Analysis of the Effect of Inlet Compressor Temperature on the Thermal Efficiency of PLTG Unit 3.2 in Grati

https://doi.org/10.22146/jmdt.102262

Didik Purwanto(1*)

(1) Department of Operation, PLN Indonesia Power Grati PGU
(*) Corresponding Author

Abstract


PLTGU Grati block 3 has two gas turbines, namely unit 3.1 and unit 3.2, with a Net Capacity of 145 MW for each gas turbine. In PLTG unit 3.2 Grati, there is an issue related to differences in thermal efficiency values caused by changes in the inlet compressor temperature. The thermal efficiency value of PLTG unit 3.2 Grati is high when the compressor's inlet temperature is low. Therefore, to determine the effect of the compressor's inlet temperature on the thermal efficiency value of PLTG unit 3.2, a calculation process of parameters affecting thermal efficiency values is conducted for analysis purposes. In this research, calculations were performed for three compressor inlet temperature data points, namely at temperatures of 296.69 K, 299.49 K, and 304.11 K, resulting in gas turbine thermal efficiency values of 32.17%, 31.84%, and 31.79%, respectively. Based on the calculation results, it is shown that as the compressor's inlet temperature increases, the thermal efficiency value decreases.


Keywords


Temperature; PLTG; Efficiency

Full Text:

PDF


References

A. Energia, “AE94.2 Gas Turbine Operating & Maintenance Manual”. Energia, Ansaldo, 2017.

B. Setiawan, A. Sanjaya, and A. Basuki, “Pedoman Tata Niaga Tenaga Listrik Edisi II,” Jakarta, 2019.

I. Yogaswara, Supari, and Harmini, “Analisis efisiensi operasional sistem PLTGU unit GTG 2.3 di PT Indonesia Power semarang power generation unit,” USM, Semarang, 2020. [Online]. Available: https://repository.usm.ac.id/files/skripsi/C41A/2018/C.44 1.18.0032/C.441.18.0032-15-File-Komplit- 20200811024911.pdf

K. Brun and R. Kurz, “Klaus Brun, Rainer Kurz - Introduction to Gas Turbine Theory-Solar Turbines Inc”, 3rd ed. Solar Turbines Incorporated, 2019.

M. Faizal, B. Teguh Prasetyo, and E. S. Effendy, “Analisis performance TM2500 gas turbine generator package PLTG X pada factory test dan site test,” Bina Teknika, vol. 13, no. 2, pp. 157–163, 2017.

M. M. Rahman, T. K. Ibrahim, and A. N. Abdalla, “Thermodynamic performance analysis of gas-turbine power-plant,” International Journal of the Physical Sciences, vol. 6, no. 14, pp. 3539–3550, Jul. 2011, doi: 10.5897/IJPS11.272.

M. Mubarrok, “Analisis pengaruh temperatur masuk kompresor terhadap efisiensi PLTG pada Blok 2.3 PLTGU Grati,” IT PLN, Jakarta, 2021.

N. Gusnita and K. Saputra Said, “Analisa efisiensi dan pemanfaatan gas buang turbin gas Alsthom pada pembangkit listrik tenaga gas kapasitas 20 MW,” Jurnal Sains, Teknologi dan Industri, vol. 14, no. 2, pp. 209–218, 2017, [Online]. Available: http://ejournal.uin- suska.ac.id/index.php/sitekin

R. Nugraha, “Analisis perubahan temperatur ambient terhadap efisiensi komponen utama PLTG Blok 1.1 dan 1.2 di PT PJB UP Muara Karang,” IT PLN, Jakarta, 2020.

Y. A. Cengel, M. A. Boles, and M. Kanoglu, “Thermo dynamics: an engineering approach/Yunus A. Çengel, 9th ed. New York: McGraw-Hill Education”, 2 Penn Plaza, New York, NY 10121, 2019. [Online]. Available: https://lccn.loc.gov/2017048282

Y. Putri, “Analysis of compressor inlet temperature effect on the efficiency in gas power plant in Block 1 unit 2 of the Muara Karang Gas Power Plant,” IT PLN, Jakarta, 2020.



DOI: https://doi.org/10.22146/jmdt.102262

Article Metrics

Abstract views : 97 | views : 116

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.