Low-cost alternative flood modeling using CHIRPS data in the Way Garuntang Catchment, Bandar Lampung, Indonesia

https://doi.org/10.22146/jgise.94307

Sahid Sahid(1*), Yanto Putri Nana(2), Aziz Fahmi(3), Mardika Indra M Gilang(4), Asferizal Ferial(5), Zein Akbar Syukry(6), Diyaulhaq Wiedad(7), Yunida Devi(8)

(1) Institut Teknologi Sumatera
(2) Institut Teknologi Sumatera
(3) Institut Teknologi Sumatera
(4) Institut Teknologi Sumatera
(5) Institut Teknologi Sumatera
(6) Institut Teknologi Sumatera
(7) Institut Teknologi Sumatera
(8) Institut Teknologi Sumatera
(*) Corresponding Author

Abstract


Floods are hydro-meteorological events that could impact economic losses and threaten human life. Floods are events where water overflows in potential areas due to exceeding the river's capacity. Flood modeling is the key in reducing the impact of losses resulting from flood disasters. Satellite-based rainfall data provides data with spatial and temporal distribution that has the potential to be an alternative as input in flood modeling. The availability of satellite rainfall data as input for flood modeling certainly requires an assessment of the modeling results' accuracy level. This research aims to investigate the performance of flood inundation modeling using CHIRPS data. The accuracy value of flood modeling results is calculated by comparing flood modeling results through Snyder-Alexejev synthetic unit hydrograph discharge calculations, which are then applied to 2D flood hydraulic modeling using HEC-RAS. The findings indicate that as an alternative to rainfall station data to model flood inundation, Chirps data have a level of accuracy that can be considered. Even though there are differences in the extent and depth of flood inundation between CHIRPS data and observation rainfall stations data, the results of modeling with CHIRPS data can contribute to mapping potential flood-prone areas.

Keywords


Satellite Rainfall Data, CHIRPS, Flood Modeling, 2D Flood Inundation Modeling

Full Text:

PDF


References

A. K. Carra, M. C. (2017). Posttraumatic Growth Among Australian Farming Women After a Flood After a Flood. Journal of Loss and Trauma. https://doi.org/https://doi.org/10.1080/15325024.2017.1310506

Asferizal, F. (2022). Analisis Perbandingan Kehandalan Data Hujan GSMaP, TRMM, GPM dan PERSIANN Terhadap Data Obsevasi Dalam Rentang Waktu Penelitian 2020-2021. Journal of Infrastructure Planning, and Design, 2(1), 33–41.

Badan Nasional Penanggulangan Bencana. (2024). Data Kejadian Bencana. https://gis.bnpb.go.id

BNPB. (2021). Indeks Risiko Bencana Indonesia (IRBI) Tahun 2021. https://inarisk.bnpb.go.id

BNPB. (2023). Data Kejadian Bencana Banjir. Badan Nasional Penanggulangan Bencana. https://dibi.bnpb.go.id

Brunner, G. W., Wre, D., Piper, S. S., Jensen, M. R., & Chacon, B. (2015). Combined 1D and 2D Hydraulic Modeling within HEC-RAS Two-Dimensional Modeling Capabilities. World Environmental and Water Resources Congress 2015, 1432–1443.

Cannon, A. J., Sobie, S. R., & Murdock, T. Q. (2015). Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? Journal of Climate, 28(17), 6938–6959. https://doi.org/10.1175/JCLI-D-14-00754.1

Casas, A., Benito, G., Thorndycraft, V. R., & Rico, M. (2006). The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surface Processes and Landforms, 31, 444–456. https://doi.org/10.1002/esp.1278

Cheng, Y., Sang, Y., Wang, Z., Guo, Y., & Tang, Y. (2021). Effects of Rainfall and Underlying Surface on Flood Recession—The Upper Huaihe River Basin Case. International Journal of Disaster Risk Science, 12(1), 111–120. https://doi.org/10.1007/s13753-020-00310-w

Danoedoro, P., Gupita, D. D., Afwani, M. Z., Hadi, H. A., & Mahendra, W. K. (2022). Preliminary Study on the Use of Digital Surface Models for Estimating Vegetation Cover Density in Mountainous Area. Indonesian Journal of Geography, 54(3), 333–343. https://doi.org/10.22146/ijg.60659

Deniz, D., Arneson, E. E., Liel, A. B., Dashti, S., & Javernick-Will, A. N. (2017). Flood loss models for residential buildings, based on the 2013 Colorado floods. Natural Hazards, 85, 977–1003. https://doi.org/10.1007/s11069-016-2615-3

Fernandez, A., Black, J., Jones, M., Wilson, L., & Salvador-carulla, L. (2015). Flooding and Mental Health : A Systematic Mapping Review. PLOS ONE, 10, 1–20. https://doi.org/10.1371/journal.pone.0119929

Harto, S. B. (1993). Analisis Hidrologi (1st ed.). Penerbit Gramedia Pustaka Utama.

Hiệu, N., Hiếu, Đ. T., Bắc, Đ. K., & Phương, Đ. T. (2013). Assessment of Flood Hazard in Hanoi City. VNU Journal of Earth and Environmental Sciences, 29, 26–37. https://js.vnu.edu.vn/EES/article/view/1562/1524

Hong, Y., Liu, L., Qiao, L., & Adhikari, P. (2014). Handbook Engineering Hydrology, Modeling,Climate Change, and Variability. In S. Eslamian (Ed.), Climate Change and hydrological Hazards (pp. 53–86). CRC Press.

Jenis dan Tarif atas Jenis Penerimaan Negera Bukan Pajak yang Berlaku Pada Badan Meteorologi, Klimatologi, dan Geofisika, (2018).

Islam, A. R. M. T. (2020). Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers, 12(3). https://doi.org/10.1016/j.gsf.2020.09.006

Khattak, S. M., Anwar, F., Saeed, T. U., Sharif, M., Sheraz, K., & Ahmed, A. (2016). Floodplain Mapping Using HEC-RAS and ArcGIS : A Case Study of Kabul River. Arabian Journal for Science and Engineering, 41, 1375–1390. https://doi.org/10.1007/s13369-015-1915-3

Meyerink, A, M. . (1970). Chapter VII.3 ITC Textbook of Photo-Interpretation in hydrology, A Geomorpholoical Approach (Netherlands (ed.)). ITC.

Ozkaya, A., & Akyurek, Z. (2019). Evaluating the use of bias-corrected radar rainfall data in three flood events in Samsun, Turkey. In Natural Hazards (Vol. 98, Issue 2). Springer Netherlands. https://doi.org/10.1007/s11069-019-03723-z

Parsa, A. S., Heydari, M., Sadeghian, M. S., & Moharrampour, M. (2013). Flood Zoning Simulation by HEC-RAS Model (Case Study: Johor River-Kota Tinggi Region). Journal of River Engineering, 1, 29–34. http://www.scijour.com/page/article-frame.html?articleId=794

Prasad, R. N., & Pani, P. (2017). Geo-hydrological analysis and sub watershed prioritization for flash flood risk using weighted sum model and Snyder ’ s synthetic unit hydrograph. Modeling Earth Systems and Environment, 3, 1491–1502. https://doi.org/10.1007/s40808-017-0354-4

Pratiwi, A. N. & Santosa, P. B. (2021). Pemodelan Banjir dan Visualisasi Genangan Banjir untuk Mitigasi Bencana di Kali Kasin Kelurahan Bareng Kota Malang. Journal of Geospatial Information Science and Engineering, Vol. 4 No. 1 (2021). https://doi.org/10.22146/jgise.56525

Ramly, S., Tahir, W., Abdullah, J., Jani, J., Ramli, S., & Asmat, A. (2020). Flood Estimation for SMART Control Operation Using Integrated Radar Rainfall Input with the HEC-HMS Model. Water Resources Management, 34(10), 3113–3127. https://doi.org/10.1007/s11269-020-02595-4

Sahid, S. (2024). Enhancing Digital Elevation Model Accuracy for Flood Modelling – A Case Study of the Ciberes River in Cirebon, Indonesia. Forum Geografi, 38(1), 40–56. https://doi.org/10.23917/forgeo.v38i1.1839

Sahid, S., Ihsan, H. M., Saefulloh, M. A., & Ulhaq, W. D. (2024). Sensitivity Analysis of Digital Elevation Model in The Use of Hydrological Applications. Rekayasa, 17(2), 306–319. https://doi.org/https://doi.org/10.21107/rekayasa.v17i2.22449

Sahid, S., Nurrohman, A. W., & Hadi, M. P. (2018). An investigation of Digital Elevation Model ( DEM ) structure influence on flood modelling. International Conference on Environmental Resources Management in Global Region, 148, 1–12. https://doi.org/10.1088/1755-1315/148/1/012001

Santos, F. M. dos, Lollo, J. A. de, & Mauad, F. F. (2017). Estimating the surface runoff from natural environment data. Management of Environment Quality: An International Journal, 28, 515–531. https://doi.org/10.1108/MEQ-07-2015-0137

Santosa, P. B., Mitani, Y. & Ikemi, H. (2010). Estimation of RUSLE EI30 based on 10 min interval rainfall data and GIS-based development of rainfall erosivity maps for Hitotsuse basin in Kyushu Japan. 18th International Conference on Geoinformatics, Beijing, China, 2010, pp. 1-6, https://doi.org/10.1109/GEOINFORMATICS.2010.5568195

Sarido, L., Hardwinarto, S., & Aipassa, M. I. (2008). Debit Banjir Rancangan dan Kawasan Genangan. Jurnal KehutananTropika Humida, 1, 35–48.

Sarkar, D., & Mondal, P. (2020). Flood vulnerability mapping using frequency ratio (FR) model: a case study on Kulik river basin, Indo-Bangladesh Barind region. Applied Water Science, 10(1), 1–13. https://doi.org/10.1007/s13201-019-1102-x

Singh, B. K. (2014). Flood Hazard Mapping with Participatory GIS : The Case of Gorakhpur. Environment and Urbanization ASIA. https://doi.org/https://doi.org/10.1177/0975425314521546

Singh, P. K., Mishra, S. K., & Jain, M. K. (2014). A review of the synthetic unit hydrograph: from the empirical UH to advanced geomorphological methods. Hydrological Sciences Journal, 59, 239–261. https://doi.org/10.1080/02626667.2013.870664

Snyder, F. F. (1938). Synthetic Unit Hydrographs. Transactions American Geophysical Union, 19, 447–454. https://doi.org/10.1029/TR019i001 p00447

Stephenson, J., Vaganay, M., Cameron, R., & Joseph, P. (2014). The long-term health impacts of repeated flood events. WIT Transactions on Ecology and The Environment, 184, 201–212. https://doi.org/10.2495/FRIAR140171

Sushanth, K., & Bhardwaj, A. (2019). Assessment of landuse change impact on runoff and sediment yield of Patiala-Ki-Rao watershed in Shivalik foot-hills of northwest India. Environmental Monitoring and Assessment. https://doi.org/https://doi.org/10.1007/s10661-019-7932-z

Thapa, G., & Wijesekera, N. T. . (2017). Computation and Optimization of Snyder’s Synthetic Unit Hydrograph Parameters. UMCSAWM Water Conference, January, 83–88.

Venus, D. K.-A. G. F. V. (2015). Modeling Flood Hazard Zones at the Sub-District Level with the Rational Model Integrated with GIS and Remote Sensing Approaches. Water, 7. https://doi.org/https://doi.org/10.3390/w7073531

Vozinaki, A. K., Morianou, G. G., Alexakis, D. D., Tsanis, K., & Tsanis, I. K. (2017). Comparing 1D and combined 1D/2D hydraulic simulations using high-resolution topographic data: a case study of the Koiliaris basin, Greece. Hydrological Sciences Journal, 62, 642–656. https://doi.org/10.1080/02626667.2016.1255746

Wilkerson, J., & Merwade, V. (2010). Determination of Unit Hydrograph Parameters for Indiana Watersheds. Joint Transportation Research Program, September, 114. https://doi.org/10.5703/1288284314266.This

Yucel, I. (2015). Assessment of a flash flood event using different precipitation datasets. Natural Hazards, 79(3), 1889–1911. https://doi.org/10.1007/s11069-015-1938-9

Zope, P. E., Eldho, T. I., & Jothiprakash, V. (2016). Impacts of land use – land cover change and urbanization on flooding : A case study of Oshiwara River Basin in Mumbai , India. Catena, 145, 142–154. https://doi.org/10.1016/j.catena.2016.06.009



DOI: https://doi.org/10.22146/jgise.94307

Article Metrics

Abstract views : 261 | views : 67

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal of Geospatial Information Science and Engineering (JGISE) ISSN: 2623-1182 (Online) Email: jgise.ft@ugm.ac.id The Contents of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.