Pengaruh Densitas Topografi Terhadap Ketelitian Model Geoid: Studi kasus Pulau Sulawesi

https://doi.org/10.22146/jgise.102122

Leni Sophia Heliani(1*), Hendra Noviantara(2)

(1) Department of geodetic Engineering, Universitas Gadjah Mada
(2) Department of geodetic Engineering, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Penentuan model geoid teliti penting untuk mendapatkan tinggi ortometrik dari tinggi Global Navigation Satellite System (GNSS).   Salah satu faktor yang mempengaruhi ketelitian model geoid adalah densitas topografi. Umumnya, penentuan model geoid pada formula Stokes menggunakan densitas massa standar sebesar 2670 kg/m3. Namun, densitas topografi sesungguhnya  bervariasi. Saat ini, tersedia model densitas global, salah satunya yang dibuat University of New Brunswick (UNB) dengan resolusi 30”. Penelitian ini bertujuan untuk menganalisis pengaruh penggunaan densitas topografi dari densitas standar dan model global UNB terhadap ketelitian model geoid yang dihasilkan. Pemodelan geoid  menggunakan metode Kungliga Tekniska Högskolan (KTH), dengan studi kasus Pulau Sulawesi, salah satu pulau yang memiliki variasi topografi yang sangat tinggi. Hasil validasi menggunakan data co-site GNSS-levelling menunjukan perubahan ketelitian yang tidak signifikan pada level milimeter, untuk geoid menggunakan densitas standar (NStandar) dan model global UNB (NUNB). Nilai standar deviasi dan RMS dari model NStandar sebesar 12,65 cm. Sedangkan nilai standar deviasi dan RMS dari model NUNB sebesar 12,58 cm dan 12,59 cm. Hal ini dikarenakan titik-titik validasi terletak pada lokasi dengan topografi yang tidak terlalu bervariasi. Selanjutnya, dilakukan pendetailan hitung perbedaan nilai geoid NStandar dan NUNB, diperoleh selisih antara -20 s.d. 30 cm di wilayah pegunungan. Perbedaan dalam level desimeter ini menunjukan efek yang signifikan dari densitas topografi terhadap ketelitian geoid, sehingga tidak bisa diabaikan, terutama untuk wilayah dengan variasi topografi yang tinggi.

Keywords


Geoid, Stokes Modification, KTH, Sulawesi Island, density variation

Full Text:

PDF


References

Abbak, R. A. (2020). Effect of a high-resolution global crustal model on gravimetric geoid determination: A case study in a mountainous region. Studia Geophysica et Geodaetica, 64(4), 436–451. https://doi.org/10.1007/s11200-020-1023-z

Abbak, R. A., Erol, B., & Ustun, A. (2012). Comparison of the KTH and remove-compute-restore techniques to geoid modelling in a mountainous area. Computers and Geosciences, 48, 31–40. https://doi.org/10.1016/j.cageo.2012.05.019

Abbak, R. A., Sjöberg, L. E., Ellmann, A., & Ustun, A. (2012). A precise gravimetric geoid model in a mountainous area with scarce gravity data: A case study in central Turkey. Studia Geophysica et Geodaetica, 56(4), 909–927. https://doi.org/10.1007/s11200-011-9001-0

Abbak, R. A., & Ustun, A. (2015). A software package for computing a regional gravimetric geoid model by the KTH method. Earth Science Informatics, 8(1), 255–265. https://doi.org/10.1007/s12145-014-0149-3

Andersen, O. B., & Knudsen, P. (2019). The DTU17 Global Marine Gravity Field: First Validation Results. Dalam S. P. Mertikas & R. Pail (Ed.), Fiducial Reference Measurements for Altimetry (Vol. 150, hlm. 83–87). Springer International Publishing. https://doi.org/10.1007/1345_2019_65

Baillie, P., & Decker, J. (2022). Enigmatic Sulawesi: The tectonic collage. Berita Sedimentologi, 48(1), 1–30. https://doi.org/10.51835/bsed.2022.48.1.388

Daras, I., Fan, H., Papazissi, K., & Fairhead, J. D. (2010). Determination of a Gravimetric Geoid Model of Greece Using the Method of KTH. Dalam S. P. Mertikas (Ed.), Gravity, Geoid and Earth Observation (Vol. 135, hlm. 407–413). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10634-7_54

Ecker, E., & Mittermayer, E. (1969). Gravity corrections for the influence of the atmosphere. Boll Geofis Teor Appl, 11, 70–80.

Ellmann, A., & Sjöberg, L. (2004). Ellipsoidal correction for the modified Stokes formula. Boll Geod Sci Aff, 63.

Foroughi, I., Vaníček, P., Kingdon, R. W., Goli, M., Sheng, M., Afrasteh, Y., Novák, P., & Santos, M. C. (2019). Sub-centimetre geoid. Journal of Geodesy, 93(6), 849–868. https://doi.org/10.1007/s00190-018-1208-1

Gatti, A., Reguzzoni, M., Migliaccio, F., & Sansò, F. (2016). Computation and assessment of the fifth release of the GOCE-only space-wise solution. https://doi.org/10.13140/RG.2.2.28625.94569

Harkness, W. (2012). The Solar Parallax and Its Related Constants: Including the Figure and Density of the Earth. Nabu Press.

Heiskanen, W. A., & Moritz, H. (1967). Physical geodesy. Bulletin géodésique, 86(1), 491–492. https://doi.org/10.1007/BF02525647

Heliani, L. S. (2016). Evaluation of global geopotential model and its application on local geoid modelling of Java Island, Indonesia. AIP Conference Proceedings. https://doi.org/10.1063/1.4958534

Hofmann-Wellenhof, B., & Moritz, H. (2005). Physical geodesy. Dalam Physical Geodesy. https://doi.org/10.1007/b139113

Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical geodesy (Second, corrected edition). Dalam Physical Geodesy (Second, corrected edition). https://doi.org/10.1007/978-3-211-33545-1

Karaaslan, Ö., Tanır Kayıkçı, E., & Aşık, Y. (2016). Comparison of local geoid height surfaces, in the province of Trabzon. Arabian Journal of Geosciences, 9(6), 431. https://doi.org/10.1007/s12517-016-2470-2

Muhammad, S., & Zulfiqar, A. (2015). An optimal approach for the development of precise regional geoid in Pakistan through a comparative study with least square collocation and FFT techniques. Arabian Journal of Geosciences, 8(9), 7481–7498. https://doi.org/10.1007/s12517-014-1693-3

Nugraha, A. M. S., Hall, R., & BouDagher-Fadel, M. (2022). The Celebes Molasse: A revised Neogene stratigraphy for Sulawesi, Indonesia. Journal of Asian Earth Sciences, 228, 105140. https://doi.org/10.1016/j.jseaes.2022.105140

Pahlevi, A., Syafarianty, A., Susilo, S., Lumban-Gaol, Y., Putra, W., Triarahmadhana, B., Bramanto, B., Muntaha, R., El Fadhila, K., Ladivanov, F., Amrossalma, H., Islam, L., Novianto, D., Huda, S., Wismadi, T., Efendi, J., Ramadhan, A., Wijaya, D., Prijatna, K., & Pramono, G. (2024). Geoid Undulation Model as Vertical Reference in Indonesia. Scientific Data, 11(1), 822. https://doi.org/10.1038/s41597-024-03646-w

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4), 2011JB008916. https://doi.org/10.1029/2011JB008916

Sakil, F. F., Erol, S., Ellmann, A., & Erol, B. (2021). Geoid modeling by the least squares modification of Hotine’s and Stokes’ formulae using non-gridded gravity data. Computers & Geosciences, 156, 104909. https://doi.org/10.1016/j.cageo.2021.104909

Schwarz, K. P., Sideris, M. G., & Forsberg, R. (1990). The use of FFT techniques in physical geodesy. Dalam Geophysical Journal International. https://doi.org/10.1111/j.1365-246X.1990.tb00701.x

Sheng, M., Shaw, C., Vanicek, P., Kingdon, R. W., Santos, M. C., & Foroughi, I. (2018). Introducing UNB’s High-Resolution Global Laterally Varying Topographical Density Model. 2018, G51F-0538. AGU Fall Meeting Abstracts.

Sjöberg, L. E. (1999). The IAG approach to the atmospheric geoid correction in Stokes’ formula and a new strategy. Journal of Geodesy, 73(7), 362–366. https://doi.org/10.1007/s001900050254

Sjöberg, L. E. (2003a). A general model for modifying Stokes’ formula and its least-squares solution. Journal of Geodesy, 77(7–8), 459–464. https://doi.org/10.1007/s00190-003-0346-1

Sjöberg, L. E. (2003b). A solution to the downward continuation effect on the geoid determined by Stokes’ formula. Journal of Geodesy, 77(1–2), 94–100. https://doi.org/10.1007/s00190-002-0306-1

Sjöberg, L. E. (2007). The topographic bias by analytical continuation in physical geodesy. Journal of Geodesy, 81(5), 345–350. https://doi.org/10.1007/s00190-006-0112-2

Sjöberg, L. E., Gidudu, A., & Ssengendo, R. (2015). The Uganda gravimetric geoid model 2014 computed by the KTH method. Journal of Geodetic Science. https://doi.org/10.1515/jogs-2015-0007

Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. (2019). Global Bathymetry and Topography at 15 Arc Sec: SRTM15+. Earth and Space Science, 6(10), 1847–1864. https://doi.org/10.1029/2019EA000658

Yilmaz, N. (2024). Impact of the UNB topographical density model on precise geoid determination in the high mountainous region. Survey Review, 1–8. https://doi.org/10.1080/00396265.2024.2379653



DOI: https://doi.org/10.22146/jgise.102122

Article Metrics

Abstract views : 580 | views : 230

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal of Geospatial Information Science and Engineering (JGISE) ISSN: 2623-1182 (Online) Email: jgise.ft@ugm.ac.id The Contents of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.