Efek kandungan serat beras analog terhadap ekspresi GLUT4 otot rangka tikus diabetes

https://doi.org/10.22146/ijcn.31806

Azka Darajat(1), Elly Nurus Sakinah(2), Hairrudin Hairrudin(3*)

(1) Program Studi Pendidikan Dokter, Fakultas Kedokteran Universitas Jember
(2) Laboratorium Farmakologi dan Farmasi, Fakultas Kedokteran Universitas Jember
(3) Laboratorium Biokimia, Fakultas Kedokteran Universitas Jember
(*) Corresponding Author

Abstract


Effect of analog rice’s fiber on skeletal muscles GLUT4 expression in diabetic rats 

Background: Disruption of glucose transportation in skeletal muscle through GLUT4 becomes a problem in diabetes. Analog rice that had been modified by adding dietary fiber could improve the expression of GLUT4.

Objective: This study aims to know the effect of dietary fiber toward GLUT4 expression and to know the dietary fiber percentage in analog rice.

Method: The research type is true experimental with post-test only group design. The samples consist of 24 male Wistar rats that are group into 4 groups (n=6 each group). Three groups were induced by giving a high-fat diet for 40 days and streptozotocin (STZ) 35 mg/kg BW was given at 33th day and one group was not induced. After the blood glucose level exceeded 135 mg/dl, the treatment was given. After 3 weeks, the rats were terminated and quadriceps femoris muscle tissue was taken for immunohistochemistry examination using rat GLUT4 polyclonal antibody. GLUT4 expression was quantified using an immunoreactive score (IRS-GLUT4). The data were analyzed using the Kruskal-Wallis test and Spearman test.

Results: Statistical analyses showed that there were significant differences between groups with a moderate positive correlation (correlation coefficient=0,651; p=0,003).

Conclusion: Dietary fiber in analog rice could improve skeletal muscle GLUT4 expression in Wistar rat diabetic model.


Keywords


analog rice; GLUT4; immunohistochemistry

Full Text:

PDF


References

  1. Soelistijo SA, Novida H, Rudijanto A, Soewondo P, Suastika K, Manaf A, et al.  Konsensus pengelolaan dan pencegahan diabetes melitus tipe 2 di Indonesia 2015. Jakarta: PB PERKENI; 2015.
  2. Guariguata L, Whitting DR, Hambleton I, Beagley J, Linnekamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014 Feb;103(2):137-49. doi: 10.1016/j.diabres.2013.11.002
  3. Kemenkes RI. Riset kesehatan dasar 2013. Jakarta: Kementerian Kesehatan RI; 2013.
  4. American Diabetes Association. Standards of medical care in diabetes 2017. USA: American Diabetes Association; 2017.
  5. Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006 Dec;55 Suppl 2:S9-S15. doi: 10.2337/db06-S002
  6. Powers AC. Harrison’s principles of internal medicine 19th edition. New York: Mc Graw-Hill; 2015.
  7. Siswanto E, Sinaga BM, Harianto. Dampak kebijakan perberasan pada pasar beras dan kesejahteraan produsen dan konsumen beras di Indonesia. Jurnal Ilmu Pertanian Indonesia. 2018; 23(2):93-100. doi: 10.18343/23.2.93
  8. Budi FS, Hariyadi P, Budijanto S, Syah D. Teknologi proses ekstrusi untuk membuat beras analog. Pangan 2013;22(3):263-74.
  9. Arif AB, Budiyanto A, Hoerudin. Nilai indeks glikemik produk pangan dan faktor-faktor yang memengaruhinya. Jurnal Penelitian dan Pengembangan Pertanian. 2013;32(3):91-9. doi: 10.21082/jp3.v32n3.2013.p91-99
  10. Noviasari S, Kusnandar F, Setiyono A, Budijanto S. Beras analog sebagai pangan fungsional dengan indeks glikemik rendah. Jurnal Gizi Pangan. 2015;10(3):225-32.
  11. Fitriani ANF. Pengaruh proporsi tepung jagung dan mocaf terhadap kualitas “jamof rice” instan ditinjau dari sifat organoleptik. E-Jurnal Boga dan Gizi. 2013;2(3):34-43.
  12. Liu HY, Walden TB, Cai D, Ahl D, Bertilsson S, Holm L, et al. Dietary fiber in Bilberry Ameliorates pre-obesity events in rats by regulating lipid depot, cecal short-chain fatty acid formation and microbiota composition. Nutrients. 2019 Jun; 11(6):1350. doi: 10.3390/nu11061350
  13. Firdaus J, Sulistyaningsih E, Subagio A. Resistant starch modified cassava flour (MOCAF) improves insulin resistance. Asian Journal of Clinical Nutrition. 2018; 10(1):32-36. doi: 10.3923/ajcn.2018.32.36
  14. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015 Oct;11(10):577-91. doi: 10.1038/nrendo.2015.128
  15. Besten GD, Eunen KV, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013 Sep; 54(9):2325-40. doi: 10.1194/jlr.R036012
  16. Peñacarrillo MLV, Puente J, Redondo A, Clemente F, Valverde I. Effect of GLP-1 treatment on GLUT2 and GLUT4 expression in type 1 and type 2 rat diabetic models. Endocrine. 2001 Jul;15(2):241-8. doi: 10.1385/ENDO:15:2:241
  17. Green CJ, Henriksen TI, Pedersen BK, Solomon TP. Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia. PLoS One. 2012;7(8):e44284. doi: 10.1371/journal.pone.0044284
  18. Ghani MAA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010; 2010:476279. doi: 10.1155/2010/476279
  19. Wahjuningsih SB, Haslina SU, Wijanarka A. Hypoglycemic effect of analog rice made from modified cassava flour (mocaf), arrowroot flour and kidney bean flour on STZ-NA induced diabetic rats. Asian Journal of Clinical Nutrition. 2018;10(1):8-15. doi: 10.3923/ajcn.2018.8.15
  20. Hariyanto B. Penggunaan beras sagu untuk penderita pradiabetes. Pangan. 2017 Nov;26(2):127-36.
  21. Sakinah EN. Increased plasma GLP-1 levels after resistant starch type 3 from cassava starch (Manihot esculanta crantz) diet on diabetic rat. Journal of Agromedicine and Medical Sciences. 2018 Jun;4(2):116-20. doi: 10.19184/ams.v4i2.7876
  22. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005 Oct;52(4):313-20. doi: 10.1016/j.phrs.2005.05.004
  23. Kaemmerer D, Peter L, Lupp A, Schulz S, Sänger J, Hommann M, et al. Comparing of IRS and Her2 as immunohistochemical scoring schemes in gastroenteropancreatic neuroendocrine tumors. Int J Clin Exp Pathol. 2012;5(3):187-94.
  24. Zhang M, Yan X, Li J, Xu Z, Chen L. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res. 2008; 2008:704045. doi: 10.1155/2008/704045
  25. Damasceno DC, Netto AO, Iessi IL, Gallego FQ, Corvino SB, Rudge MCV, et al. Streptozotocin-induced diabetes models: pathophysiological mechanisms and fetal outcomes. Biomed Res Int. 2014; 2014:819065. doi: 10.1155/2014/819065
  26. Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. 2000 May; 342(19):1392-8. doi: 10.1056/NEJM200005113421903
  27. Yavorska N. Sodium alginate - a potential tool for weight management: effect on subjective appetite, food intake, and glycemic and insulin regulation. Journal of Undergraduate Life Sciences. 2012;6(1):66-9.
  28. Heimann E, Nyman M, Palbrink A, Lindkvist-Peterssonc K, Degerman E. Branched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes. Adipocyte. 2016;5(4):359-68. doi: 10.1080/21623945.2016.1252011
  29. Fujii H, Iwase M, Ohkuma T, Kaizu SO, Ide H, Kikuchi Y, et al. Impact of dietary fiber intake on glycemic control, cardiovascular risk factors and chronic kidney disease in Japanese patients with type 2 diabetes mellitus: The Fukuoka Diabetes Registry. Nutr J. 2013 Dec;12:159. doi: 10.1186/1475-2891-12-159
  30. Canfora EE, Jocken JW, Blaak EE. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016 Feb;7:185. doi: 10.3389/fmicb.2016.00185
  31. Song YJ, Sawamura M, Ikeda K, Igawa S, Yamori Y. Soluble dietary fibre improves insulin sensitivity by increasing muscle GLUT-4 content in stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 2000 Jan-Feb;27(1-2):41-5. doi: 10.1046/j.1440-1681.2000.03198.x
  32. Adam TC, Westerterp MS. Glucagon-like peptide-1 release and satiety after a nutrient challenge in normal-weight and obese subjects. Br J Nutr. 2005 Jun;93(6):845-51. doi: 10.1079/BJN20041335
  33. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012 Feb;61(2):364-71. doi: 10.2337/db11-1019
  34. Ji W, Chen X, Lv J, Wang M, Ren S, Yuan B, et al. Liraglutide exerts antidiabetic effect via PTP1B and PI3K/Akt2 signaling pathway in skeletal muscle of KKAy mice. Int J Endocrinol. 2014;2014:312452. doi: 10.1155/2014/312452
  35. Liu Z, Patil IY, Jiang T, Sancheti H, Walsh JP, Stiles BL, et al. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity. PLoS One. 2015 May;10(5):e0128274. doi: 10.1371/journal.pone.0128274
  36. Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005 May;26(2):19-39.
  37. Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia. Diabetes Care. 2008 Feb;31(Supplement 2):S262-8. doi: 10.2337/dc08-s264



DOI: https://doi.org/10.22146/ijcn.31806

Article Metrics

Abstract views : 391 | views : 476

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Jurnal Gizi Klinik Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Gizi Klinik Indonesia (JGKI) Indexed by:
 
 Google Scholar 

  free
web stats View My Stats