A.R.A., and I.M.; funding acquisition, U.S. All authors have read and agreed to the published version of the manuscript.

ACKNOWLEDGEMENT

We are grateful to the PUI-PT Finder U-CoE Universitas

Padjadjaran lab's management and entire personnel for providing the resources needed to carry out the research.

REFERENCES

Abdel-Tawab, M., A. E. Hargas, H. A. M. Elbaghdady & M. N Monier. 2015. Effects of dissolved oxygen & fish size on nile tilapia, *Oreochromis niloticus* (L.): Growth performance, whole-body composition, & innate immunity. *Aquaculture International*. 23 (5): 1261-1274. <https://doi.org/10.1007/s10499-015-9882-y>

Ahmed, N & G.M. Turchini. 2021. Recirculating Aquaculture Systems (RAS): Environmental solution and climate change adaptation. *Journal of Cleaner Production* 297: 126604. <https://doi.org/10.1016/j.jclepro.2021.126604>

Almazán-Rueda, P., J.W. Schrama & J.A.J. Verreth. 2004. Behavioural responses under different feeding methods and light regimes of the african catfish (*Clarias gariepinus*) juveniles. *Aquaculture*. 231 (1-4): 347-359. <https://doi.org/10.1016/J.aquaculture.2003.11.016>

Andinet, T., I. Kim & J.Y. Lee. 2016. Effect of microbubble generator operating parameters on oxygen transfer efficiency in water. *Desalination & Water Treatment*. 57 (54):26327-35. <https://doi.org/10.1080/19443994.2016.1178604>

Bernardi, F., I.V. Zadineo, H.J. Alves, F. Meurer & LD. Santos. 2018. Chitins & chitosans for the removal of total ammonia of aquaculture effluents. *Aquaculture*. 483 (October 2017): 203-212. <https://doi.org/10.1016/j.aquaculture.2017.10.027>

Bidlack, W.R. 2000. Nutritional Biochemistry, 2nd Ed. Tom Brody. San Diego, 1999. *Journal of the American College of Nutrition*. 19 (3): 41920. <https://doi.org/10.1080/07315724.2000.10718940>

Biswas, G., A.R. Thirunavukkarasu, J.K. Sundaray & M. Kailasam. 2010. Optimization of feeding frequency of asian seabass (*Lates calcarifer*) Juvenile reared in net cages under a brackishwater environment. *Aquaculture*. 305: 26-31. <https://doi.org/10.1016/j.aquaculture.2010.04.002>

Bombardelli, R.A., F. Meurer & M.A. Syperreck. 2004. Metabolismo Proteico em Peixes. *Arq. Ciênc. vet zool Unipar*. 7 (1), 69-79 (ISSN: 1982-1131).

Borbosa, J.M., S.S.S. Brugiolo, J. Carolsfeld & S.S. Leitao. 2006. Heterogeneous growth in fingerlings of the nile tilapia *Oreochromis niloticus*: Effects of density & initial size variability. *Braz. J. Biol.* 66 (2A): 537-541. <https://doi.org/10.1590/s1519-69842006000300020>

Briggs, M.R.D & S.T. Fing-Smith. 2002. The effect of zcolites & other alumino silicate clays on water quality at various salinities. *Aqua. Research*. 27: 301-311.

Buentello, J.A., D.M. Gatlin & N.H. Neill. 2000. Effects of water temperature & dissolved oxygen on daily feed consumption, feed utilization & growth of channel catfish (*Ictalurus punctatus*). *Aquaculture*. 182 (3-4): 339-352. [https://doi.org/10.1016/S0044-8486\(99\)00274-4](https://doi.org/10.1016/S0044-8486(99)00274-4)

Burggren, W.W., J. F. Mendez-Sanchez, G.M. Bautista, E. Peña, R.M. García & C.A.A. González. 2019. Developmental changes in oxygen consumption & hypoxia tolerance in the heat & hypoxia-adapted tabasco line of the nile tilapia *Oreochromis niloticus*, with a survey of the metabolic literature for the genus oreochromis. *Journal of Fish Biology*. 94 (5): 732-744. <https://doi.org/10.1111/jfb.13945>

Carbonara, P., M. Dioguardi, M. Cammarata, W. Zupa, M. Vazzana, M. Teresa Spedicato & G. Lembo. 2019. Basic Knowledge of social hierarchies & physiological profile of reared sea bass *Dicentrarchus labrax* (L.) *Plos One* 14 (1): e0208688. <https://doi.org/10.1371/journal.pone.0208688>

Chiu, P.S., C. Yeong-Tong, H. Cheng-Hsuan, H. Shine-Wei, H. JianWei & Y. Shinn-Lih. 2020. Effects of stocking density on growth performance, survival & size heterogeneity of juvenile longfin batfish *Platax teira*. *Aquaculture Research*. 51 (12).

Danaher, J.J., R.C. Schultz, J.E. Rakocy & D.S. Bailey. 2013. Alternative solids removal for warmwater recirculating raft aquaponic systems. *Journal of The World Aquaculture Society*, 44 (3): 374-383. https://ui.adsabs.harvard.edu/link_gateway/2013JWAS...44..374D/doi:10.1111/jwas.12040

Dawood, A.M., K. Madkour & H. Sewilam. 2023. Polyculture of european sea bass & tilapia in aquaculture systems recirculation with brackish water: effects on performance growth, feed utilization, & health status. *Aquaculture & Fisheries*. <https://doi.org/10.1016/j.aaf.2023.11.001>

Duan, Y., X. Dong, X. Zhang & Z. Miao. 2011. Effects of dissolved oxygen concentration & stocking density on the growth, energy budget & body composition of juvenile japanese flounder, *Paralichthys olivaceus* (Temminck et Schlegel). *Aquaculture Research*. 42 (3): 407-416. <https://doi.org/10.1111/j.1365-2109.2010.02635.x>

Durborow, R.M., D.M. Crosby & M.W. Brunson. 1997. Ammonia in Fish Ponds. SRAC Publication. 463: 1-2. <http://www.aces.edu/dept/fisheries/aquaculture/waterquality.php>

Effendi, H., B.A. Utomo & G.M. Darmawangsa. 2015. Phytoremediation of freshwater crayfish (*Cherax quadricarinatus*) culture wastewater with spinach (*Ipomoea aquatica*) in aquaponic system. *Aquaculture, Aquarium, Conservation & Legislation International. Journal of the Bioflux Society*. 8 (3): 421-430.

Foss, A.K. Imsland, B. Roth, E. Schram & S.O. Stefansson. 2009. Effects of chronic and periodic exposure to ammonia on growth and blood physiology in juvenile turbot (*Scophthalmus maximus*). *Aquaculture*. 296: 45-50. <https://doi.org/10.1016/j.aquaculture.2009.07.013>

Goddard, S. 1996. Feed management in intensive aquaculture. In *Feed Management in Intensive Aquaculture*. Springer US. <https://doi.org/10.1007/978-1-4613-1173-7>

Greaves, K.M & S. Tuene. 2001. Bentuk & konteks perilaku agresif pada budidaya halibut atlantik (*Hippoglossus hippoglossus* L.). *Budidaya Perairan*. 193: 139-147.

Hanif, I.M., I. Effendi, T. Budiardi & I. Datin. 2021. Pengembangan recirculated aquaculture system (RAS) dengan aplikasi nanobubble untuk meningkatkan kinerja pertumbuhan benih ikan kerapu. *Jurnal Akuakultur Indonesia*. 20 (2): 181-190. <https://doi.org/10.19027/jai.20.2.181-190>

Hernández, C., C.E. Lizárraga-Velázquez, D. Contreras-Rojas, E.Y. Sánchez-Gutiérrez, E. Martínez-Montaño, L. Ibarra-Castro & E.S. Peña-Marín. 2021. Fish meal replacement by corn gluten in feeds for juvenile spotted rose snapper (*Lutjanus guttatus*): Effect on growth performance, feed efficiency, hematological parameters, protease activity, body composition, & nutrient digestibility. *Aquaculture*. 531 (September 2020): 735896. <https://doi.org/10.1016/j.aquaculture.2020.735896>

Howerton, R. 2001. Best management practices for Hawaiian aquaculture. *Center for Tropical & Subtropical Aquaculture*. 148: 5-9.

Ijaz, N., Z. Iqbal & J.A. Chaudhary. 2010. Effects of ammonia on growth of *Ctenopharyngodon idella* (Valenciennes) fingerlings. *Punjab University Journal of Zoology*. 25 (1-2): 59-66.

Kim, J.H & J.C. Kang. 2015. The lead accumulation and hematological findings in juvenile rock fish *sebastes schlegelii* exposed to the dietary lead (II) concentrations. *Ecotoxicol Environ Saf*. 115: 33-39. <https://doi.org/10.1016/j.ecoenv.2015.02.009>

Lakani, B.F., M. Sattari & B. Falahatkar. 2013. Effect of different

oxygen levels on growth performance, stress response and oxygen consumption in two weight groups of great sturgeon *Huso huso*. Iranian Journal of Fisheries Sciences. 12: 533-549. <https://doi.org/10.1001.1.15622916.2013.12.3.4.1>

Lemarie, G., A. Dosdat, D. Coves, G. Dutto, E. Gasset & J. Person-Le Ruyet. 2004. Effect of chronic ammonia exposure on growth of european seabass (*Dicentrarchus labrax*) juveniles. Aquaculture. 229 (1-4): 479-491. [https://doi.org/10.1016/S0044-8486\(03\)00392-2](https://doi.org/10.1016/S0044-8486(03)00392-2)

Li, H., Z. Cui, H. Cui, Y. Bai, Z. Yin & K. Qu. 2023. A review of influencing factors on a recirculating aquaculture system: Environmental conditions, feeding strategies, & disinfection methods. Journal of the World Aquaculture Society. 54: 566-602. <https://doi.org/10.1111/jwas.12976>

Li, J., K. Huang, L. Huang, Y. Hua, K. Yu & T. Liu. 2020. Effects of dissolved oxygen on the growth performance, haematological parameters, antioxidant responses & apoptosis of juvenile GIFT (*Oreochromis niloticus*). Aquaculture Research. 51 (8): 3079-3090. <https://doi.org/10.1111/are.14684>

Li, L., Y. Shen, W. Yang, X. Xu & J. Li. 2021. Effect of different stocking densities on fish growth performance: A meta-analysis. Aquaculture. 544 (April): 737152. <https://doi.org/10.1016/j.aquaculture.2021.737152>

Malone, R. 2013. Recirculating aquaculture tank production systems a review of current design practice. Southern Regional Aquaculture Center. (453): 1-12.

Mansour, A.T., W.M. Fayed, A.S. Alsaqifi, H.A. Aly, Y.A. Alkhamis & G.B. Sallam. 2022. Ameliorative effects of zeolite & yucca extract on water quality, growth performance, feed utilization, & hematobiochemical parameters of european seabass reared at highstockingdensities. Aquaculture Reports. 26. https://ui.adsabs.harvard.edu/link_gateway/2022AqRep..2601321M/doi:10.1016/j.aqrep.2022.101321

Marui, T. 2013. An introduction to micro/nano-bubbles & their applications. Journal Systemics, Cybernetics Adn Informatics 11(4):68-73. <https://doi.org/10.1007/978-1-349-04320-0>

Monalisa, S.S & I. Minggawati. 2010. Water quality affects the growth of tilapia (*Oreochromis* sp.) in concrete & tarpaulins. Journal of Tropical Fisheries. 5 (2): 526-530.

Murray, F., J. Bostock & D. Fletcher. 2014. Review of recirculation aquaculture system technologies & their commercial application prepared for highlands & islands enterprise. 44 (March). 1-82.

Mwaura, J.G., C. Wekesa, K. Kelvin, A. Paul, P.A. Ongutu & P. Okoth. 2023. Pangenomics of the cichlid species (*Oreochromis niloticus*) reveals genetic admixture ancestry with potential for aquaculture improvement in kenya. The Journal of Basic & Applied Zoology. 84 (1). <https://doi.org/10.1186/s41936-023-00346-6>

Nguyen, H.Y.N., T.L. Trinh, K. Baruah, T. Lundh & A. Kiessling. 2021. Growth & feed utilisation of nile tilapia (*Oreochromis niloticus*) fed different protein levels in a clear-water or Biofloc-RAS system. Aquaculture. 536. <https://doi.org/10.1016/j.aquaculture.2021.736404>

Olusola, S.E & L.C. Nwanna. 2014. Research article open access growth performance of nile tilapia (*Oreochromis niloticus*) fed processed soybean meal-based diets supplemented with phytase. International Journal of Aquaculture. 4 (8): 48-54.

Pratama, M.A., I.W.Arthana & G.R.A. Kartika. 2021. Fluktuasi kualitas air budidaya ikan nila (*Oreochromis niloticus*) dengan beberapa variasi sistem resirkulasi. Current Trends in Aquatic Science. (1): 102-107.

Rahmawati, A.I., R.N. Saputra, A. Hidayatullah, A. Dwiarto, H. Junaedi, D. Cahyadi, H.K.H. Saputra, W.T. Prabowo, U.K.A. Kartamiharja, H. Shafira, A. Noviyanto & N.T. Rochman. 2021. Enhancement of *Penaeus vannamei* shrimp growth using nanobubble in indoor raceway pond. Aquaculture & Fisheries. 6 (3): 277-282. <https://doi.org/10.1016/j.aaf.2020.03.005>

Randall, D.J & T.K. Tsui. 2002. Ammonia toxicity in fish. Marine pollution bulletin. 45 (1-12): 17-23. [https://doi.org/10.1016/s0025-326x\(02\)00227-8](https://doi.org/10.1016/s0025-326x(02)00227-8)

Sá, M.V.C., 2012. Limnocultura: Limnologia para Aquicultura. UFC, Fortaleza (ISBN: 978-85-7282-523-8).

Santos, G.A., J. Schrama, R.E.P. Mamaug, J.H.W. Rombout & J.A.J. Verreth. 2010. Chronic stress impairs performance, energy metabolism & welfare indicators in european seabass (*Dicentrarchus labrax*). The Combined Effects of Fish Crowding & Water Quality Deterioration Aquaculture, 299, 73-80.

Serizawa E, Akimi, & Chiang M. 2017. Fundamentals & Applications of Micro/Nano Bubbles.

Sheng, Y., Z.Y. Hua, Z. Yang, X.L.L. Wei, Y.J. Sheng, L.H. Jia & Q. Jun. 2019. Effects of acute hypoxic stress on biochemical parameters, immune regulation & metabolic capacity of the blood in genetically improved farmed tilapia (GIFT., *Oreochromis niloticus*). Journal of Applied Ichthyology. 35 (4): 978-986. <https://doi.org/10.1111/jai.13930>

Shin, K.W., S.H. Kim, J.H. Kim, S.D. Hwang & J.C. Kang. 2016. Toxic effects of ammonia exposure on growth performance, hematological parameters, & plasma components in rockfish, *Sebastes schlegelii*, during thermal stress. Fisheries & Aquatic Sciences. 19 (1). <https://doi.org/10.1186/s41240-016-0044-6>

Shofura, H., S. Sumiarto & D. Chilmawati. 2017. The effect of addition "probio-7" on artificial feed on the efficiency utilization of feed, growth and survival rate of gift tilapia fingerlings (*Oreochromis niloticus*). Jurnal Sains Akuakultur Tropis. 11: 10-20.

Slembrouck, J., E. Baras, J. Subagia, L.T. Hung & M. Legendre. 2009. Survival, growth & food conversion of cultured larvae of *Pangasianodon hypophthalmus*, depending on feeding level, prey density & fish density. Aquaculture. 294 (1-2): 52-59. <https://doi.org/10.1016/j.aquaculture.2009.04.038>

Subhan, U., I. Iskandar, Z. Zahidah & I.M. Joni. 2021. Detection of reserve oxygen potential in the present of fine bubbles & its ammonia removal for aquaculture effluent. Materials Science Forum. 1044. MSF:103-11. <https://doi.org/10.4028/www.scientific.net/MSF.1044.103>

Subhan, U., I. Iskandar, Z. Zahidah, C. Panatarani & I.M. Joni. 2022. Effect of ultrafine bubbles on various stocking density of striped catfish larviculture in recirculating aquaculture system. Fishes. 7 (4). <https://doi.org/10.3390/fishes7040190>

Sulastri, S & I. Nurhayati, I. 2014. Pengaruh media filtrasi arang aktif terhadap kekeruhan, warna & TDS pada air telaga di Desa Balongpanggang. Jurnal Teknik Waktu. 12 (1): 43-47. <https://doi.org/10.36456/waktu.v1i21.825>

Tanjung, R.R.M., I. Zidni, Iskandar & J. Junianto. 2019. Effect of difference filter media on recirculating aquaculture system (RAS) on tilapia (*Oreochromis niloticus*) production performance. World Scientific News. 194-208.

Temesgen, T., T. Bui, M. Ham, K.T. Il & H. Park. 2017. Micro & nanobubble technologies as a new horizon for water-treatment techniques: A review. Advances in Colloid & Interface Science. 246: 40-51. <https://doi.org/10.1016/j.cis.2017.06.011>

Tibile, R.M., P.B. Sawant, N.K. Chja, W.S. Lakra, C. Prakash, S.S. Swain & K. Bhagawati. 2016. Effect of stocking density on growth, size variation, condition index & survival of discus, *Symphysodon aequifasciatus* Pellegrin, 1904. Turkish Journal of Fisheries & Aquatic Sciences. 16: 455-462. <https://doi.org/10.4194/1303->

2712-v16_2_25

Timmons, M.B., J.M. Ebeling, F.W. Wheaton, S.T. Summerfelt & B.J. Vinci. 2002. Recirculating Aquaculture Systems, 2nd Edition. Cayuga Aqua Ventures, New York. 769 pgs.

Tsuge, H. 2015. Micro- & Nanobubbles. CRC Press Taylor & Francis Group.

Wang, H & H. Zhang. 2017. Research on the nitrogen removal efficiency & mechanism of deep subsurface wastewater infiltration systems by fine bubble aeration. Ecological Engineering. 107: 33-40. <https://doi.org/10.1016/j.ecoleng.2017.07.005>

Warwick, E.J., J.M. Astuti & W. Hardjosubroto. 1995. Pemuliaan ternak. Gadjah Mada University Press. Yogyakarta. 485.