SAR Bathymetry Review and Its Possibility Implementation in Indonesia

Wening Aisyah Fauziana Koman(1*), Abdul Basith(2), Atriyon Julzarika(3)

(1) Department of Geodetic Engineering, Gadjah Mada University, Yogyakarta, Indonesia
(2) Department of Geodetic Engineering, Gadjah Mada University, Yogyakarta, Indonesia
(3) Research Centre for Geospatial, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
(*) Corresponding Author


Indonesia needs bathymetry information for diverse applications as a maritime country. There are various methods of determining the water depth for bathymetry. The advancement of satellite imagery data has led to the increasing use of remote sensing data for depth measurements. With satellite imaging, wide area coverage can be achieved in a relatively short time, making depth data acquisition more cost-effective. SAR (Synthetic Aperture Radar) imagery is an active remote sensing technology developed to estimate depth data known as the SAR Bathymetry method. This method is still not widely applied, especially in Indonesia, even though it has considerable potential with cloud-free imageries, where it becomes a severe problem in tropical countries when using optical imagery. Therefore, this paper will discuss algorithms and techniques for depth data estimation using SAR Bathymetry and their possible implementation in Indonesia. The optimum depth, SAR image recommendation, and conditions required to apply this method will also be discussed.


SAR Bathymetry; depth measurement; Synthetic Aperture Radar

Full Text:



Alpers, W., & Hennings, I. (1984). Theory of the Imaging Mechanism of Underwater Bottom Topography By Real and Synthetic Aperture Radar. Journal of Geophysical Research, 89(C6), 10529–10546.

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975.

Ashphaq, M., Srivastava, P. K., & Mitra, D. (2021). Review of near-shore satellite derived bathymetry: Classification and account of five decades of coastal bathymetry research. Journal of Ocean Engineering and Science, 6(4), 340–359.

Bai, X., Li, B., Xu, X., & Xiao, Y. (2022). A Review of Current Research and Advances in Unmanned Surface Vehicles. Journal of Marine Science and Application, 21(2), 47–58.

Bergsma, E. W. J., Conley, D. C., Davidson, M. A., & O’Hare, T. J. (2016). Video-based nearshore bathymetry estimation in macro-tidal environments. Marine Geology, 374, 31–41.

Bian, X., Shao, Y., Tian, W., & Zhang, C. (2016). Estimation of Shallow Water Depth Using HJ-1C S-band SAR Data. Journal of Navigation, 69(1), 113–126.

Bian, X., Shao, Y., Wang, S., Tian, W., Wang, X., & Zhang, C. (2018). Shallow Water Depth Retrieval from Multitemporal Sentinel-1 SAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(9), 2991–3000.

Bian, X., Shao, Y., Zhang, C., Xie, C., & Tian, W. (2020). The feasibility of assessing swell-based bathymetry using SAR imagery from orbiting satellites. ISPRS Journal of Photogrammetry and Remote Sensing, 168(April), 124–130.

BIG. (2020). Kerangka Acuan Kerja (KAK) Akuisisi LiDAR dan Pemotretan Udara Digital serta Pembuatan Unsur Rupabumi Indonesia Skala 1:5.000 Wilayah OSS Tebing Tinggi, Kikim, dan Seputih Banyak Tahun Anggaran 2020.

Boccia, V., Renga, A., Rufino, G., D’Errico, M., Moccia, A., Aragno, C., & Zoffoli, S. (2015). Linear dispersion relation and depth sensitivity to swell parameters: Application to synthetic aperture radar imaging and bathymetry. Scientific World Journal, 2015, 1–10.

Brusch, S., Held, P., Lehner, S., Rosenthal, W., & Pleskachevsky, A. (2011). Underwater bottom topography in coastal areas from TerraSAR-X data. International Journal of Remote Sensing, 32(16), 4527–4543.

Calkoen, C. J., Hesselmans, G. H. F. M., Argoss, G. J. W., & Vogelzang, J. (2001). The bathymetry assessment system: Efficient depth mapping in shallow seas using radar images. International Journal of Remote Sensing, 22(15), 2973–2998.

Casal, G., Monteys, X., Hedley, J., Harris, P., Cahalane, C., & McCarthy, T. (2019). Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data. International Journal of Remote Sensing, 40(8), 2855–2879.

Chan, Y. K., & Koo, V. C. (2008). An introduction to Synthetic Aperture Radar (SAR). Progress In Electromagnetics Research B, 2, 27–60.

Cloarec, M., Dubranna, J., & Ranchin, T. (2016). SAR-based techniques to extract bathymetric features. XIVe Journées nationales du Génie Côtier – Génie Civil, Jun 2016, Toulon, France, 351–360.

Croneborg, L., Saito, K., Matera, M., Mckeown, D., & Aardt, J. van. (2015). Digital Elevation Models; A Guidance Note on how Digital Elevation Models are created and used – includes key definitions, sample Terms of Reference and how best to plan a DEM-mission. International Bank for Reconstruction and Development.

ESA. (2012). Sentinel-1 Acquisition Modes.

ESA. (2020). Copernicus Sentinel-6 Michael Freilich liftoff replay. European Space Agency.

Flampouris, S., Seemann, J., & Ziemer, F. (2009). Sharing our experience using wave theories inversion for the determination of the local depth. OCEANS ’09 IEEE Bremen: Balancing Technology with Future Needs.

Gao, J. (2009). Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations. Progress in Physical Geography, 33(1), 103–116.

Grgić, M., & Bašić, T. (2021). Radar Satellite Altimetry in Geodesy - Theory, Applications and Recent Developments. In B. Erol & S. Erol (Ed.), Geodetic Sciences - Theory, Applications and Recent Developments (hal. 77–88). IntechOpen.

Hesselmans, G. H. F. M., Wensink, G. J., Calkoen, C. J., & Valk, C. F. de. (1995). ERS Data to Support Coastal and Offshore Applications. The Second ERS Applications Workshop, 325–327.

Hesselmans, G. H. F. M., Wensink, G. J., Prasetya, G., & Barnas, I. (2000). Mapping of Indonesian coastal waters by synthetic aperture radar: An Indonesian-Netherlands initiative for startinge new business. European Space Agency, (Special Publication) ESA SP, 461, 527–536.

Holman, R., & Bergsma, E. W. J. (2021). Updates to and Performance of the cBathy Algorithm for Estimating Nearshore Bathymetry from Remote Sensing Imagery. Remote Sensing, 13(19), 1–25.

Holman, R., Plant, N., & Holland, T. (2013). cBathy: A robust algorithm for estimating nearshore bathymetry. Journal of Geophysical Research: Oceans, 118(5), 2595–2609.

Huang, L., Meng, J., Fan, C., Zhang, J., & Yang, J. (2022). Shallow Sea Topography Detection from Multi-Source SAR Satellites: A Case Study of Dazhou Island in China. Remote Sensing, 14(20).

Huang, W., & Fu, B. (2004). A Spaceborne SAR Technique for Shallow Water Bathymetry Surveys. Journal of Coastal Research, SPEC. ISS. 43, 223–228.

IHO. (2005). Depth Determination. In Manual on Hydrography Chapter 3 Depth Determination (hal. 119–197). International Hydrographic Bureau.

IHO. (2020). International Hydrographic Organization Standards for Hydrographic Surveys (6.0.0).

Inglada, J., & Garello, R. (2002). On rewriting the imaging mechanism of underwater bottom topography by synthetic aperture radar as a volterra series expansion. IEEE Journal of Oceanic Engineering, 27(3), 665–674.

Jawak, S. D., Vadlamani, S. S., & Luis, A. J. (2015). A Synoptic Review on Deriving Bathymetry Information Using Remote Sensing Technologies: Models, Methods and Comparisons. Advances in Remote Sensing, 04(02), 147–162.

Julzarika, A., Aditya, T., Subaryono, Harintaka, Dewi, R. S., & Subehi, L. (2021). Integration of the latest Digital Terrain Model (DTM) with Synthetic Aperture Radar (SAR) Bathymetry. Journal of Degraded and Mining Lands Management, 8(3), 2759–2768.

Khomsin, Pratomo, D. G., & Saputro, I. (2021). Comparative analysis of singlebeam and multibeam echosounder bathymetric data. IOP Conference Series: Materials Science and Engineering, 1052(1).

Legleiter, C. J., & Harrison, L. R. (2019). Remote Sensing of River Bathymetry: Evaluating a Range of Sensors, Platforms, and Algorithms on the Upper Sacramento River, California, USA. Water Resources Research, 55(3), 2142–2169.

Li, S., Jeffries, M., & Morris, K. (2000). Mapping the Bathymetry of Shallow Tundra Lakes Using INSAR Techniques. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings, 2230–2232.

Ma, Y., Yue, B., Chenier, R., Omari, K., & Henschel, M. (2021). Nearshore Bathymetry Estimation Using Synthetic Aperture Radar (SAR) Imagery. Canadian Journal of Remote Sensing, 47(6), 790–801.

Mandlburger, G. (2019). Through-water dense image matching for shallow water bathymetry. Photogrammetric Engineering and Remote Sensing, 85(6), 445–454.

Mandlburger, G. (2022). A Review of Active and Passive Optical Methods in Techniques. International Hydrographic Review, 28(November 2022), 8–52.

Mavraeidopoulos, A. K., Pallikaris, A., & Oikonomou, E. K. (2017). Satellite Derived Bathymetry (SDB) And Safety of Navigation. The International Hydrographic Review, May, 7–20.

Mishra, M. K., Ganguly, D., Chauhan, P., & Ajai. (2014). Estimation of coastal bathymetry using RISAT-1 C-band microwave SAR data. IEEE Geoscience and Remote Sensing Letters, 11(3), 671–675.

Papatheodorou, G., Geraga, M., Fakiris, E., Papakonstantinou, M., & Mavrommatis, N. (2023, Juni 20). Exploring shallow lagoons with USV mapping technology. Hydro International.

Pereira, P., Baptista, P., Cunha, T., Silva, P. A., Romão, S., & Lafon, V. (2019). Estimation of the nearshore bathymetry from high temporal resolution Sentinel-1A C-band SAR data - A case study. Remote Sensing of Environment, 223(December 2018), 166–178.

Pleskachevsky, A., Lehner, S., Heege, T., & Mott, C. (2011). Synergy and fusion of optical and synthetic aperture radar satellite data for underwater topography estimation in coastal areas. Ocean Dynamics, 61(12), 2099–2120.

Poerbandono, Djunarsjah, E., Bachri, S., Abidin, H. Z., & Adil, I. (2005). Survei Hidrografi (R. Herlina (ed.)). Refika Aditama.

Rajput, P., Ramakrishnan, R., Francis, S., Thomaskutty, A. V., Agrawal, R., & Rajawat, A. S. (2021). Investigating shallow water bottom feature using SAR data along Gulf of Khambhat, India. Remote Sensing Applications: Society and Environment, 23(July), 1–11.

Romeiser, R., & Alpers, W. (1997). An improved composite surface model for the radar backscattering cross section of the ocean surface 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography. Journal of Geophysical Research: Oceans, 102(C11), 25251–25267.

Santos, D., Abreu, T., Silva, P. A., & Baptista, P. (2020). Estimation of coastal bathymetry using wavelets. Journal of Marine Science and Engineering, 8(10), 1–16.

Santos, D., Fernández-Fernández, S., Abreu, T., Silva, P. A., & Baptista, P. (2022). Retrieval of nearshore bathymetry from Sentinel-1 SAR data in high energetic wave coasts: The Portuguese case study. Remote Sensing Applications: Society and Environment, 25(August 2021).

Santosa, P. B. (2016). Evaluation of satellite image correction methods caused by differential terrain illumination. Jurnal Forum Geografi. Vol. 30, No. 1 (2016).

Song, L., Song, C., Luo, S., Chen, T., Liu, K., Li, Y., Jing, H., & Xu, J. (2021). Refining and densifying the water inundation area and storage estimates of Poyang Lake by integrating Sentinel-1/2 and bathymetry data. International Journal of Applied Earth Observation and Geoinformation, 105, 102601.

Stewart, C., Renga, A., Gaffney, V., & Schiavon, G. (2016). Sentinel-1 bathymetry for North Sea palaeolandscape analysis. International Journal of Remote Sensing, 37(3), 471–491.

Stewart, R. H. (2008). Introduction to Physical Oceanography. Texas A&M University.

Syetiawan, A., & Gularso, H. (2021, April). Towards a coastline base map in Indonesia. Hydro International.

Tarikhi, P. (2012). Insar of Aquatic Bodies. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B7(September), 85–90.

Toschi, I., Remondino, F., Rothe, R., & Klimek, K. (2018). Combining airborne oblique camera and LiDAR sensors: Investigation and new perspectives. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences -
ISPRS Archives
, 42(1), 437–444.

Tsai, Y. L. S., Dietz, A., Oppelt, N., & Kuenzer, C. (2019). Remote sensing of snow cover using spaceborne SAR: A review. Remote Sensing, 11(12).

Wensink, G. J., Hesselmans, G. H. F. M., Calkoen, C. J., & Vogelzang, J. (1997). The Bathymetry Assessment System. In J. H. Stel, H. W. A. Behrens, J. C. Borst, L. J. Droppert, & J. v.d. Meulen (Ed.), Operational Oceanography: The Challenge for European Co-operation (hal. 214–223). Elsevier Science B.V.

Wensink, H., & Alpers, W. (2014). SAR-Based Bathymetry. In E. G. Njoku (Ed.), Encyclopedia of Remote Sensing (hal. 719–722). Springer Science+Business Media New York.

Wiehle, S., Pleskachevsky, A., & Gebhardt, C. (2019). Automatic bathymetry retrieval from SAR images. CEAS Space Journal, 11(1), 105–114.


Article Metrics

Abstract views : 1311 | views : 500


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Geospatial Information Science and Engineering (JGISE) ISSN: 2623-1182 (Online) Email: The Contents of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.