SAR Bathymetry Review and Its Possibility Implementation in Indonesia

https://doi.org/10.22146/jgise.88613

Wening Aisyah Fauziana Koman(1*), Abdul Basith(2), Atriyon Julzarika(3)

(1) Department of Geodetic Engineering, Gadjah Mada University, Yogyakarta, Indonesia
(2) Department of Geodetic Engineering, Gadjah Mada University, Yogyakarta, Indonesia
(3) Research Centre for Geospatial, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
(*) Corresponding Author

Abstract


Indonesia needs bathymetry information for diverse applications as a maritime country. There are various methods of determining the water depth for bathymetry. The advancement of satellite imagery data has led to the increasing use of remote sensing data for depth measurements. With satellite imaging, wide area coverage can be achieved in a relatively short time, making depth data acquisition more cost-effective. SAR (Synthetic Aperture Radar) imagery is an active remote sensing technology developed to estimate depth data known as the SAR Bathymetry method. This method is still not widely applied, especially in Indonesia, even though it has considerable potential with cloud-free imageries, where it becomes a severe problem in tropical countries when using optical imagery. Therefore, this paper will discuss algorithms and techniques for depth data estimation using SAR Bathymetry and their possible implementation in Indonesia. The optimum depth, SAR image recommendation, and conditions required to apply this method will also be discussed.

Keywords


SAR Bathymetry; depth measurement; Synthetic Aperture Radar

Full Text:

PDF


References

Alpers, W., & Hennings, I. (1984). Theory of the Imaging Mechanism of Underwater Bottom Topography By Real and Synthetic Aperture Radar. Journal of Geophysical Research, 89(C6), 10529–10546. https://doi.org/10.1029/JC089iC06p10529

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Ashphaq, M., Srivastava, P. K., & Mitra, D. (2021). Review of near-shore satellite derived bathymetry: Classification and account of five decades of coastal bathymetry research. Journal of Ocean Engineering and Science, 6(4), 340–359. https://doi.org/10.1016/j.joes.2021.02.006

Bai, X., Li, B., Xu, X., & Xiao, Y. (2022). A Review of Current Research and Advances in Unmanned Surface Vehicles. Journal of Marine Science and Application, 21(2), 47–58. https://doi.org/10.1007/s11804-022-00276-9

Bergsma, E. W. J., Conley, D. C., Davidson, M. A., & O’Hare, T. J. (2016). Video-based nearshore bathymetry estimation in macro-tidal environments. Marine Geology, 374, 31–41. https://doi.org/10.1016/j.margeo.2016.02.001

Bian, X., Shao, Y., Tian, W., & Zhang, C. (2016). Estimation of Shallow Water Depth Using HJ-1C S-band SAR Data. Journal of Navigation, 69(1), 113–126. https://doi.org/10.1017/S0373463315000454

Bian, X., Shao, Y., Wang, S., Tian, W., Wang, X., & Zhang, C. (2018). Shallow Water Depth Retrieval from Multitemporal Sentinel-1 SAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(9), 2991–3000. https://doi.org/10.1109/JSTARS.2018.2851845

Bian, X., Shao, Y., Zhang, C., Xie, C., & Tian, W. (2020). The feasibility of assessing swell-based bathymetry using SAR imagery from orbiting satellites. ISPRS Journal of Photogrammetry and Remote Sensing, 168(April), 124–130. https://doi.org/10.1016/j.isprsjprs.2020.08.006

BIG. (2020). Kerangka Acuan Kerja (KAK) Akuisisi LiDAR dan Pemotretan Udara Digital serta Pembuatan Unsur Rupabumi Indonesia Skala 1:5.000 Wilayah OSS Tebing Tinggi, Kikim, dan Seputih Banyak Tahun Anggaran 2020.

Boccia, V., Renga, A., Rufino, G., D’Errico, M., Moccia, A., Aragno, C., & Zoffoli, S. (2015). Linear dispersion relation and depth sensitivity to swell parameters: Application to synthetic aperture radar imaging and bathymetry. Scientific World Journal, 2015, 1–10. https://doi.org/10.1155/2015/374579

Brusch, S., Held, P., Lehner, S., Rosenthal, W., & Pleskachevsky, A. (2011). Underwater bottom topography in coastal areas from TerraSAR-X data. International Journal of Remote Sensing, 32(16), 4527–4543. https://doi.org/10.1080/01431161.2010.489063

Calkoen, C. J., Hesselmans, G. H. F. M., Argoss, G. J. W., & Vogelzang, J. (2001). The bathymetry assessment system: Efficient depth mapping in shallow seas using radar images. International Journal of Remote Sensing, 22(15), 2973–2998. https://doi.org/10.1080/01431160116928

Casal, G., Monteys, X., Hedley, J., Harris, P., Cahalane, C., & McCarthy, T. (2019). Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data. International Journal of Remote Sensing, 40(8), 2855–2879. https://doi.org/10.1080/01431161.2018.1533660

Chan, Y. K., & Koo, V. C. (2008). An introduction to Synthetic Aperture Radar (SAR). Progress In Electromagnetics Research B, 2, 27–60. https://doi.org/10.2528/pierb07110101

Cloarec, M., Dubranna, J., & Ranchin, T. (2016). SAR-based techniques to extract bathymetric features. XIVe Journées nationales du Génie Côtier – Génie Civil, Jun 2016, Toulon, France, 351–360.

Croneborg, L., Saito, K., Matera, M., Mckeown, D., & Aardt, J. van. (2015). Digital Elevation Models; A Guidance Note on how Digital Elevation Models are created and used – includes key definitions, sample Terms of Reference and how best to plan a DEM-mission. International Bank for Reconstruction and Development.

ESA. (2012). Sentinel-1 Acquisition Modes. https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes

ESA. (2020). Copernicus Sentinel-6 Michael Freilich liftoff replay. European Space Agency. https://www.esa.int/ESA_Multimedia/Videos/2020/11/Copernicus_Sentinel-6_Michael_Freilich_liftoff_replay

Flampouris, S., Seemann, J., & Ziemer, F. (2009). Sharing our experience using wave theories inversion for the determination of the local depth. OCEANS ’09 IEEE Bremen: Balancing Technology with Future Needs. https://doi.org/10.1109/OCEANSE.2009.5278331

Gao, J. (2009). Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations. Progress in Physical Geography, 33(1), 103–116. https://doi.org/10.1177/0309133309105657

Grgić, M., & Bašić, T. (2021). Radar Satellite Altimetry in Geodesy - Theory, Applications and Recent Developments. In B. Erol & S. Erol (Ed.), Geodetic Sciences - Theory, Applications and Recent Developments (hal. 77–88). IntechOpen. https://doi.org/10.5772/intechopen.97349

Hesselmans, G. H. F. M., Wensink, G. J., Calkoen, C. J., & Valk, C. F. de. (1995). ERS Data to Support Coastal and Offshore Applications. The Second ERS Applications Workshop, 325–327.

Hesselmans, G. H. F. M., Wensink, G. J., Prasetya, G., & Barnas, I. (2000). Mapping of Indonesian coastal waters by synthetic aperture radar: An Indonesian-Netherlands initiative for startinge new business. European Space Agency, (Special Publication) ESA SP, 461, 527–536.

Holman, R., & Bergsma, E. W. J. (2021). Updates to and Performance of the cBathy Algorithm for Estimating Nearshore Bathymetry from Remote Sensing Imagery. Remote Sensing, 13(19), 1–25. https://doi.org/10.3390/rs13193996

Holman, R., Plant, N., & Holland, T. (2013). cBathy: A robust algorithm for estimating nearshore bathymetry. Journal of Geophysical Research: Oceans, 118(5), 2595–2609. https://doi.org/10.1002/jgrc.20199

Huang, L., Meng, J., Fan, C., Zhang, J., & Yang, J. (2022). Shallow Sea Topography Detection from Multi-Source SAR Satellites: A Case Study of Dazhou Island in China. Remote Sensing, 14(20). https://doi.org/10.3390/rs14205184

Huang, W., & Fu, B. (2004). A Spaceborne SAR Technique for Shallow Water Bathymetry Surveys. Journal of Coastal Research, SPEC. ISS. 43, 223–228.

IHO. (2005). Depth Determination. In Manual on Hydrography Chapter 3 Depth Determination (hal. 119–197). International Hydrographic Bureau.

IHO. (2020). International Hydrographic Organization Standards for Hydrographic Surveys (6.0.0).

Inglada, J., & Garello, R. (2002). On rewriting the imaging mechanism of underwater bottom topography by synthetic aperture radar as a volterra series expansion. IEEE Journal of Oceanic Engineering, 27(3), 665–674. https://doi.org/10.1109/JOE.2002.1040949

Jawak, S. D., Vadlamani, S. S., & Luis, A. J. (2015). A Synoptic Review on Deriving Bathymetry Information Using Remote Sensing Technologies: Models, Methods and Comparisons. Advances in Remote Sensing, 04(02), 147–162. https://doi.org/10.4236/ars.2015.42013

Julzarika, A., Aditya, T., Subaryono, Harintaka, Dewi, R. S., & Subehi, L. (2021). Integration of the latest Digital Terrain Model (DTM) with Synthetic Aperture Radar (SAR) Bathymetry. Journal of Degraded and Mining Lands Management, 8(3), 2759–2768. https://doi.org/10.15243/jdmlm.2021.083.2759

Khomsin, Pratomo, D. G., & Saputro, I. (2021). Comparative analysis of singlebeam and multibeam echosounder bathymetric data. IOP Conference Series: Materials Science and Engineering, 1052(1). https://doi.org/10.1088/1757-899x/1052/1/012015

Legleiter, C. J., & Harrison, L. R. (2019). Remote Sensing of River Bathymetry: Evaluating a Range of Sensors, Platforms, and Algorithms on the Upper Sacramento River, California, USA. Water Resources Research, 55(3), 2142–2169. https://doi.org/10.1029/2018WR023586

Li, S., Jeffries, M., & Morris, K. (2000). Mapping the Bathymetry of Shallow Tundra Lakes Using INSAR Techniques. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings, 2230–2232.

Ma, Y., Yue, B., Chenier, R., Omari, K., & Henschel, M. (2021). Nearshore Bathymetry Estimation Using Synthetic Aperture Radar (SAR) Imagery. Canadian Journal of Remote Sensing, 47(6), 790–801. https://doi.org/10.1080/07038992.2021.1954499

Mandlburger, G. (2019). Through-water dense image matching for shallow water bathymetry. Photogrammetric Engineering and Remote Sensing, 85(6), 445–454. https://doi.org/10.14358/PERS.85.6.445

Mandlburger, G. (2022). A Review of Active and Passive Optical Methods in Techniques. International Hydrographic Review, 28(November 2022), 8–52. https://doi.org/https://doi.org/10.58440/ihr-28-a15

Mavraeidopoulos, A. K., Pallikaris, A., & Oikonomou, E. K. (2017). Satellite Derived Bathymetry (SDB) And Safety of Navigation. The International Hydrographic Review, May, 7–20. https://ihr.iho.int/articles/satellite-derived-bathymetry-sdb-and-safety-of-navigation/

Mishra, M. K., Ganguly, D., Chauhan, P., & Ajai. (2014). Estimation of coastal bathymetry using RISAT-1 C-band microwave SAR data. IEEE Geoscience and Remote Sensing Letters, 11(3), 671–675. https://doi.org/10.1109/LGRS.2013.2274475

Papatheodorou, G., Geraga, M., Fakiris, E., Papakonstantinou, M., & Mavrommatis, N. (2023, Juni 20). Exploring shallow lagoons with USV mapping technology. Hydro International. https://www.hydro-international.com/content/article/exploring-shallow-lagoons-with-usv-mapping-technology

Pereira, P., Baptista, P., Cunha, T., Silva, P. A., Romão, S., & Lafon, V. (2019). Estimation of the nearshore bathymetry from high temporal resolution Sentinel-1A C-band SAR data - A case study. Remote Sensing of Environment, 223(December 2018), 166–178. https://doi.org/10.1016/j.rse.2019.01.003

Pleskachevsky, A., Lehner, S., Heege, T., & Mott, C. (2011). Synergy and fusion of optical and synthetic aperture radar satellite data for underwater topography estimation in coastal areas. Ocean Dynamics, 61(12), 2099–2120. https://doi.org/10.1007/s10236-011-0460-1

Poerbandono, Djunarsjah, E., Bachri, S., Abidin, H. Z., & Adil, I. (2005). Survei Hidrografi (R. Herlina (ed.)). Refika Aditama.

Rajput, P., Ramakrishnan, R., Francis, S., Thomaskutty, A. V., Agrawal, R., & Rajawat, A. S. (2021). Investigating shallow water bottom feature using SAR data along Gulf of Khambhat, India. Remote Sensing Applications: Society and Environment, 23(July), 1–11. https://doi.org/10.1016/j.rsase.2021.100592

Romeiser, R., & Alpers, W. (1997). An improved composite surface model for the radar backscattering cross section of the ocean surface 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography. Journal of Geophysical Research: Oceans, 102(C11), 25251–25267. https://doi.org/10.1029/97JC00190

Santos, D., Abreu, T., Silva, P. A., & Baptista, P. (2020). Estimation of coastal bathymetry using wavelets. Journal of Marine Science and Engineering, 8(10), 1–16. https://doi.org/10.3390/jmse8100772

Santos, D., Fernández-Fernández, S., Abreu, T., Silva, P. A., & Baptista, P. (2022). Retrieval of nearshore bathymetry from Sentinel-1 SAR data in high energetic wave coasts: The Portuguese case study. Remote Sensing Applications: Society and Environment, 25(August 2021). https://doi.org/10.1016/j.rsase.2021.100674

Santosa, P. B. (2016). Evaluation of satellite image correction methods caused by differential terrain illumination. Jurnal Forum Geografi. Vol. 30, No. 1 (2016). https://doi.org/10.23917/forgeo.v30i1.1768

Song, L., Song, C., Luo, S., Chen, T., Liu, K., Li, Y., Jing, H., & Xu, J. (2021). Refining and densifying the water inundation area and storage estimates of Poyang Lake by integrating Sentinel-1/2 and bathymetry data. International Journal of Applied Earth Observation and Geoinformation, 105, 102601. https://doi.org/10.1016/j.jag.2021.102601

Stewart, C., Renga, A., Gaffney, V., & Schiavon, G. (2016). Sentinel-1 bathymetry for North Sea palaeolandscape analysis. International Journal of Remote Sensing, 37(3), 471–491. https://doi.org/10.1080/01431161.2015.1129563

Stewart, R. H. (2008). Introduction to Physical Oceanography. Texas A&M University. https://doi.org/10.5860/choice.34-5103

Syetiawan, A., & Gularso, H. (2021, April). Towards a coastline base map in Indonesia. Hydro International. https://www.hydro-international.com/content/article/towards-a-coastline-base-map-in-indonesia

Tarikhi, P. (2012). Insar of Aquatic Bodies. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B7(September), 85–90. https://doi.org/10.5194/isprsarchives-xxxix-b7-85-2012

Toschi, I., Remondino, F., Rothe, R., & Klimek, K. (2018). Combining airborne oblique camera and LiDAR sensors: Investigation and new perspectives. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences -
ISPRS Archives
, 42(1), 437–444. https://doi.org/10.5194/isprs-archives-XLII-1-437-2018

Tsai, Y. L. S., Dietz, A., Oppelt, N., & Kuenzer, C. (2019). Remote sensing of snow cover using spaceborne SAR: A review. Remote Sensing, 11(12). https://doi.org/10.3390/rs11121456

Wensink, G. J., Hesselmans, G. H. F. M., Calkoen, C. J., & Vogelzang, J. (1997). The Bathymetry Assessment System. In J. H. Stel, H. W. A. Behrens, J. C. Borst, L. J. Droppert, & J. v.d. Meulen (Ed.), Operational Oceanography: The Challenge for European Co-operation (hal. 214–223). Elsevier Science B.V.

Wensink, H., & Alpers, W. (2014). SAR-Based Bathymetry. In E. G. Njoku (Ed.), Encyclopedia of Remote Sensing (hal. 719–722). Springer Science+Business Media New York. https://doi.org/10.1007/978-0-387-36699-9

Wiehle, S., Pleskachevsky, A., & Gebhardt, C. (2019). Automatic bathymetry retrieval from SAR images. CEAS Space Journal, 11(1), 105–114. https://doi.org/10.1007/s12567-018-0234-4



DOI: https://doi.org/10.22146/jgise.88613

Article Metrics

Abstract views : 2116 | views : 789

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal of Geospatial Information Science and Engineering (JGISE) ISSN: 2623-1182 (Online) Email: jgise.ft@ugm.ac.id The Contents of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.