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ABSTRACT 

Ada dua tujuan yang ingin dicapai dalam penelitian ini. Pertama, adalah untuk 

menyelidiki apakah dalam estimasi model koreksi kesalahan atau error correction model 

(ECM) terdapat proses volatilitas. Jika ternyata ada, maka model estimasi koreksi 

kesalahan seharusnya diestimasi dengan menggunakan model volatilitas. Hasil empirik 

estimasi ECM ternyata mengindikasikan adanya proses volatilitas yang ditunjukkan oleh 

signifikannya pengujian Autoregressive Conditional Heteroscedasticity (ARCH).  

Tujuan kedua adalah untuk menentukan model yang paling baik antara estimasi ECM 

dan estimasi ECM yang diikuti dengan proses volatilitas. Setelah dilakukan estimasi 

terhadap kedua model tersebut ternyata dapat disimpulkan bahwa estimasi model ECM 

dengan proses Generalized ARCH (EC-GARCH) lebih baik dibandingkan dengan estimasi 

model ECM. Sebagai contoh kasus digunkan model estimasi indeks harga saham gabungan 

di bursa efek Jakarta (BEJ). 

Keywords: error correction model, volatility process, GARCH, EC-GARCH.  

 
INTRODUCTION 

One the expression in Jakarta stock 

composite index (JSCI) trend and it volatility 

is that the possibility of the significant effect of 

LQ45 index movements. Recent studies on 

volatility models, especially in the stock 

market volatility models used univariate 

expression (Bollerslev and Kroner, 1992; 

Bollerlev, et al, 1994). Univariate model does 

not explain the economic variable relations as 

economic theory expression. Thus, we should 

create model that explains the relations among 

the economic variables. One of the most 

popular dynamic models is error correction 

model (ECM). This model widely used in 

dynamic modeling because its properties 

explained the short-run effects as well as long-

run effects.  

The main purpose of the paper is to search 

for the volatility process on ECM. If there are 

volatility processes in ECM empirical 

estimation, we should estimate it with 

volatility process model. For this purpose, 

most of empirical studies used Generalized 

Autoregressive Conditional Heteroscedasticity 

(GARCH) specification (Engle, 1982; 

Bollerslev, Engle, Nelson, 1994; Engle, 2000; 

Engle and Patton, 2001). Thus, we may 

estimate the ECM by applying GARCH model. 

Finally, we compare the empirical estimation 

of ECM model and ECM with GARCH model 

and choose the superior model by several 

criteria model selection such as Akaike 

Information Criterion (AIC) and Schwarz 

Information Criterion (SIC).  

The main reason to use GARCH process 

lies in the fact that a conditional stochastic 

process generates the index data with a 

changing variance. Therefore, it is naturally 

expected that GARCH is the right tool to 

approach to the problem since it takes the 

changing variances into consideration. Section 
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II of this study describes the data and the time 

series properties (such as, unit root test, co-

integration test and error correction model) 

employed to assess the LQ45 Index and JSX 

Composite Index (JSX-CI) relationship and its 

empirical results. Section III provides GARCH 

processes on error correction model and the 

empirical results. Section IV gives the 

concluding remarks.  

SEVERAL ISSUES OF TIME SERIES 

PROPERTIES 

Model and Data 

We built the economic relationship bet-

ween LQ45 index and JSX-CI in econometric 

model. Let LQ45 index as independent 

variables and JSX-CI as dependent variable. 

LQ45 index consists of 45 shares, which are 

high in liquidity, and is selected through a set 

of criteria (see www.jsx.co.id for detail 

information). LQ45 Index was first introduced 

on February 24
th

, 1997. July 13
th

, 1994 is used 

as the basis for the index calculation, valued at 

100. The premiere selection used market data 

from the date of July 1993 to June 1994 and 

resulted in 45 issuers which covered 72% of 

the total market capitalization and 72,5% of the 

regular market’s total transaction value. That is 

why the index has major role of stock trading 

and composite index movements in JSX and 

treats as independent variables in this research. 

The single model of long-run relationship 

between LQ45 and JSX can be express as 

following equation, 

cit =  +lqt + ut.             (1) 

Daily data for the period of February 1
st
, 

1996 – December 28
th

, 2001 (exclude 

holidays) employed is as follows: JSX-CI and 

LQ45 index. Both variables are in natural 

logarithms, so ci = ln (JSX-CI) and lq = 

ln(LQ45), respectively. The original data 

source of the variables is the JSX, however 

obtained from the database of the Accounting 

Research Center of Faculty of Economics 

Gadjah Mada University. The sample size is 

taken to be 1451 and all calculations in this 

research use Eview Version 3. 

Unit Root Test 

We start the analysis by establishing the 

time series properties of individual variables. 

The aim here is simply to show that the 

variables are integrated of the same order. The 

sampling distribution of OLS estimator is not 

well behaved if the disturbance is non-

stationary. If a unit root present, it is essential 

to first difference the variables, thereby 

eliminating the unit root and achieving 

stationarity before attempting to estimate the 

model.  

For this purpose, we use augmented 

Dickey-Fuller (ADF) test (Dickey and Fuller, 

1979, 1981). The ADF test in year 1979 used 

test statistics based on ordinary least squares 

(OLS) estimation while the 1981 article used 

test statistics on the base of maximum 

likelihood (ML) estimation. Note that the 

augmented Dickey-Fuller tests are performed 

with trend and intercept in level data, but 

without trend and intercept in first difference 

data.  

 

Table 1. Augmented Dickey-Fuller Test for a 

Unit Root 

Variables t – ADF (1979) t-ADF (1981) 

Ci -2.425 (1) -2.817 (1) 

lq -2.882 (1) -3.684 (1) 

ci -24.571* (1) -39.381* (1) 

lq -24.805 * (1) -40.213* (1) 

Note: Optimal lag length in parentheses based 

onSchwarz Information Criterion (SIC). * 

significant at 1%.  
 

 

The ADF test results are reported in Table 

1. It clearly shows that all variables in this 

study are non-stationary (have unit roots) in 

level. They would be stationary in first 

difference. Thus, all variables in this research 

are called as integrated of order one or I(1). 

http://www.jsx.co.id/
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Co-integration and Error Correction Model 

One way to identify the co-integrating 

relationship between ci and lq is by identified 

the time series paths a long of observations. 

This identification is shown in Figure 1. It is 

not mistake to say that ci's path movements 

similar to lq's path movements. This figure 

tells us that maybe there is long run 

relationship (co-integration) between those 

variables. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Trend of Composite Index and LQ45 Index on JSX, February, 1
st
, 1996-December, 28

th
, 

2001 (in natural logarithm)   

 

Given a group of non-stationary series or 

random walks stochastic processes (note both 

the variables I(1)), we may be interested in 

determining whether the series are co-

integrated, and if they are, an identifying the 

long-run equilibrium relationship. Engle and 

Granger (1987) pointed out that a linear 

combination of two or more non-stationary 

series might be stationary. If such a stationary, 

or I(0), linear combination exists, the non-

stationary, time series are said to be co-

integrated. The stationary linear combination is 

called the co-integrating equation and may be 

interpreted as a long-run equilibrium relation-

ship between the variables.  

If there is a linear combination of the 

variables such as equation (1), or we can write 

that equation as, 

ut = cit -  -lqt                            (2)  

where,  is constant term, and find that ut is 

I(0) or stationary, then we say that the 

variables ci and lq are co-integrated. We can 

say it as before, they are on the same 

wavelength. In the language of co-integrating 

theory, a regression such as equation (1) is 

known as a co-integrating regression and the 

parameter  and  are known as the co-

integrating parameters. 
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There are number methods for testing for 

co-integration that have been proposed (see 

Engle and Granger (1987), Gonzalo (1994)). 

Two simple methods are (1) the ADF test on ut 

estimated from co-integrating regression and 

(2) the co-integrating regression Durbin 

Watson (CRDW) test (Sargan and Bhargava, 

1983). The co-integrating regression results is, 

cit = 1.956641  +  0.914550 lqt             (3) 

       (0.056824)*    (0.12139)* 

R
2
-adjusted = 0.956; CRDW = 0.013; ADF 

(1976) = -1.936; ADF (1981) = -1.621 and 

values in parentheses are robust standard error 

of Newey-West (1987) Heteroskedasticity and 

Auto-correlation Consistent (HAC) Covariance 

with truncation lags=7. The asterisks indicate 

the coefficients estimated significant at 1% 

critical level. The results of equation (3) show 

that CRDW statistics and ADF (1981) indicate 

no co-integrating regression while the ADF 

(1976) indicates there is co-integrating 

equation at least 5% critical level. This results 

show us that the residual of equation (3) is 

stationary or I(0).  

Having established that composite index is 

co-integrated with LQ45 index, we moved 

onto examining the associated error correction 

mechanism that describes the short-run 

dynamics. The general model of error 

correction model could be specified as 

following equation (see Thomas, 1997). 

cit =1 ECt-1 + 


p

i

i

1

 cit-i + 




q

j

j

0

  lqt-j + t                            (4) 

where  as usual denotes first difference and 

EC represents the residuals from co-integrating 

equation (3). The coefficients j imply the 

impacts of LQ45 index to Composite Index in 

the short run. We will use general specification 

approach to set the best estimation of equation 

(4). The estimation of ECM yielded the 

following results: 

cit =  – 0.008744 ECt-1 – 0.210188 cit-1 +  

                 (0.002862)*        (0.082685)** 

         0.784243 lqt + 0.191034 lqt-1    (5) 

         (0.011863)*       (0.069545)* 

R
2
-adjusted = 0.958; SEE = 0.004; 

LM[degree of freedom = 1] = 0.676[0.411]; 

RESET = 2.878 [0.0898]; ARCH(degree of 

freedom = 1, 5, and 20) = 197.919[0.000], 

221.254[0.000], and 220.559[0.000], AIC = -

8.135, SIC = -8.120. LM is a serial correlation 

test, RESET is a functional form test, and 

ARCH is ARCH test, AIC is Akaike 

Information Criterion, and SIC is Schwarz 

Information Criterion. Numbers in parentheses 

denote standard errors of Newey-West 

consistent HAC with truncation lags=7, while 

those in brackets denote p-values. The two 

asterisks indicate that the coefficient is 

significant at 5% critical level.  

There are two interesting results from 

estimation equation (5). First, the coefficient of 

EC is significant at least 1% critical level. This 

result implies that there is long run relation 

between ci and lq. Thus, the co-integrating 

equation in (3) is correctly specification. The 

second is the very significant of ARCH test 

with 1 (one day) lag included or 5 (a week) and 

20 (a month) lags included. It implies that the 

equation of (5) following the ARCH processes. 

This results had proven that empirical 

estimation of ECM contain the volatility 

processes. The first purpose of this research 

had been confirmed. 

THE VOLATILITY PROCESS 

The basic version of least squares model 

assumes that the expected value of all error 

terms, if were squared, is the same at any given 

point of estimation. This assumption is called 

homoscedaticity or constant variance. This is 

the focus on volatility models called ARCH 

(Auto-regressive Conditional Heteroskedasti-
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city) models. ARCH models are specifically 

designed to model and forecast conditional 

variances. The variance of the dependent 

variable is modeled as a function of past values 

of the dependent and independent (exogenous) 

variables (Engle, 2001). 

ARCH models were introduced by Engle 

(1982) and generalized as GARCH 

(Generalized ARCH) by Bollerslev (1986). 

These models are widely used in various 

branches of econometrics, especially in 

financial time series analysis. Bollerslev, 

Chou, and Kroner (1992) and Bollerslev, 

Engle, and Nelson (1994) provided the recent 

surveys of theory and empirical of ARCH 

models.  

A popular member of volatility models is 

the GARCH(p,q) model. Following the results 

of equation (5), the GARCH(p,q) model of the 

equation (4) becomes, 

cit =1 ECt-1 + 1 cit-1 + 1lqt +  

         2 lqt-1 + t 

tt-1 ~ (N, 
2
t).             (6) 


2
t =  + 





p

i

iti

1

2  + 




q

j

jtj

1

2      (7) 

Each i, j > 0 and sum of i + j  1 for i, 

j  1 should be satisfied for the model not to be 

explosive and to guarantee positive variances. 

If i and/or j have negative values, they will 

not have economic meaning. However, with 

the inclusion of one period lag value of volume 

in the equation this condition may fail, despite 

it will be tested empirically. Those models can 

be estimated via maximum likelihood once a 

distributions of the innovations, t, has been 

specified.  

A commonly employed assumption is that 

the innovations are normal distribution 

(Gaussian). Bollerslev and Wooldridge (1992) 

had proven that maximum likelihood estimated 

the GARCH model assuming Gausian errors 

were consistent even if the true distribution of 

innovations is not Gaussian. The usual 

standard errors of estimators were both 

consistent when the assumption of Gaussianity 

of the errors was violated. Bollerslev and 

Wooldridge had provided a method for 

obtaining consistent estimated of those.  

Table 2 provides the empirical estimation 

of some GARCH(p,q) classes. First, we used 

GARCH specification for GARCH(3,0), 

GARCH(2,0), GARCH(2,1) and GARCH(1,1). 

We may chose the suitable model based on tree 

selection criteria, namely, Loglikelihood Ratio 

(LR), Akaike Information Criterion, and 

Schwarz Information Criterion. Based on those 

criteria, we choosed the GARCH(3,0) 

specification as the suitable model.  

Evaluating the empirical model of 

GARCH(3,0), we use residual tests based on 

Correlogram–Q-statistics of the standardized 

residuals. We use lags to include equal to 20, 

and show that Q-statistics equal to 14.155 [p-

value=0.823] and it is not significant. Thus, we 

can make a conclusion that the mean equation 

is correctly specified. 

We do the test of residual based on 

correlogram squared residuals for remaining 

ARCH in the variance equation and to check 

the specification of the variance equation. If 

the variance equation is correctly specified, all 

Q-statistics should not be significant. The test 

statistics for include 20 lags, is 1.0614 [p-value 

=1.000]. Again, it is not significant. 

ARCH-LM test carries out Lagrange 

multiplier tests to test whether the standardized 

residuals exhibit additional ARCH. If the test 

statistics is not significant, the variance 

equation is correctly specified. The ARCH-LM 

test for one lag also has no significant value, 

LM(1)=0.5791 [p-value=0.4466]. It implies 

that there is no ARCH left in the standardized 

residuals. 
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Table 2. Re-estimated Equation (5) allows GARCH Process 

Variables GARCH(2,0) GARCH(3,0) GARCH(2,1) GARCH(1,1) 

ECt-1 -0.005460 -0.004328
 

-0.004534 -0.004082 

 (0.001635)* (0.001808)** (0.001801)** (0.001911)** 

  ((0.002581))** ((0.002498))*** ((0.002592))*** ((0.002277))*** 

lqt 0.794228 0.794396 0.797712 0.799931 

(0.002425)* (0.002070)* (0.002542)* (0.002610)* 

((0.007976))* ((0.009043))* ((0.008493))* ((0.009550))* 

lqt-1 0.065273 0.0041169 0.027536 0.001621 

(0.016279)* (0.020741) (0.022098) (0.023413) 

((0.101578)) ((0.036258)) ((0.072184)) ((0.083212)) 

cit-1 -0.041177 0.031844 -0.003872 0.026313 

(0.022524)*** (0.024762) (0.027689) (0.028722) 

((0.109059)) ((0.047153)) ((0.087006)) ((0.103899)) 

 7.91E-06 7.02E-06 4.54E-06 2.89E-06 

(1.05E-07)* (1.21E-07)* (3.77E-07)* (2.84E-07)* 

((3.01E-06))* ((2.86E-06))** ((2.18E-06))** ((1.26E-06))** 


2
t-1 0.181054 0.194491 0.178255 0.309271 

(0.029201)* (0.028264)* (0.027180)* 0.031848 

((0.139491)) ((0.140099)) ((0.154387)) ((0.202144)) 


2
t-2 0.591893 0.100134 0.338985 - 

(0.032708)* (0.032441)* (0.035939)* - 

((0.351613))*** ((0.099216)) ((0.319336)) - 


2
t-3 - 0.515035 - - 

- (0.037882)* - - 

- ((0.251700))** - - 


2
t-1 - - 0.351979 0.594282 

- - (0.044844)* ((0.033913))* 

- - ((0.112003))* ((0.069884))* 

Log likelihood 6122.333 6153.40 6136.766 6117.695 

AIC -8.440763 -8.48226 -8.459305 -8.434361 

SIC -8.415262 -8.45312 -8.430161 -8.408860 

 

 In the conditional mean equation, the error 

correction variable (ECt-1) and lqt have 

significant impacts to composite index at least 

5% and 1% critical level while lqt-1, and cit-1 

have no significant values. The coefficient of 

EC is now corrected to be –0.004 rather that –

0.009 in ECM model. The other coefficients 

also have been corrected to become 0.794, 

0.004, and 0.032 for variables lqt, lqt-1, and 

cit-1, respectively instead the values of those 

coefficients in ECM model.  

In variance equation, the ARCH terms also 

have significant values at least 1% critical 

level. The results indicate that the volatility of 

ECM is not persistent, with the sum of 

ARCH(1) to ARCH(3) being 0.81. These 

results imply that the variance of model is not 

quite persistence.  
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Figure 2 and 3 show us the actual values, 

fitted values, and residual values of empirical 

estimation of ECM and EC-GARCH(3,0) 

model. We may use Akaike Information 

Criterion and Schwarz Information Criterion 

for model selection. Based on these criteria, all 

support to choose the EC-GARCH(3,0) over 

ECM. Thus, the second purpose of this 

research had been confirmed.  

 

 

 

 

 

 

 

 

 

  

Figure 2. The Actual, Fitted, and Residual Values of Error Correction Model 

 

 

 

 

 

 

 

 

 

 

Figure 3. The Actual, Fitted, and Residual Values of EC-GARCH(3,0) Model 
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CONCLUSION 

The purposes of this paper have been 

proven above. The error correction model not 

always produce constant variance 

(homoscedasticity) and the results of this 

research have proven that such as model 

produces non-constant variance 

(heteroscedasticity). These results imply that 

model is following volatility processes. Thus, 

we had estimated the ECM with GARCH 

processes (EC-GARCH model), and produced 

the better estimation than its ECM by several 

criteria model selection. Finally, both purposes 

of this research had been confirmed.  

REFERENCE  

Dickey, D.A. and W.A. Fuller., (1979), 

Distribution of the Estimators for 

Autoregressive Time Series with a Unit 

Root, Journal of the American Statistical 

Association, 74, 427–431. 

____, (1981), Likelihood Ratio Statistics for 

Autoregressive Time Series with a Unit 

Root, Econometrica, 49, 1057-1072. 

Engle, Robert F., (1982), Autoregressive 

Conditional Heteroskedasticity with 

Estimates of the Variance of U.K. 

Inflation, Econometrica, 50, 987–1008. 

Engle, Robert F., (2001), GARCH 101: The 

Use of ARCH/GARCH Models in Applied 

Econometrics, Journal of Economic 

Perspectives, 4, 157-168. 

Engle, Robert F. dan Andrew J.P., (2001), 

What Good is a Volatility Model?, 

Quantitative Finance, 1, 237-245. 

Engle, Robert F. and C.W.J. Granger., (1987), 

Co-integration and Error Correction: 

Representation, Estimation, and Testing, 

Econometrica 55, 251–276. 

Bollerslev, T., (1986), Generalised autore-

gressive conditional heteroscedasticity, 

Journal of Econometrics, 31, 307-27. 

Bollerslev, Tim and Jeffrey M. Wooldridge., 

(1992), Quasi-Maximum Likelihood 

Estimation and Inference in Dynamic 

Models with Time Varying Covariances, 

Econometric Reviews, 11, 143–172. 

Bollerslev Tim, Ray Y. Chou, and Kenneth F. 

Kroner., (1992), ARCH Modeling in 

Finance: A Review of the Theory and 

Empirical Evidence, Journal of Econo-

metrics, 52, 5–59. 

Bollerslev, Tim, Robert F. Engle and Daniel B. 

Nelson., (1994), ARCH Models, in 

Chapter 49 of Handbook of Econometrics, 

Volume 4, North-Holland.  

Gonzalo, J., (1994), Five Alternative Methods 

of Estimating Long-Run Equilibrium 

Relationships, Journal of Econometrics, 

60, 203-233. 

Sargan, J.D and A.S. Bhargava., (1983), 

Testing Residual from Least Squares 

Regression for Beeing Generated by the 

Gaussian Random Walk, Econometrica, 

51, 153-174. 

Thomas, R.L., (1997), Modern Econometrics: 

An Introduction, Addison-Wesley. 

www. jsx.co.id 

 

 

 

 


