Ekstraksi Deformasi Koseismik 2.5-D Menggunakan Data Multiple SAR Sentinel-1 (Studi Kasus Gempa Bumi Iran 14 November 2021)
Gani Mahendra(1*), Hidayat Panuntun(2)
(1) Gadjah Mada University
(2) Gadjah Mada University
(*) Corresponding Author
Abstract
Teknik Synthetic Aperture Radar (SAR) interferometri merupakan salah satu metode yang digunakan untuk pengamatan deformasi permukaan. Teknik SAR interferometri memiliki kelebihan yaitu dapat mengukur besarnya deformasi permukaan hingga satuan milimeter. Walaupun teknik SAR Interferometri memiliki kelebihan, teknik SAR interferometri tetap memiliki kekurangan yaitu hanya dapat memberikan informasi deformasi permukaan 1 dimensi (vertikal) saja. Kelemahan tersebut mengakibatkan teknik SAR interferometri sulit digunakan untuk membantu dalam proses interpretasi sumber dan mekanisme deformasi yang terjadi. Penelitian ini bertujuan untuk ekstraksi deformasi permukaan 2.5-D (2.5 Dimensi) akibat gempa bumi Iran 14 November 2021. Data yang digunakan untuk uji algoritma 2.5-D adalah citra SAR Sentinel-1 sebanyak 2 pasang citra. Citra tersebut adalah citra yang diakuisisi pada tanggal 13 November 2021 dan 19 November 2021. Citra SAR Sentinel-1A diolah menggunakan perangkat lunak GMTSAR dengan arah orbit ascending dan descending. Citra SAR Sentinel-1A yang sudah diolah menggunakan GMTSAR menghasilkan pergeseran permukaan tanah terhadap arah pandang satelit (Line of Sight). Hasil dari penelitian ini diketahui bahwa komponen horizontal terjadi pergeseran sebesar 200 mm ke arah barat. Pergeseran komponen vertikal mengalami kenaikan permukaan tanah sebesar 541 mm pada area utara dan penurunan permukaan tanah maksimal sebesar 231 mm pada area selatan. Berdasarkan hasil tersebut, diketahui bahwa nilai pergeseran komponen vertikal lebih besar daripada komponen horizontal. Hal tersebut menunjukkan bahwa gempa bumi Iran 14 November 2021 diindikasikan disebabkan oleh aktivitas sesar dengan mekanisme sesar naik (thrust fault).
Keywords
Full Text:
PDFReferences
Baek, W. K., & Jung, H. S. (2020). Precise Three-Dimensional Deformation Retrieval in Large and Complex Deformation Areas via Integration of Offset-Based Unwrapping and Improved Multiple-Aperture SAR Interferometry: Application to the 2016 Kumamoto Earthquake. Engineering, 6(8), 927–935. https://doi.org/10.1016/J.ENG.2020.06.012
Chen, C. W., & Zebker, H. A. (2002). Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1709–1719. https://doi.org/10.1109/TGRS.2002.802453
De Michele, M., Raucoules, D., De Sigoyer, J., Pubellier, M., & Chamot-Rooke, N. (2010). Three-dimensional surface displacement of the 2008 May 12 Sichuan earthquake (China) derived from Synthetic Aperture Radar: Evidence for rupture on a blind thrust. Geophysical Journal International, 183(3), 1097–1103. https://doi.org/10.1111/J.1365-246X.2010.04807.X
Elliott, J. R., Walters, R. J., & Wright, T. J. (2016). The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nature Communications, 7(1), 13844. https://doi.org/10.1038/ncomms13844
Fujiwara, S., Nishimura, T., Murakami, M., Nakagawa, H., Tobita, M., & Rosen, P. A. (2000). 2.5-D surface deformation of M6.1 earthquake near Mt Iwate detected by SAR interferometry. Geophysical Research Letters, 27(14), 2049–2052. https://doi.org/10.1029/1999GL011291
Ghanbarian, M. A., & Derakhshani, R. (2022). The folds and faults kinematic association in Zagros. Scientific Reports, 12(1), 8350. https://doi.org/10.1038/s41598-022-12337-8
Goldstein, R. M., & Werner, C. L. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25(21), 4035–4038. https://doi.org/10.1029/1998GL900033
Grandin, R., Klein, E., Métois, M., & Vigny, C. (2016). Three-dimensional displacement field of the 2015 Mw8.3 Illapel earthquake (Chile) from across- and along-track Sentinel-1 TOPS interferometry. Geophysical Research Letters, 43(6), 2552–2561. https://doi.org/https://doi.org/10.1002/2016GL067954
Himematsu, Y., & Furuya, M. (2020). Coseismic and Postseismic Crustal Deformation Associated With the 2016 Kumamoto Earthquake Sequence Revealed by PALSAR-2 Pixel Tracking and InSAR. Earth and Space Science, 7(10), e2020EA001200. https://doi.org/10.1029/2020EA001200
Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., Zhang, L., & Sun, Q. (2014). Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Science Reviews, 133, 1–17. https://doi.org/https://doi.org/10.1016/j.earscirev.2014.02.005
Huang, M.-H., Tung, H., Fielding, E. J., Huang, H.-H., Liang, C., Huang, C., & Hu, J.-C. (2016). Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan. Geophysical Research Letters, 43(14), 7459–7467. https://doi.org/https://doi.org/10.1002/2016GL069351
Liu, J., Jun, H., Xu, W., 李志伟 Z., Jian-Jun, Z., Ding, X., & Zhang, L. (2019). Complete Three‐Dimensional Coseismic Deformation Field of the 2016 Central Tottori Earthquake by Integrating Left‐ and Right‐Looking InSAR Observations With the Improved SM‐VCE Method. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2018JB017159
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364(6433), 138–142. https://doi.org/10.1038/364138A0
Nissen, E., Tatar, M., Jackson, J. A., & Allen, M. B. (2011). New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophysical Journal International, 186(3), 928–944. https://doi.org/10.1111/J.1365-246X.2011.05119.X
Panuntun, H. (2021). Geodetic slip model of the November 26, 2019 Albania earthquake estimated from Sentinel-1 TOPS interferometry. Tectonophysics, 807, 228814. https://doi.org/10.1016/J.TECTO.2021.228814
Panuntun, H. (2022). 2.5-D Surface Deformation due to the 24 January 2020 Elazig, Turkey Earthquake Estimated by Multiple Sentinel-1 InSAR Data. January 2020, 1–5. https://doi.org/10.1109/apsar52370.2021.9688500
Pepe, A., & Calò, F. (2017). A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements. In Applied Sciences (Vol. 7, Nomor 12). https://doi.org/10.3390/app7121264
Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P. (2011). Open radar interferometry software for mapping surface Deformation. Eos, Transactions American Geophysical Union, 92(28), 234–234. https://doi.org/10.1029/2011EO280002
Wang, Z., Liu, G., hu, L., Tao, Q., & Yu, S. (2020). Method for determining weight matrix for resolving three-dimensional surface deformation using Multi-LOS D-InSAR technology. International Journal of Applied Earth Observation and Geoinformation, 88. https://doi.org/10.1016/j.jag.2020.102062
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515
Wright, T., Parsons, B., & Lu, Z. (2004). Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett, 31. https://doi.org/10.1029/2003GL018827
Xu, G., Xu, C., Wen, Y., & Yin, Z. (2019). Coseismic and Postseismic Deformation of the 2016 MW 6.2 Lampa Earthquake, Southern Peru, Constrained by Interferometric Synthetic Aperture Radar. Journal of Geophysical Research: Solid Earth, 124(4), 4250–4272. https://doi.org/https://doi.org/10.1029/2018JB016572DOI: https://doi.org/10.22146/jgise.78205
Article Metrics
Abstract views : 2190 | views : 1890Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Geospatial Information Science and Engineering (JGISE) ISSN: 2623-1182 (Online) Email: jgise.ft@ugm.ac.id The Contents of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.