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Abstract

In realizing efficient energy use, the Government of Indonesia has issued a National Energy Policy in Government
Regulation (Peraturan Pemerintah) No. 70 of 2009 concerning Energy Conservation, PT PLN Indonesia Power
Priok Unit has cartied out efficient operational activities. Thetefore, to suppotrt the company's sustainability and
operational performance, especially in terms of efficiency and operational activities, it is necessary to evaluate the
process of energy use. The Combine Cycle Power Plant (CCPP) has several operating configurations according to
the gas turbine, heat recovery steam generator (HRSG), and steam turbine amount. CCPP Priok Blok 3 operates
full-block 2-2-1 or half-block 1-1-1, which means one gas turbine, HRSG, and steam turbine. This configuration
of operation impacts the use of energy, water, and chemicals. For this reason, this project aims to model the use
of energy, water, and chemicals using linear regression to determine which operating configurations are highly
effective in using energy, water, and chemicals. The result of this linear regression modeling is that at the peak
load, operation GT2 (gas turbine 2) is more energy efficient, 1.93% more efficient than GT1, than GT1 (gas turbine
1). At the minimum load, GT1 is 9.36% more energy efficient than GT2. At the same time, the water consumption
of GT2 is 35.01% more efficient than that of GT1.

Keywords: modeling, energy, chemicals, water

Abstrak

Untuk mendukung penggunaan energi yang efisien, Pemerintah Indonesia telah menerbitkan Kebijakan Energi
Nasional dalam Peraturan Pemerintah No. 70 tahun 2009 tentang Konservasi Energi. Unit PT PLN Indonesia
Power Priok telah melakukan kegiatan operasional yang efisien. Oleh karena itu, guna mendukung keberlanjutan
perusahaan dan kinerja operasionalnya, terutama dalam hal efisiensi dan kegiatan operasional, diperlukan evaluasi
terhadap proses penggunaan energi. Combine Cycle Power Plant (CCPP) memiliki beberapa konfigurasi operasi sesuai
dengan jumlah turbin gas, heat recovery steam generator (HRSG), dan turbin uap. CCPP Priok Blok 3 beroperasi dengan
konfigurasi full-block 2-2-1 atau half-block 1-1-1, yang berarti satu turbin gas, HRSG, dan turbin uap. Konfigurasi
operasi ini berdampak pada penggunaan energi, air, dan bahan kimia. Oleh karena itu, proyek ini bertujuan untuk
memodelkan penggunaan energi, air, dan bahan kimia menggunakan regresi linear untuk menentukan konfigurasi
operasi mana yang sangat efektif dalam penggunaan energi, air, dan bahan kimia. Hasil dari pemodelan regresi
linear ini menunjukkan bahwa pada beban puncak, operasi gas turbine 2 (GT2) lebih efisien secara energi, 1,93%
lebih efisien daripada gas turbine 1 (GT1). Pada beban minimum, GT1 lebih efisien secara energi 9,36%
dibandingkan dengan GT2. Pada saat yang sama, konsumsi air GT2 35,01% lebih efisien dibandingkan dengan
GT1.

Kata kunci : pemodelan, energi, bahan kimia, air

! Artikel ini dipresentasikan dalam Science Technology and Management Meetup (STEM MEET UP) 2023, PT. PLN Indonesia
Power, 21-23 November 2023 di Batam, Kepulauan Riau.
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1. INTRODUCTION

PLN Indonesia Power, as a subsidiary of PLN, has a combined cycle Power Plant with an installed power of
2723 megawatts in Tanjung Priok Jakarta, Indonesia. Priok Combine Cycle Power Plant has four blocks, one of
which is a 740 MW (Melky, 2022). Using as little energy, water, and chemical consumption as possible in the energy
industry is the goal of the wotld's industry. The relationship between enetrgy use, water consumption, and chemical
consumption has received special attention from researchers and policymakers (Li et al., 2022; Ali, 2020). The
primary fuel for the power plant is natural gas obtained from the Floating Storage & Regasification Unit (FSRU)
owned by PT Nusantara Regas and from PT Perusahaan Gas Negara (PGN). The fuel will be used in the gas
turbine to produce electricity. Then for the steam cycle, the plant requires pure water taken directly from the
Kalijapat River. The desalination plant will remove the salt content in the water, and then the water treatment plant
will remove the mineral content and become make-up water (Wang, 2019). Water is essential for power plants
because it is the primary raw material in making steam for the operation of the steam turbine. Water quality in
power plant is the main factor of equipment reliability (Erlangga et al., 2017). Standard water quality can ensure
performance of equipment and minimize equipment damage, especially from corrosion make-up water used as a
working medium for steam turbines has several requirements: 2 maximum conductivity of 0.5 pus/cm, water pH
6.5-7.5, and a silica (SiO2) content of not more than 10 ppb (Pan and Xu, 2022).

In realizing efficient energy use, the Government of Indonesia has issued a National Energy Policy in
Government Regulation (Peraturan Pemerintah) No. 5 of 2006, Energy Law No. 30 of 2007, and Government
Regulation No. 70 of 2009 concerning Energy Conservation. Based on company policies and commitments as well
as to support and fulfill government policies, PT PLN Indonesia Power Priok Power Generation Unit has carried
out efficient operational activities. Therefore, to support the company's sustainability and operational petformance,
especially in terms of efficiency and operational activities, it is necessary to evaluate the process of energy use.

The power plant operation requires detailed calculations regarding energy, water, and chemicals for evaluation
and planning in the next operation. There are many methods for evaluating the operation of a power plant. An
example is simulating generator components to become a new cycle based on work principles to optimize the
objective function (Mehrpanahi et al., 2019). Other research also analyzed the performance of the 740 MW
combined cycle power plant on configuration operating and loading using heat rate gap analysis, which yielded
that the 1-1-1 configuration operating is more suitable for middle to lower loads between 130-350 MW, while the
2- 2-1 operating pattern is more suitable for medium to upper loads between 350-750 MW (Fahlevy et al., 2019).
On the other hand, the regression method has also become popular in several studies to carry out analyses between
variables. The relationship between the variables can be positive or negative, linear or non-linear in regression
(Foong et al., 2018). Meanwhile, research using the linear regression method cleatly states that estimates of
additional power and electrical energy to meet customer needs in the future can be estimated using this method
(Mawartika and Kesuma, 2022; Syafruddin et al., 2014). Outside the technical discussion, to predict the number of
sales (Indarwati et al., 2019; Najla and Fitrianah, 2019; Herwanto et al., 2019) and cases of disease spread
(Kurniawan and Kokanda, 2021), we can use the linear regression method.

The linear regression method in power plants obtains power plant performance at 7.35 MW geothermal plants.
Consequently, the regression linear method can estimate the performance of a geothermal power plant and find
the degradation of plant performance of a geothermal power plant (Karadas et al., 2015). This research begins by
collecting historical data on the power plant in energy, water, and chemicals use when operating on a half-block 1-
1-1 configuration (1 gas turbine - 1 heat recovery steam generator - 1 steam turbine) and full- block 2-2-1 (2 gas
turbine - 2 heat recovery steam generator - 1 steam turbine). By using the linear regression method, the basis for
many analyses (Hoffman, 2018), the data become a model to conclude the most efficient use of energy, water, and
chemicals and create a baseline for evaluating the recommendations.

2. BASIC PRINCIPLE AND REGRESSION LINIER MODELING
A. Basic Principles of Combine Cycled Power Plant

A combined-cycle power plant is an electrical power plant in which a gas turbine and a steam turbine are used
in combination to achieve greater efficiency than would be possible independently. A combined cycle has an
efficiency of 55%, which is greater than the efficiency of a steam turbine power plant, which is about 35%. (Breeze,
2016). This means that a significant amount of the latent energy of the fuel ends up being wasted. Much of this
wasted energy ends up as thermal energy in the hot exhaust gases from the combustion process. There are many
different configurations for CCPP, but typically each gas turbine has its own associated HRSG, and multiple HRSG
supply steam to one or more steam turbines. For example, two gas turbines, two HRSG, and one steam turbine
operated.
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Figure 1. Schematic of a combined cycle power plant.

LNG (liquified natural gas) as fuel is contacted with compressed air in the combusting chamber to produce
pressurized hot gas for rotating gas turbines. Flue gas from gas turbines is used as fuel to produce steam at the
HRSG (heat recovery steam generator). HRSG is a heat exchanger called a boiler. It creates steam for the steam
turbine by passing the hot exhaust gas flow from a gas turbine or combustion engine through banks of heat
exchanger tubes. The HRSG produces superheated steam that rotates the HP (high pressure) steam turbine, and
the HRSG then reheats the steam to rotate the LP (low pressure) steam turbine. The steam is converted to a liquid
phase as water in the condenser. Furthermore, it is pumped to the HRSG to generate continuous steam. The
system is called closed-loop.

Steam is continuously needed in the CCPP cycle, so sufficient and appropriate water is needed. The schematic
of a combined cycle power plant is shown in Figure 1. Water is obtained from the purification process at the
desalination plant and water treatment plant. Then, the water will be collected in the tank. Due to the continuous
use of water, it is necessary to optimize the use of water. Besides pure water producing steam, seawater cools the
condenser, heat exchanger, and machines in CCPP. Using seawater in the condenser will undoubtedly result in a
water-scale buildup over time (Muhammad and Yulianto, 2023). The use of chemicals is necessary to maintain
water quality in the steam turbine system and cooling system so that they do not experience system damage.

Measurement is needed to represent the plant's performance in operating the Combine Cycle Power Plant.
One of these measurements uses heat rate. Heat rate is a measure of power plant efficiency (Equations 1 and 2),
defined as thermal input divided by thermal content of output; a lower heat rate correlates with a higher efficiency
power plant (Grubert, 2020).

Heat Input (kcal)

Heat Rate = Power Generation (kWh) v
860 kcal X 100%
Heat Rate = 0 o ?

B. Regression Linear

Linear regression is one of the methods used to forecast quality and quantity characteristics. The linear
regression method typically uses two parameters with linear relationships. In regression modeling, there are two
kinds of variables: dependent variables (a variable that is influenced by or whose value depends on other variables)
and independent variables (a variable that is suspected to affect the dependent variable) (Permai and Tanty, 2018).
Regression analysis serves the major purposes of description, control, and prediction. Linear regression can be
calculated using Equations (3) to (5):
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On the other hand, different prediction models have used sensitivity analysis and other data processing and
variable selection methods to make their predictions more accurate. Finding the coefficient (R?), mean absolute
deviation (MAD), mean squared error (MSE), root mean squate error (RMSE), and mean absolute percentage
error (MAPE) (M. S. Manzar ¢ al., 2022) are some ways to measure the performance of a model. The determination
coefficient (R?) can be calculated using Equation (6):

2 _ 4 Bim (=)?
R =1 Sy (6)

For a particular endogenous construct to be considered adequate, R? values must be equal to or greater than
0.10 (R.F. Falk, 1992). However, other references suggested that R? values for endogenous latent variables are
assessed as follows: 0.26 is substantial, 0.13 is moderate, and 0.02 is weak (J. Cohen, 1988). If the R? is in the range
0—0.25, the regression model is not significant. If the R? is in the range of 0.25-0.64, the regression model should
be interpreted with caution. If the R? is in the range of 0.64—1, the regression model is strongly significant [9].

MAD, or mean absolute deviation, measures the prediction accuracy by averaging the absolute value of each
error. It is particularly helpful when measuring prediction errors that have the same unit. The lower value of MAD
indicates higher accuracy (I. Veza ez al., 2021). MAD can be calculated using Equation (7):

MAD =13V |x—y]| ™
N j=1

MSE, or mean square error, is the average of the square of the difference between the real and predicted
values. It is used to determine how close the predictions are to actual values. It is sensitive to outliers and punishes
larger errors more (I. Veza ez al,, 2021). The value of MSE close to zero indicates forecasting results appropriate to
actual data. MSE can be calculated using Equation (8):

MSE = 15V (x — y)* ®)
N =1

RMSE, or root mean squate error, is simply the square root of the mean squatre error (MSE), where RMSE
can be calculated using Equation (9):

N —v)2
RMSE = /# )

MAPE, or mean absolute percentage error, is one of the most extensively used measures for checking
prediction accuracy. It is scale-independent and can be used to compare series on different scales (I. Veza ef al,
2021). The prediction results are good if the MAPE value is less than 10% [13]. MAPE can be calculated using
Equation (10):

MAPE = {2 5N,

[} (10

C. Data Reprocessing and Modeling

In analyzing large amounts of data, data preprocessing is a method to prepare data. Data preprocessing can be
very challenging, given the complexity and relatively poor data quality. Data preprocessing is an indispensable step
in knowledge discovery and research from operational data (Fan et al., 2021). Following are the steps of data
reprocessing:

e Data cleaning: The first step when preprocessing data is data cleaning. That is, the raw data needs to be re-
selected. Then, delete or eliminate incomplete, irrelevant, inaccurate or outlier data. By doing this stage, it will

be clear when analyzing the data (H. Henderi dan R.L. Wanda, 2017).

e Data reduction: On time series data, usually the data is obtained within a very tight period; for that, data
reduction is needed to facilitate the analysis process.

¢ Data scaling: Data scaling is often needed to ensure the validity of predictive modeling, especially when the
input vatiables have different scales.
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e Data transformation: The following process is data transformation. As explained above, data will be taken
from various sources with different formats. All data must be equated to simplify the analysis process (Ribeiro
et al., 2015).

e Data partitioning: Data partitioning aims to divide the whole data into several groups for in-depth analysis.

After doing data reprocessing, data modeling is the process of producing descriptive diagrams of the
relationship between the vatious types of information to be displayed.
There are three types of data modeling based on the model level, as follows:

e Conceptual : These models are typically created by business and data architecture stakeholders. It aims to
extend, organize, and define business concepts and rules.

e Logical : Architects and business analysts create these models. The goal is to develop a regulatory technical
map and data structure.

e Physical : Developers usually make this model. The goal is the actual implementation of the database

3. METHODOLOGY

This research uses primary data obtained from an Accessory Station (ACS), which is a piece of equipment that
saves and manages various equipment data over the long term and interfaces with printers and other peripherals.
As with the OPS, the ACS runs on Windows. Data was collected from 10 parameters. The samples used are 12,232
samples from June 2022 until June 2023. The data will be processed in stages according to the vertical bending
process workflow in Figure 2.

Original Data [—*| DataCleaning [—*| Data Reduction

]

Data Data
Data Scaling — —

Processed Data [—*| Create amodel [—* Conclusion

Figure 2. Schematic of a creating data modeling

After getting the original data, the first step is data cleaning. Permissible values for heatrate in CCPP are above
3440 kecal/kWh, or 25% efficiency. Values that do not match NaN (Not a Number) with the criteria will be deleted.
The data generated by ACS is in the form of a time series with a span of 1 minute for one yeat, so the data can be
reduced according to the loading pattern that occurs. The data will be divided into three main subjects, namely
data on GT1, GT2, and block load.

Based on energy efficiency, water, and chemical consumption cases, this research uses nine independent
variables (X1, X2, X3, X4, X5, X0, X7, X8, and X9) and one dependent variable (Y1). Here are the variables:

X1 = Load Gas Turbine 1

X2 = Load Gas Turbine 2

X3 = Block Load (2-2-1)

X4 = Water Consumption GT 1

X5 = Water Consumption GT 2

X6 = Water Consumption (2-2-1)
X7 = Chemical Consumption GT 1
X8 = Chemical Consumption GT 2
X9 = Chemical Consumption (2-2-1)
Y1 = Gross Heat Rate
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Table 1. Models code from variables

Independent Dependent Models Code
Load Gas Turbine 1 Gross Heat Rate B1
Load Gas Turbine 2 Gross Heat Rate B2
Block Load (2-2-1) Gross Heat Rate B3
Water Consumption GT 1 Gross Heat Rate W1
Water Consumption GT 2 Gross Heat Rate W2
Water Consumption (2-2-1) Gross Heat Rate W3
Chemical Consumption GT 1 Gross Heat Rate C1
Chemical Consumption GT 2 Gross Heat Rate C2
Chemical Consumption (2-2-1) Gross Heat Rate C3

This research will divide nine models from the variables above, as shown in Table 1 that will be analyzed using
linear regression. The result is that by knowing the equation, it will be known under what conditions the generator
operating configuration will have the most efficient energy and optimal use of water and chemistry. Furthermore,
the data is processed using linear regression modeling. Results from the models were shown to obtain the best
model using RMSE, MAD, MSE, and MAPE criteria. The linear regression method was chosen because the
analysis is easy, fast, and can represent the data. This method can also be used as an early classification of existing
data to be used as material for rapid evaluation. After doing linear regression modeling on the variables, by looking
at the value of R? the linear equation will be interpreted according to the operational activities of the plant, and
the linear equation can be used as a baseline for calculating the difference in energy use, water use, and chemical
use. If the value of R? does not meet the requirements, then the linear regression will be interpreted as relevant
only to the operational activities of the plant. Table 2. shows the range of data for each variable (min, max, mean,
and standard deviation).

Table 2. Variable range
Measured Variable June 2022 — June 2023

Group Variables Unit For The total 12,232 Input
Min  Max  Mean Std Deviation

IndependentlLoad Gas Turbine 1 MW  177.81 342.46 231.20 34.70
Load Gas Turbine 2 MW  184.17 338.66 237.85 40.77

Block Load (2-2-1) MW 259.52 692.01 467.23 80.81
Water Consumption GT 1 M3 100 11183 424.6 224.39
Water Consumption GT 2 M3 119.8 1045.53 498.88 218.68
Water Consumption (2-2-1) M3 1252 1337.9 524.81 246.94

Chemical Consumption GT 1 ke 274 2076 11.81 4.09

Chemical Consumption GT 2 ke 3 1498 7.79  2.65

Chemical Consumption (2-2-1) kg 3.72 30 10.73  6.06

Dependent Gross Heat Rate kcal/kWh1327.592426.291703.38  81.27

4. RESULT AND DISCUSSION

In this research, linear models were built, tested, and compared using all independent variables. The data was
processed using a standard program for data analysis in Microsoft Excel. The dependent variable was the gross
heat rate. Then the independent variables load gas turbine 1, load gas turbine 2, block load (2-2-1), water
consumption GT1, water consumption GT2, water consumption (2-2-1), chemical consumption GT1, chemical
consumption GT2, and chemical consumption (2-2-1) represented energy, water consumption, and chemical
consumption, which was a controlled variable. The variables were analyzed from June 2022 to June 2023. The
scatter plots of the models are shown in Figure 3 and described in Table 3.
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Figure 3. Plots of the models. Gross plant Heat rate Vs Load gas Turbine 1 (B1), Gross Plant Heat rate VS Load Gas Turbine
2 (B2), Gross Plant Heat rate VS Block Load (2-2-1) (B3), Gross Plant Heat rate VS Water Consumption Gas Turbine 1 (W1),
Gross Plant Heat rate VS Water Consumption Gas Turbine 2 (W2), Gross Plant Heat rate VS Water Consumption Block
Load (2-2-1) (W3), Gross Plant Heat rate VS Chemical Consumption Gas Turbine 1 (C1), Gross Plant Heat rate VS Chemical
Consumption Gas Turbine 2 (C2), and Gross Plant Heat rate VS Chemical Consumption Block Load (2-2-1) (C3)

Table 3. Regression linnier equations and criterias model

CRITERIA
MODELS EQUATIONS R2 RMSE  MAD MSE MAPE (%)
B1 y = -0.8993x + 1891.1 0.802 15.50 13.02 240.38 0.77
B2 y = -2.0753x + 2265.1 0.8223 39.34  32.69 1547.13 1.85
B3 y =-0.2762x + 1771.3  0.7126 14.17 11.08 200.86 0.77
W1 y = 0.5195x + 1537.4 0.716  73.26 61.22 5341.23 3.51
W2 y = 0.4552x + 1598.8 0.713  63.05 49.74 3956.83 2.7
W3 y = 0.5783 + 1445.2 0.743 83.15 63.75 6877.40 3.63
C1 y = -4.2889x + 1831.2  0.0159 138.17 89.50 18978.23 4.98
C2 y =-6.4396x + 1815.8  0.0418 81.72 61.09 6600.98 3.47
C3 y = -4.3619x +1832.4 0.0311 147.70 105.25 21642.50 5.66

Table. 3 shows that the R? values that meet the requirements above the strong R? of 0.64 (N.S.Foong ¢#
al., 2018) are the B1, B2, B3, W1, W2, and W3 models (energy consumption and water consumption), while the
C1, C2, and C3 (chemical consumption) models are categorized as weak data based on the R? value. For this reason,
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the model with a substantial R? will be used as a baseline to determine the most efficient use of energy and water.
Figure 4. shows that three models have excellent R? values, so they can be used as baselines to measure the
performance of each model. Half-block loads, namely models B1 and B2, have loads with the same performance
(representation of heat rate) at loads of around 218-222MW. Nevertheless, after contact, there is a difference in
performance at peak loads in the range of 344 MW.
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1880 B B2 Models
@
E 1830 B B3 Models
= 1780
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€ 1680
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o 1620
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§ 1580
[C] 1530
1480
150 250 350 450 550 650
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Figure 4. Energy baseline comparassion

Model B1 has a heat rate value of 1581.74 kcal/kWh, and model B2 has a heat rate value of 1551.2
kcal/kWh at peak load; this happens because there are many operating variables such as operating hours, overhaul
schedule, and operation configuration so that each unit has different characteristics even though the generating
units are twins. Compared model B1 has a heat rate value of 1581.74 kcal/kWh and model B2 has a heat rate value
of 1551.2 kcal/kWh. When compared to the B3 model at peak load (740 MW), the block load has a heat rate
performance of 1566.89 kcal/kWh. If the combined cycle power plant is operated at minimum load with a half-
block (1-1-1) based on Figure 4., then the GT1 unit with B1 modeling will have better performance compared to
GT2 with B2 mode; this is because GT2 is almost approaching the overhaul period as shown in the Figure 5. so
that its performance dectrease. At a low load (165 MW), modeling B1 has a heat rate of 1742.72 kcal/kWh and
modeling B2 has a heat rate of 1922.68 kcal /kWh.
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Figure 5. Overhaul schedule
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Figure 6. Water consumption baseline comparassion

Figure 6. shows the baseline for modeling water consumption as an independent variable and heat rate as the
dependent variable. The W1, W2, and W3 models have relatively high R? and are in the vital data category to be
used as a baseline. Figure 6. shows that all model baseline lines have almost similar gradients so that water
consumption in any operating configuration has similar characteristics. W3 modeling shows that the full-block
operation (2-2-1) will consume more water than the GT1 and GT2 half-block operations because the full-block
operation runs both GT- HRSG, so water consumption will increase. If we compare the operating configurations
of the half-block GT1 and GT2 at the same heat rate of around 1680 kcal/kWh (representation of the load Figure
3.), then the GT1 with the W1 model consumes 274.49 m3 of water. The GT2 with the W2 model consumes 178.4
m?; this happened because there was much damage to the feed water system in GT1, such as a leak in the high-
pressure water valve (HP CV), an abnormal water spray valve, and leaks in the valve gland packing, as shown in

Figure 7.
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In modeling, C1, C2, and C3 (chemical consumption) produce very low R? values, and this is due to the
relatively constant use of chemicals under any performance conditions in the power plant. They are shown in
Figure 8 that chemical modeling C1, C2, and C3 is presented as one to determine the concentration of data. Use

35



R. Muhammad ¢# a/. / Journal of Mechanical Design and Testing 6(1), (2024), 27-37

data concentration of chemical consumption; the average chemical consumption for GT1 is 11.81 kg, GT2is 7.8
kg, and the block load is 10.73 kg.

5. CONCLUSION

This paper demonstrates the use of linear regression in energy use, water consumption, and chemical
consumption in power plants by making models for analysis. With one year and 12,232 from June 2022 until June
2023, total data shows that the B1, B2, B3 (energy) and W1, W2, and W3 (water consumption) models have good
R-square values. A good R? value indicates that variable X changes affect variable Y, so this modeling can be used
as an analysis and forecast. All models analyzed have a mean absolute percentage error (MAPE) value below 10%.
MAPE with a low presentation indicates that if the regression analysis is used as a forecast, it will produce good
results. Based on the energy baseline in Figure 4 of half-block operation at peak load GT2, represented by modeling
B2, it has a lower heat rate value of 1.93% than B1 modeling. When operating the peak load on the half-block
GT1 configuration compared to operating the full-block represented by B3 modeling, it turns out that the full-
block has a lower heat rate of 0.94%.

At low loads, the half-block operation has a relatively large difference in heat rate. GT1 operation at low load
shown in B1 modeling has a lower heat rate of 9.36% than GT2 operation in B2 modeling. Based on Figure 6, at
a heat rate of 1690 kcal/kWh, it was found that the use of water in the GT2 half-block operation with W2 modeling
was 35.01% more efficient compared to operating the half-block with GT1 modeling W1.

Based on this study, this paper concludes that the most efficient use of energy is the GT1 or Bl model for the
baseload and GT2 or B2 for the peak load. If consuming water becomes a priority, the GT2 or W2 model is more
efficient than the GT1 or W1 model. Energy efficiency and water consumption can be achieved by coordinating
intermediate loads on all generating units because the results of the modeling do not show any significant gaps.
This model can be a baseline reference for operating intermediate loads or the power plant configuration at the
740 MW Priok Combined Cycle Power Plant to get more efficiency. Power plant data, as has been done in research
using the linear regression method, can be done on other power plants. It has been proven that linear regression
analysis can be done quickly by getting a satisfactory R-squared value. The results of linear regression analysis can
be used as an initial reference in mapping plant conditions.
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