

JURNAL PERIKANAN

UNIVERSITAS GADJAH MADA

Terakreditasi Ristekdikti No: 158/E/KPT/2021

ISSN: 2502-5066 (Online) ISSN: 0853-6384 (Print) Vol. 26 (2), 147-154 DOI 10.22146/jfs.93662

Agarolytic Bacillus sp. FRAgK1 Screened from Gracilaria (Rhodophyta) Thallus as Probiotic Candidate for Abalone

Faisal Zain Abdullah¹, Indah Istiqomah^{1*}, Alim Isnansetyo¹, Ngurah Sedana Yasa² & Norshida Ismail³

¹Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Sleman Regency, Special Region of Yogyakarta, Indonesia
²Research Center for Fisheries, National Agency for Research and Innovation (BRIN), Bogor, West Java, Indonesia
³School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry. Universiti Sultan Zainal Abidin, Terengganu, Malaysia

*Corresponding author, e-mail: indah_ist@ugm.ac.id

Submitted: 29 January 2024; Revised: 30 July 2024; Accepted: 30 August 2024; Published: 30 December 2024

ABSTRACT Agarolytic bacteria produce agarase, which may aid in the growth of cultured tropical abalone fed natural seaweed. Agarolytic bacteria can come from a variety of sources, such as seawater, abalone intestines, and dead seaweed. This study aimed to isolate, screen, describe, and identify agarolytic bacteria found in red macroalgae. Agarolytic bacteria isolated from Gracilaria segregated from the substrate at Drini Beach, Gunungkidul Regency, were qualitatively described using the agarolytic index, antibiotic susceptibility, acid resistance (pH 4), and safety test. We collected seven agarolytic isolates. FRAgK1 isolate had the highest agarolytic index, was sensitive to antibiotics, resistant to low pH conditions, and non-pathogenic to finfish, making it suitable for use as gut probiotics in abalone. The bacterium was short rod-shaped, Gram-positive, non-motile, lacked catalase and indol, and was unable to ferment lactose or sucrose. The 16S rRNA gene sequence of FRAgK1 was most like *Bacillus subtilis*, however only by 99.43%.

Keyword: Abalone; agarolytic; Bacillus; probiotic;16S rRNA

INTRODUCTION

Abalone is a fishery and aquaculture commodity with growing global market demand, particularly in East Asia (Hernández-Casas et al., 2023). Indonesia is one of the abalone producing countries, with growing business attention to this commodity (Dwi & Hollanda, 2023). Indonesia's abalone production is now concentrated on the Haliotis asinina and Haliotis squamata species through cultivation initiatives (Grandiosa, 2020). Haliotis squamata has been proven to have high resistance to various stressors (Yasa et al., 2020). The main challenge in the abalone culture industry is the slow growth rate. Numerous studies have been performed to increase the growth of abalone (Nurfajrie et al., 2014; Maulidya et al., 2021). It has been observed that the natural diet of macroalgae resulted in better growth rates than existing artificial feed in tropical abalone (Damayanti et al., 2018). Tropical abalone feed in Indonesia is primarily made up of macroalgae found in nature, particularly Gracilaria sp. (Rhodophyta) and Ulva sp. (Chlorophyta) (Yusup et al., 2020).

Several strategies for improving abalone growth performance have been offered, one of which is the use of probiotics (Amin et al., 2020). Probiotics have been extensively examined in the aquaculture business and found to improve growth rates (Cruz et al. 2012; Moonsamy et al., 2020). The application of probiotics to abalone has currently been tried using a microencapsulation approach (Masoomi-Dezfooli et al., 2021). Probiotics may promote organism growth by stabilizing the gut bacterial flora. Red seaweed (Rhodophyta) is a macroalga that mostly contains agar polysaccharides, which are complex hydrocolloid substances. Agar structure is composed of polysaccharide agarose and agaropectin. Agarose (β-D-galactose dan 3,6-anhydrous-α-L-galactose) is the main agar component generally hard to digest. Enzymatic hydrolysis of agar occurs in the digestive tract to aid in the breakdown process of agar by cultured organisms (Chi et al., 2012).

Agarase is the enzyme responsible for agar hydrolysis, and bacteria that use agar as a carbon source are known as agarolytic bacteria (Kang et al., 2013).

Agarolytic bacteria have been obtained from various sources such as seawaters and bottom sediments (Kim et al., 2011; Anggraeni & Ansorge-Schumacher, 2021) abalone digestive tract (Meinita et al., 2008), and seaweed (Kawaroe et al., 2017; Kandasamy et al., 2020). Genera of agarolytic bacteria that have been isolated and produce agarase include Alteromonas, Pseudomonas, Vibrio, Cytophaga, Agarivorans, Thalassomonas, Pseudoalteromonas, Bacillus, dan Acinetobacter (Fu & Kim, 2010). further investigated the use of The agarolytic probiotic Vibrio natriegens has been demonstrated to dramatically boost the growth rate of abalone (Faturrahman et al., 2015). These findings suggest that the use of probiotics and the search for agarolytic bacteria to aid abalone cultivation in Indonesia holds great promise, the purpose of, which observed an increase in growth rate. The purposes of the present study were to isolate, characterize, and identify agarolytic bacteria from red seaweed which may be useful in probiotic searches.

MATERIALS AND METHODS

Collection and isolation of agarolytic bacteria

The research was performed in the Laboratory of Fish Health and Environment, Gadjah Mada University, Indonesia. A couple of pieces of red seaweed (Rhodophyta) washed ashore on Drini Beach, Gunungkidul Regency, Province D.I. Yogyakarta, Indonesia, were collected along with seawater and then taken safely in a cool box to the laboratory. The sample was crushed septically and then enriched in Zobell Marine Broth medium for 48 h at room temperature using the orbital shaker. Isolation was done by inoculating a diluted sample on Zobell Marine Agar and incubating it at 29 °C for 24 h. Colonies of different morphology were purified by the streak plate method. Purified isolates were streaked fortnightly for daily testing and stored in

20% glycerol Marine Broth (v/v).

Qualitative detection of agarase activity

Agarolytic screening was conducted on Zobell marine agar with Lugol's iodine drop based on clear zones development surrounding the bacterial colony (Zilda et al., 2021). All isolates were single pointily inoculated to Marine Agar with only 1.5% agar for a carbon source. Cultures were grown for 72 h to ensure the agar hydrolysis process. The medium then was flooded with 2 ml of Lugol's iodine. Colony diameter and clear zone from iodin were measured.

$$Agarolytic \;\; Index = rac{(Clear \;\; zones \;\; (mm) - COlony \;\; diameter \;\; (mm)}{(Colony \;\; diameter \;\; (mm))}$$

Probiotic candidate test

To ensure the isolate's suitability as probiotic candidates, bacterial isolates were then subjected to an antibiotic susceptibility test, acid tolerance test, and non-pathogenicity test.

Antibiotic susceptibility

Isolates' sensitivity to several antibiotics was done according to previous methods (Clinical and Laboratory Standards Institute, 2015). A 24 h culture of isolates was inoculated to Marine Agar medium and then four discs of antibiotics (Oxytetracycline 30 μ g, Kanamycin 30 μ g, Ampicillin 10 μ g and Enrofloxacin 5 μ g, Reimschuessel *et al.* (2013) were placed on top of the agar. Cultures were grown overnight, and clear zones were checked.

Acid resistance

Bacterial isolate's ability to resist acidic environments in abalone stomachs was simulated with colony growth on low pH media. Marine Broth and Agar medium were adjusted to pH 4 using 1 N HCl. The isolate was then cultured for 72 h in broth before inoculating on agar and incubated for 24 h. Bacterial growth was observed as a colony presence in acidic agar medium.

Safety test

Non-pathogen properties of the isolate were examined by host injection to ensure the safety of bacteria for application in aquatic organisms. Tilapia (Oreochromis sp.), ± 6 g each, was intraperitoneally injected with 0.1 ml of 24 h isolate culture (1.5x10 6 cfu/ml). A phosphate buffer solution was used to dilute isolates and as negative control). We were observed for pathogenicity signs for 7 days and mortality was recorded.

Identification of agarolytic bacteria

Bacterial isolates which displayed a stronger agarolytic index, sensitive to several antibiotics, resistant to a low pH environment and had non-pathogen properties were subjected to molecular identification and phenotypical characterization. For molecular identification, bacterial genomic DNA was extracted with Promega Wizard ® DNA Extraction Kit according to manufacturer instructions. Briefly, 24 h culture was diluted with EDTA and lysed with lysozyme 20 mg/ml and Nuclei Lysis solution. DNA was purified with RNAse A 4 mg/ml and protein precipitation solution, then precipitated using isopropanol and 70% ethanol. The 16S rRNA genes of FRAgK1 were amplified using 27F (5'-AGA GTT TGA TCC TGG CTC AG-3') and 1492R (5'-AGA GTT TGA TCC TGG CTC AG-3') Primer with the target of 1500 bp in a 50 µl volume reaction (25 μl MyTaq Red Mix, 2 μl DNA template, 2 μl primer F, 2 µl primer R, dan NFW) according to Istiqomah et al.

(2019) protocol with 35 denaturation cycle (Primary denaturation 95 °C for 5 minutes followed by 95 °C for 30 s, annealing 55 °C for 30 s, and elongation 72 °C for 60 s. The product was then confirmed on a 1.5% gel electrophoresis and Sanger sequenced (1st BASE by PT. Genetika Science Indonesia service). Genetic similarities of the isolate were determined using BLAST (blastn) then phylogenetic trees were constructed to visualize the genetic similarity between species using the Neighbor-Joining method with a bootstrap value of 1000 in MEGA 11. The phenotypic examination was done by using includes Gram staining, oxidase, catalase, O/F, motility, indole production, ornithine decarboxylase, and various carbohydrate fermentation tests.

RESULTS AND DISCUSSION

Screening of agarolytic bacteria

Two pieces of Rhodophyta, identified as *Gracilaria* sp., were collected and named FRAg1 and FRAg2. Seven isolates were obtained from the sample and entire isolates showed agarolytic activity during the primary screening. Morphology of isolated bacteria (Table 1) showed most bacteria are white, circular, smooth, and small. Several unique biofilm colonies were observed. All isolates showed agarolytic activity with the presence of clear zones after Lugol's iodin spreading with the highest agarolytic index scored by FRAgK1.

This agarolytic character indicates the production of agarase by isolates to break hydrogen bonds in the polysaccharide agarose. The agarolytic index (AI) character of isolates K1 and K2 was 6.3 and 3.3, respectively. Isolate K7, K3, and K6 range from 2.1-2.4, while K4 and K5 isolates have clear zones as large as their biofilm. These results were compared with the agarolytic characters studied by Kandasamy et al. (2020) namely the species Shewanella algae and Microbulbifer elongatus obtained from Kappaphycus sp. and Sargassum sp.; Vibrio natriegens from seaweed and digestive tract of abalone in Lombok (Faturrahman, 2013) isolates N1, N2, BSUC 2, and BSUC4 from Gracilaria salicornia and Gelidium latifolium with IA ranging from 2.27 to 4.28 (Kawaroe et al., 2017). The agarolytic character of the isolate Alteromonas macleodii BC-3.1 isolated from marine sediments in Sulawesi had an index of 10 (Zilda et al., 2021).

Qualitative characteristics of agarase from agarolytic bacteria in an agar medium are related to the molecular mass of agarase, those characteristics are a) clearing zones after Lugol's iodine dispersion; b) visible liquefaction; dan c) depression (Vera et al. 1998). All isolates displayed clearing zones without liquefaction or depression, therefore it is suspected that agarase produced by all isolates has a small molecular mass. Clearing zones are caused by the inability of iodine to react with oligosaccharides resulting from polymers (repetitive structures) on agar that has been broken (Fu & Kim, 2010). The hydrolysis of agar polysaccharides on hydrogen bonds due to agarase enzymes, both α- and β-agarase. Agar that is not hydrolyzed by agarase still has the linear polysaccharide of agar (agarose) that will be coloured brown by Lugol's iodine (I₂KI, iodine-potassium iodide) as seen in Figure 1.

Table 1. Colony morphology and agarolytic index (AI) of isolates.

Isolate	Colour, Shape	Surface, Margin	Size	AI
FRAgK1	White, Circular	Rough, Margin	Small	6.3
FRAgK2	White, Circular	Smooth, Undulate	Small	3.3
FRAgK3	White, Circular	Smooth, Entire	Small	2.4
FRAgK4	White, Irregular	Smooth, Rhizoid	Large	1.0
FRAgK5	White, Irregular	Smooth, Rhizoid	Large	1.0
FRAgK6	White, Circular	Smooth, Entire	Small	2.5
FRAgK7	White, Circular	Smooth, Entire	Small	2.1

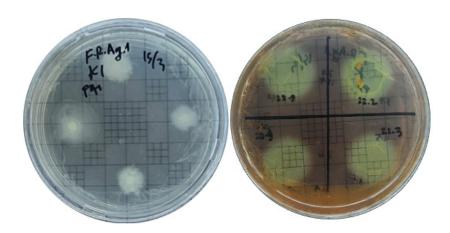


Figure 1. Colony morphology (left) and clear zones (right) were obtained by the bacteria in the agarolytic test.

Probiotic candidate evaluation

Probiotic candidates were mainly selected based on their in vitro activity. The selection criteria for probiotics include the absence of pathogenic bacteria that can harm the host, as well as the absence of antibiotic resistance or virulent genes. Probiotics must reach their intended destination, namely the digestive system, intact by being resistant to acid pH fluctuations, bile acids, strong adhesion, and positive competition against intestinal bacterial colonies. Probiotic bacteria must primarily produce digestive enzymes and be resistant to infections. (Wuertz et al., 2021). In the present study, strain FRAgK6 and FRAgK7 did not exhibit adequate acid resistance, but the remaining isolates exhibited favorable growth on acidic agar as evidenced by colony presence. In antibiotic susceptibility tests, most bacteria were sensitive to commercially available oxytetracycline (30 ug), whereas most

resistance was observed on low concentrations of enrofloxacin (5 ug) and ampicillin (10 ug), indicating that higher concentrations were required to observe bacterial sensitivity. Intermediate susceptibilities were determined by the formation of hazy zones between the isolate and the paper disc. The FRAgK1 strain in the present study was susceptible to oxytetracycline, kanamycin, and ampicillin. This result was similar to the previously described Bacillus sp. (AlGburri et al., 2016). Pathogenic features were discovered on FRAgK4 and FRAgK5, which resulted in 100% mortality in the Oreochromis sp. host, whereas the remaining isolates were non-pathogenic with 0% mortality. Isolate FRAgK1 has been chosen as a probiotic's candidate because of its exceptional qualities, such as agarolytic ability, acid tolerance, nonpathogenicity, and sensitivity to tested antibiotics (Table 2).

Table 2. Low pH resistance, antibiotic susceptibility and safety of the bacteria in the present study.

Isolate	Growth on	Antibi	Antibiotic susceptibility			Fish mortality due to bacterial injection
	pH 4 condition	Otc	Knm	Enf	Amp	(%)
FRAgK1	+	S	S	S	S	0
FRAgK2	+	S	1	I	S	0
FRAgK3	+	S	1	I	R	0
FRAgK4	+	S	R	R	R	100
FRAgK5	+	S	S	R	1	100
FRAgK6	_	S	1	S	R	0
FRAgK7	_	S	1	S	R	0

Otc: oxytetracycline, Knm: kanamycin, Enf: Enrofloxacin, Amp: Ampicillin, S: sensitive, I: intermediate sensitive, R: resistant

Identification of agarolytic bacterium

A partial sequence of the 16S rRNA gene of FRAgK1 was obtained with a length of 1234 bp and was sufficient for BLAST comparison (Table 3). Several known agarolytic bacteria accession numbers were recovered from various publications. The isolate was revealed to have 99.43% similarity over *B. subtilis* strain DSM 10. Genetic similarities of FRAgK1 were presented by a phylogenetic tree in Figure 2 with known agarolytic bacteria and most related species. A 99.5% or higher threshold of the 16S rRNA gene sequence is used to include a bacterium as a strain of species, thus the isolate is named *Bacillus* sp. FRAgK1. Further molecular identification by using multilocus analysis is required to confirm the bacterial identification to species level.

Bacillus subtilis is a member of the phylum Firmicutes, Class Bacilli, Order Bacillales, Family Bacillaceae, and Genus Bacillus (Elshaghabee et al., 2017). The bacterium has become a model of the genus Bacillus which is highly researched and capable of making biofilms. B subtilis is found in various habitats, including land (terrestrial), plant surfaces, animal digestion, fresh waters, to marine waters (Earl et al., 2008). The genus Bacillus

is generally important bacteria in environment (Borriss et al., 2020), a potential probiotics candidate (Andriani et al., 2017) that had been isolated from the gut of various freshwater and marine organisms, e.g.: tilapia, carp fish, shrimp, and abalone (Nayak, 2020).

Bacillus subtilis can secrete a variety of enzymes which make this species often used in industry and probiotics. Latorre et al. (2016) described the four types of enzymes produced naturally by these bacteria, namely: α -amylase, protease, lipase, and phytase. B. subtilis has been observed to have an agarolytic character and produce extracellular agarase which is stable to environmental conditions with the highest enzyme activity value of 2.3 U per litre (Saraswathi et al., 2011). The use of Bacillus subtilis in aquaculture has been investigated as a probiotic, bioremediation, synbiotic, and biocontrol agent (Nayak, 2020). In the field of probiotics, B. subtilis has been observed to be capable of producing digestive enzymes, antimicrobial substances and exopolymeric substances, increasing the synergy between the gastrointestinal bacterial community; and competing with pathogenic bacte-

Table 3. BLAST similarity of Bacillus sp. FRAgK1 isolate to references.

	Query	Per.		
Species	cov. (%)	Ident. (%)	Accession number [Ref.]	
Most similarity				
Bacillus subtilis strain DSM 10	99	99.43	NR027552.1	
Bacillus subtilis strain BCRC 10255	99	99.43	NR116017.1	
Bacillus inaquosorum strain BGSC	99	99.35	NR104873.1	
Bacillus subtilis subsp. subtilis strain 168	99	99.27	NR102783.2	
Bacillus spizizenii strain NRRL B-23049	99	99.27	NR024931.1	
Known agarolytic bacteria				
Bacillus sp. strain MK03	98	94.62	AB062678.1 (Suzuki et al., 2003)	
Microbulbifer sp. strain SD-1	81	82.47	(Kim et al., 2011)	
Microbulbifer elongatus strain PORT2	81	82.50	MH622756.1 (Anggraeni & Ansorge-Schumacher, 2021)	
Alteromonas macleodii strain BC31	81	82.51	MT325874.1 (Zilda et al., 2021)	
Microbulbifer elongatus strain JAMB A7	81	82.39	AB107975.1 (Ohta et al., 2004)	
Alteromonas macleodii GNUM-08120	81	82.29	JN578475.1 (Chi et al., 2012)	
Microbacterium sp. strain SELA4	83	81.69	MG203882.1 (Parashar & Kumar, 2018)	
Streptomyces coelicolor A3(2)	84	81.00	NC003888.3 (Temuujin et al., 2011)	
Vibrio astriarenae strain HN897	81	81.26	CP047475.1 (Liu et al., 2020)	
Vibrio sp. strain V134	81	81.04	EF100710.1 (Zhang & Sun, 2007)	
Thalassomonas agarivorans JAMB A33	83	80.12	AB162002.1 (Ohta et al., 2005)	
Pseudoalteromonas sp. CKT1	82	79.88	AB036070.2 (Chiura & Kita-Tsukamoto, 2000)	
Agarivorans sp. LQ48	82	79.67	FJ593496.1 (Long et al., 2009)	
Pseudoalteromonas antarctica strain N1	84	78.90	AF045560.1 (Vera et al., 1998)	
Agarivorans albus strain YKW-34	63	80.41	EU084496.1 (Fu et al., 2008)	
Flammeovirga yaeyamensis strain MY04	81	77.04	AY849869.1 (Han et al., 2012)	
Flammeovirga yaeyamensis strain YT	81	77.04	(Yang et al., 2011)	
Tamlana sp. Aga22	81	75.54	AM946640.1 (Zhao et al., 2009)	

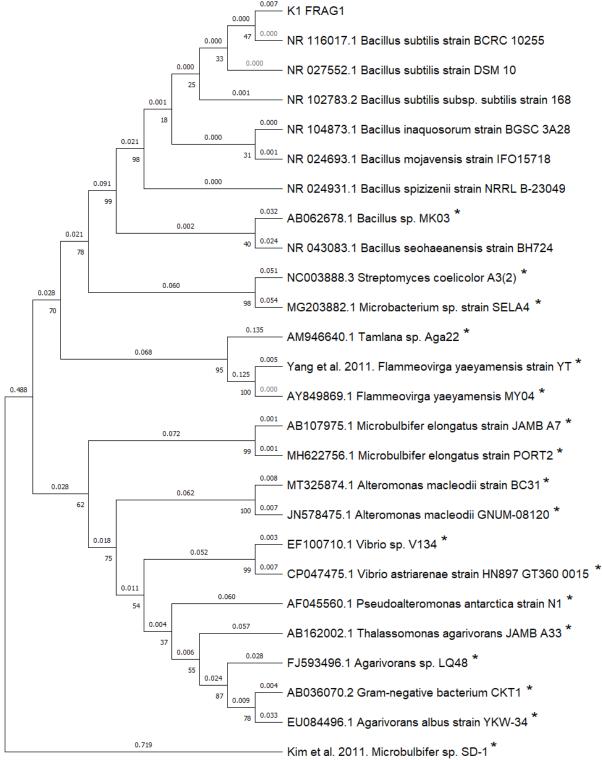


Figure 2. Phylogenetic tree of FRAgK1 strain with highly similar strains and known agarolytic bacteria (*).

Phenotypic characterization found that the FRAgK1 was a short-rod Gram-positive bacteria that produces oxidase, ornithine decarboxylase and use glucose as a source of carbon (Table 4). The bacterium did not motile, did not produce catalase and indol, and could not ferment lactose and sucrose. The non-motile character supporting to the suggestion that the present bacterium might be new species of Bacillus because it is different to the character of *B. subtilis* (Logan & Vos, 2015).

A further study to determine quantitatively agarase production and optimum conditions for *Bacillus* sp. FRAgK1 need to be done. An in vivo test to confirm the coloniza-

tion ability of the FRAgK1 on *Gracilaria* sp. thalli (Rosenberg et al., 2016) by metagenomic analysis and the bacterial ability to digest the agar contents is interesting to confirm. Moreover, further characterization based on the other criteria for aquaculture probiotics is also required. The present bacteria might be a good candidate for probiotics to support the red seaweed digestion process by the abalone stomach to enhance the growth rate in aquaculture.

Table 4. Phenotypic characteristics of FRAgK1 are isolated with reference.

Phenotype	FRagK1	Bacillus subtilis (Logan & Vos, 2015)
Cell morphology	Short rod	rod
Gram	+	+
Motility	_	+
Oxidase	+	d
Catalase	-	+
Indole	_	-
Ornithine decarboxylase	+	-
Glucose	+	+
Lactose	-	-
Sucrose	_	+

d: dependable on the strain.

CONCLUSION AND RECOMMENDATION

Conclusion

An agarolytic bacterium, *Bacillus* sp. FRAgK1 obtained from red seaweed *Gracilaria* sp. is a potential gut probiotic for abalone with an agarolytic index of 6.3, acid resistance, antibiotic sensitivity, and non-pathogenic features.

Recommendation

Further investigation into the probiotic application trial in abalone culture is essential.

AUTHORS' CONTRIBUTIONS

FZA conducted the research and wrote the manuscript; II design the study, analysed the data, and wrote the manuscript; AI examined the data and reviewed the manuscript; NSY designed the study and reviewed the manuscript; NI examined the data and reviewed the manuscript.

ACKNOWLEDGEMENT

This research was funded by Program Rekognisi Tugas Akhir Universitas Gadjah Mada (number: 3550/UN-1.P.III/Dit-Lit/PT.01.05/2022) to Indah Istiqomah, Ph.D.

REFERENCES

- AlGburri, A., A. Volski, C. Cugini, E.M. Walsh, V.A. Chistyakov, M.S. Mazanko, A.B. Bren, L.M.T. Dicks & M.L. Chikindas. 2016. Safety properties and probiotic potential of *Bacillus subtilis* KATMIRA1933 and *Bacillus amyloliquefaciens* B-1895. Advances in Microbiology. 6 (6): 432-452. http://dx.doi.org/10.4236/aim.2016.66043
- Amin, M., C.J.S. Bolch, M.B. Adams & C.M. Burke. 2020. Growth enhancement of tropical abalone, *Haliotis asinina* L, through probiotic supplementation. Aquaculture International. 28: 463-475. https://doi.org/10.1007/s10499-019-00473-4
- Andriani, Y., R. Fitri, E. Rochima & S.D. Fakhrudin. 2017. Characterization of *Bacillus subtilis* and *B. licheniformis* potentials as probiotic bacteria in vanamei shrimp feed (*Litopenaeus vannamei* Boone, 1931). Nusantara Bioscence. 9 (2): 188-193. https://doi.org/10.13057/nusbiosci/n090214
- Anggraeni, S.R & M.B. Ansorge-Schumacher. 2021. Characterization and modeling of thermostable GH50 agarases from *Microbulbifer elongatus* PORT2. Marine Biotechnology. 23 (5): 809-820. https://doi.org/10.1007%2Fs10126-021-10065-0
- Borriss, R. 2020. Chapter 7: *Bacillus*. Beneficial Microbes in Agro-Ecology. 107-132. https://doi.org/10.1016/B978-0-12-

823414-3.00007-1

- Chi, W-J., J-H. Lim, D.Y. Park, M-C. Kim, C-J. Kim, Y-K. Chang & S-K. Hong. 2013. Isolation and characterization of a novel agar degrading bacterium, *Alteromonas macleodii* subsp GNUM08120 from red macroalgae. Korean J. Microbiol. Biotechnol. 41 (1): 8-16.
- Chi, W-J., Y-K. Chang & S-K. Hong. 2012 Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94 (4): 917-930. https://doi.org/10.1007/s00253-012-4023-2
- Chiura, H.X & K. Kita-Tsukamoto. 2000. Purification and characterisation of a novel agarase secreted by a marine bacterium Pseudoalteromonas sp. strain CKT1. Microbes and Environment. 15 (1): 11-22. https://doi.org/10.1264/isme2.2000.11
- Clinical and Laboratory Standards Institute. 2015. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standards, 12th edition CLSI Document M02-A12 35 (1). Clinical and Laboratory Standards Institute, Pennsylvania.
- Cruz, P.M., A.L. Ibanez, O.A.M. Hermosillo & H.C.R. Saad. 2012 Use of Probiotics in Aquaculture. Review Article ISRN Microbiology. 16: 916845. 1-13. https://doi.org/10.5402/2012/916845
- Damayanti, D., D.S. Yusup & I. Rusdi. 2018. Pengaruh pemberian pakan beberapa alga makro (*Ulva* sp., *Gracilaria* sp., *Halymenia* sp.) terhadap pertumbuhan abalon *Haliotis squamata*. Jurnal Metamorfosa. 5 (2): 189-197. https://doi.org/10.24843/metamorfosa.2018.v05.i02.p08
- Dwi, E.D.S & A.K. Hollanda. 2023. An overview of the Indonesian abalone industry: Production, market, challenges, and opportunities. BIO Web of Conferences. 70: 02003. EDP Sciences. https://doi.org/10.1051/bioconf/20237002003
- Earl, A.M., R. Losick & R. Kolter. 2008. Ecology and genomics of *Bacillus subtilis*. Trends Microbiol. 16 (6): 269-275. https://doi.org/10.1016/j.tim.2008.03.004
- Elshaghabee, F.M.F., N. Rokana, R.D. Gulhane, C. Sharma & H. Panwar. 2017. *Bacillus* as potential probiotics status, concerns, and future perspectives. Front. Microbiol. 10 (8): 1490. https://doi.org/10.3389/fmicb.2017.01490
- Faturrahman, F. 2013. Seleksi parsial probiotik untuk pertumbuhan abalon isolasi selektif, resistensi antibiotik dan patogensitas. Jurnal Ilmiah Pendidikan Biologi, Biologi Edukasi. 5 (1): 1-7.
- Faturrahman, F., A. Meryandini, M.Z. Junior & I. Rusmana. 2015. The role of agarolytic bacteria in enhancing physiological function for digestive system of abalone (*Haliotis asinina*). Journal of Applied Environmental and Biological Sciences. 5 (5): 49-56.

- Fu, X.T.&S.M. Kim. 2010. Agarase: Review of major sources, categories, purification method, enzyme characteristics and applications. Marine Drugs. 8 (1): 200-218. https://doi.org/10.3390/md8010200
- Fu, X.T., H. Lin & S.M. Kim. 2008. Purification and characterization of a novel β-agarase, AgaA34, from Agarivorans albus YKW-34. Applied Microbiology and Biotechnology. 78: 265-273. https://doi.org/10.1007/s00253-007-1303-3
- Grandiosa, R. 2020. Increasing awareness of abalone culture to support sus-tainable aquaculture in Indonesia. GSJ. 8 (6). 315-321. https://www.globalscientificjournal.com/journal_volume8 issue6 June 2020 edition.html
- Han, W., J. Gu, Q. Yan, J. Li, Z. Wu, Q. Gu & Y. Li. 2012. A polysaccharide-degrading marine bacterium *Flammeovirga* sp. MY04 and its extracellular agarase system. J Ocean Univ China. 11 (3): 375-382. https://doi.org/10.1007/s11802-012-1929-3
- Hernández-Casas, S., J.C. Seijo, L.F. Beltrán-Morales, A. Hernández-Flores, F. Arreguín-Sánchez & G. Ponce-Díaz. 2023. Analysis of supply and demand in the international market of major abalone fisheries and aquaculture production. Marine Policy. 148: 105405. https://doi.org/10.1016/j.marpol.2022.105405
- Istiqomah, I., A. Isnansetyo, I.N. Atitus & A.F. Rohman. 2019. Isolasi bakteri selulolitik *Staphylococcus* sp. JC20 dari saluran pencernaan gurita (*Octopus* sp.) untuk kandidat probiotik ikan. Jurnal Perikanan Universitas Gadjah Mada. 21 (2): 93-98. https://doi.org/10.22146/ifs.39525
- Kandasamy, K.P., R.K. Subramanian, R. Srinivasan, S. Ragunath, G. Balaji, M. Gracy & K. Latha. 2020. Shewanella algae and Microbulbifer elongatus from marine macro-algae isolation and characterization of agar-hydrolysing bacteria. Access Microbiology. 2 (11): 1-6. https://doi.org/10.1099/acmi.0.000170
- Kang, J. Y., H-Y. Song & J-M. Kim. 2023. Agarolytic pathway in the newly isolated *Aquimarina* sp. bacterial strain ERC-38 and characterization of a putative β-agarase. Marine Biotechnology. 25 (2): 314-327. https://doi.org/10.1007/s10126-023-10206-7
- Kawaroe, M., I. Pratiwi & A. Sunudin. 2017. Isolation and characterization of marine bacteria from macroalgae *Gracilaria* salicornia and Gelidium latifolium on agarolitic activity for bioethanol production. IOP Conf. Series Earth and Environmental Science. 65 (1): 012025. https://doi.org/10.1088/1755-1315/65/1/012025
- Kim, D-K., Y-R. Jang, K-H. Kim, M-N. Lee, A-R. Kim, E-J. Jo, T-H. Byun, E-T. Jeong, H-J. Kwon, B-W. Kim & E-W. Lee. 2011 Isolation and culture properties of a thermophilic agarase-producing strain, *Microbulbifer* sp. SD-1. Fisheries and Aquatic Sciences. 14 (3:) 186-191. https://doi.org/10.5657/FAS.2011.0186
- KKP. 2018. Kelautan dan Perikanan Dalam Angka Tahun 2018 Pusat Data Statistik dan Informasi Kementerian Kelautan dan Perikanan Indonesia.
- Latorre, J.D., X. Hernandez-Velasco, R.E. Wolfenden, J.L. Vicente, A.D. Woldfenden, A. Menconi, L.R. Bielke, B.M. Hargis & G. Tellez. 2016. Evaluation and selection of *Bacillus* species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct fed microbial candidates for poultry. Front. Vet. Sci. 3: 395. https://doi.org/10.3389/fvets.2016.00095
- Liu, Y., X. Jin, C. Wu, X. Zhu, M. Liu, D.R. Call & Z. Zhao. 2020. Genome-wide identification and functional characterization of β-Agarases in *Vibrio astriarenae* strain HN897. Frontiers in Microbiology. 11. https://doi.org/10.3389/fmicb.2020.01404
- Logan, N.A & P.D. Vos. 2015. *Bacillus*. Bergey's Manual of Systematics of Archaea and Bacteria. https://doi.org/10.1002/9781118960608.gbm00530

- Long, M., Z. Yu & X. Xu. 2009. A novel β-Agarase with high pH stability from marine *Agarivorans* sp. LQ48. Marine Biotechnology. 12: 62-69. https://doi.org/10.1007/s10126-009-9200-7
- Masoomi-Dezfooli, S., N. Gutierrez-Maddox, A.C. Alfaro & A. Seyfoddin. 2021. Development of a microencapsulated probiotic delivery system for New Zealand black-footed abalone (*Haliotis iris*). Pharmaceutical Development and Technology. 26 (4): 390-402. https://doi.org/10.1080/10837450.2021.1876090
- Maulidya, K.D., P.A. Wiradana, T. Putranto & A. Soegianto. 2021. Abalone (*Haliotis squamata*) enlargement technique using a floating net cage method as a preliminary study of mariculture. Ecology Environment and Conservation. 27 (2): 685-689. https://scholar.unair.ac.id/en/publications/abalone-haliotis-squamata-enlargement-technique-using-a-floating-
- Meinita, M.D.N., H-Q. Luyen, S-Y. Hwang, J-Y. Kang, D-K. Jin & Y-K. Hong. 2008. Isolation of the agarolytic bacterium *Vibrio cyclotrophicus* DAG-130 from abalone gut. Fisheries and Aquatic Sciences. 11 (2): 76-81. https://doi.org/10.5657/fas.2008.11.2.076
- Moonsamy, G., N.N. Zulu, R. Lalloo, S. Ramchuran & S. Singh. 2020. Large-scale production of an abalone probiotic, *Vibrio midae*, isolated from a South African abalone, *Halitotis midae* for use in aquaculture. Biocatalysis and Agricultural Biotechnology. 29: 101794. https://doi.org/10.1016/j.bcab.2020.101794
- Nayak, S.K. 2020. Multifaceted applications of probiotic *Bacillus* species in aquaculture with special reference to *Bacillus* subtilis. Reviews in Aquaculture. 13 (2): 862-906. https://doi.org/10.1111/raq.12503
- Nurfajrie, N., S. Suminto & R. Rejeki. 2014. Pemanfaatan berbagai jenis makroalga untuk pertumbuhan abalon (*Haliotis Squamata*) dalam budidaya pembesaran Journal of Aquaculture Management and Technology. 3 (4): 142-150. https://ejournal3.undip.ac.id/index.php/jamt/article/view/6651
- Ohta, Y., Y. Hatada, M. Miyazaki, Y. Nogi, S. Ito & K. Horikoshi. 2005. Purification and characterization of a novel a-agarase from a Thalassomonas sp. Current Microbiology. 50: 212-216. https://doi.org/10.1007/s00284-004-4435-z
- Ohta, Y., Y. Hatada, Y. Nogi, M. Miyazaki, Z. Li, M. Akita, Y. Hidaka, S. Goda, S. Ito & K. Horikoshi. 2004. Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from a novel species of deep-sea *Microbulbifer*. Appl. Microbiol. Biotechnol. 64 (4): 505-514. https://doi.org/10.1007/s00253-004-1573-γ
- Parashar, S & N. Kumar. 2018. Studies on agarolytic bacterial isolates from agricultural and industrial soil. Iranian Journal of Microbiology. 10 (5): 324-333. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc6339996/
- Reimschuessel, R., R.A. Miller & C.M. Gieseker. 2013. Antimicrobial drug use in aquaculture. Antimicrobial Therapy in Veterinary Medicine, Fifth Edition. John Wiley and Sons. 39. https://doi.org/10.1002/9781118675014.ch39
- Rosenberg, G., N. Steinberg, Y. Oppenheimer-Shaanan, T. Olender, S. Doron, J. Ben-Ari, A. Sirota-Madi, Z. Bloom-Ackermann & I. Kolodkin-Gal. 2016. Not so simple, not so subtle the interspecies competition between *Bacillus simplex* and *Bacillus subtilis* and its impact on the evolution of biofilms. Biofilms and Microbiomes. 2: 15027. https://doi.org/10.1038/npibiofilms.2015.27
- Saraswathi, S., V. Vasanthabharathi, V. Kalaiselvi & S. Jayalakshmi. 2011. Characterization and optimization of agarase from an estuarine *Bacillus subtilis*. African Journal of Microbiology Research. 5 (19): 2960-2968. https://doi.org/10.5897/AJMR11.480
- Suzuki, H., Y. Sawai, T. Suzuki & K. Kawai. 2003. Purification and

- characterization of an extracellular β -agarase from Bacillus sp. MK03. J. Biosci. Bioeng. 93 (4): 456-463. https://doi.org/10.1016/S1389-1723(03)80063-4
- Temuujin, U., W-J. Chi, S-Y. Lee, Y-K. Chang & S-K. Hong. 2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2) an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. 92 (4): 749-759. https://doi.org/10.1007/s00253-011-3347-7
- Vera, J., R. Alvarez, E. Murano, J.C. Slebe & O. Leon. 1998. Identification of a marine agarolytic *Pseudoalteromonas* isolate and characterization of Its extracellular agarase Applied and Environmental Biology. 64 (11): 4378-4383. https://doi.org/10.1128/AEM.64.11.4378-4383.1998
- Wuertz, S., A. Schroeder & K.M. Wanka. 2021. Probiotics in Fish Nutrition Long-standing household remedy or native nutraceuticals?. Water. 13 (10):1-19. https://doi.org/10.3390/w13101348
- Yang, J-I., L-C. Chen, Y-Y. Shih, C. Hsieh, C-Y. Chen, W-M. Chen & C-C. Chen. 2011. Cloning and characterization of β-agarase AgaYT from *Flammeovirga yaeyamensis* strain YT. Journal of Bioscience and Bioengineering. 112 (3): 225-232. https://doi.org/10.1016/j.jibiosc.2011.05.016
- Yasa, N.S., M. Murwantoko, N.S.N. Handayani, G. Triastutik & L. Anshory. 2020. Physiological, biochemical and HSP70 and HSP90 gene expression profiles of tropical abalone *Haliotis* squamata in response to *Vibrio alginolyticus* infection. Indonesian Journal of Biotechnology. 25 (1): 12-20. https://doi.org/10.22146/ijbiotech.51322
- Yusup, D.S., I.G. Mahardika, I.W. Suarna & I.N.A. Giri. 202). Feeding preference and growth response of early adults abalone, Haliotis squamata on some macroalgae. Biodiversitas Journal of Biological Diversity. 21 (9). 4369-4375. https://doi.org/10.13057/biodiv/d210956
- Zhang, W-W & L. Sun. 2007. Cloning, characterization, and molecular application of a beta agarase gene from *Vibrio* sp. V134. Appl. Environ. Microbiol. 73: 2825-2831. https://doi.org/10.1128/AEM.02872-06
- Zhao, J., B. Lu, C. Ke, M. Yang & K. Kang. 2009. Isolation and identification of a bacterium MA-B22 producing agarase and the optimal cultivation of enzyme production. Journal of Fisheries of China. 33 (6): 1037-1043.
- Zilda, D.W., G. Patantis G, M.T. Sibero & Y.N. Fawzya. 2021. Penapisan dan identifikasi bakteri penghasil agarase dari sampel sedimen Laut Bara Caddi, Sulawesi Selatan, South Sulawesi. JPB Kelautan dan Perikanan. 16 (1): 11-21. http://dx.doi.org/10.15578/jpbkp.v16i1.699