Studi Eksperimental Pengaruh Convective Heat Transfer terhadap Pressure Drop pada Aliran Dua Fase Gas-Cair Fluida Newtonian dan non-Newtonian dalam Square Microchannel

https://doi.org/10.22146/jmdt.73376

Luqman Al Huda(1*), Haslinda Kusumaningsih(2), Deendarlianto Deendarlianto(3), Indarto Indarto(4)

(1) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada
(2) Departemen Teknik Mesin, Fakultas Teknik, Universitas Brawijaya, Malang, Indonesia
(3) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada
(4) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Penelitian terkait dua fase gas-cair dalam saluran mikro telah banyak dilakukan. Namun, keterlibatan fluida non-newtonian serta kalor dalam aliran dua fase suatu saluran mikro masih terbatas, terutama pemecahan masalah pada pendinginan perangkat mikro. Permintaan terhadap efisiensi aliran fluida dua fase dalam mengikat kalor menjadi parameter penting dalam keberhasilan sistem pendinginan. Tujuan penelitian ini membandingkan beda tekanan antara fluida newtonian dan non-newtonian berdasarkan perbedaan viskositas pada aliran dua fase. Penelitian juga menambahkan perlakuan kalor konveksi dan mengamati pada dua area, yaitu sebelum (upstream) dan sesudah (downstream) terdampak kalor. Jenis fluida cair newtonian yang digunakan yaitu aquadest dan fluida non-newtonian yaitu Carboxymethil Cellulose (CMC wt 0,4%), sedangkan fluida gas yang digunakan adalah nitrogen. Dimensi diameter hidrolis saluran sebesar 0,8 mm. Kecepatan superfisial cairan divariasikan mulai 0,1 m/s hingga 1 m/s, sedangkan kecepatan superfisial gas divariasikan mulai 0,26 m/s hingga 7,81 m/s. High speed video camera digunakan untuk merekam pola aliran, panjang dan kecepatan gelembung terbentuk. Hasil penelitian aliran nitrogen-aquadest membentuk pola aliran bubbly, slug, churn dan slug-annular, sedangkan nitrogen-CMC wt 0,4% membentuk slug, churn dan slug-annular. Perbedaan viskositas aquadest memberikan beda tekanan lebih rendah daripada CMC wt 0,4%. Penambahan kalor mampu memberikan beda tekanan yang lebih rendah diiringi dengan penurunan viskositas cairan.


Keywords


Two phase flow; Microchannel; Non-Newtonian; Convective Heat Transfer

Full Text:

PDF


References

Anna, S. L., 2016. Droplets and bubbles in microfluidic devices, Annu. Rev. Fluid Mech. Vol. 48. 285–309. https://doi.org/10.1146/annurev-fluid-122414-034425

Bagaskoro, F. I., 2021. Studi eksperimental mengenai karakteristik aliran dua fase dan pola aliran slug fluida newtonian serta perbandingannya terhadap fluida non-newtonian pada upstream square microchannels. Skripsi. Teknik Mesin Universitas Gadjah Mada, Yogyakarta.

Benchabane, A., 2006. Doctorate Thesis (in French), ULP Strasbourg I, pp. 169.

Benchabane, A., Bekkour, K., 2008. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym Sci. Vol. 286. 1173-1180. https://doi.org/10.1007/s00396-008-1882-2

Brauner, N., Moalem-Maron, D. 1992. Flow pattern transitions in two-phase liquid-liquid flow in horizontal tubes. International Journal of Multiphase Flow, 1992, 18 (1), pp. 123–140. https://doi.org/10.1016/0301-9322(92)90010-E

Chisholm, D., Laird, A.D.K., 1958. Two phase flow in rough tube. Trans. ASME 80 (2), 276-286.

Coleman, J. W., & Garimella, S. 1999. Characterization of two-phase flow patterns in small diameter round and rectangular tubes. International Journal of Heat and Mass Transfer, 42 (15), 2869–2881. https://doi.org/10.1016/S0017-9310(98)00362-7

Garstecki, P, Fuerstman, M.J., Stone, H.A., Whiteside, G.M., 2006. Formation of droplets and bubbles in a microfluidic T-junction – Scaling and mechanism of break-up, Lab Chip 2 437–446. https://doi.org/10.1039/b510841a

Joensson, H.N., Andersson Svahn, H., 2012. Droplet microfluidics–a tool for single-cell analysis, Angew. Chem., Int. Ed. Engl. vol 51. https://doi.org/12176–12192. 10.1002/anie.201200460

Kaji, M., Sawai, T., Ueda, T., 2005. Frictional Pressure Drop Characteristics of Gas-Liquid Two-Phase Flow in Smal Bore Tubes. Mem. School B.O.S.T. Kinki University, 15, 65-74.

Kawahara, A., Chung, P. M. Y., Kawaji, M., 2002. Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel. Int. Journal of Multiphase Flow 28, 1411-1435. https://doi.org/10.1016/S0301-9322(02)00037-X

Kew, P.A., Cornwell, K., 1997. Correlations for the prediction of boiling heat transfer in small-diameter channels. Appl. Therm. Eng. 17, 705–715. https://doi.org/10.1016/s1359-4311(96)00071-3

Kusumaningsih, H., Hamidi, N., Sabila, A. F., 2019. Pola aliran dua fase gas-fluida non newtonian melalui belokan pipa. Rekayasa Mesin 12, 317-326.

Lockhart, R.W., Martinelli, R.C., 1949. Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem. Eng. Progress 45, 39-48.

Mansour, M. H., Kawahara, A., Sadatomi, M., 2015. Experimental investigation of gas-non-newtonian liquid two-phase flows from T-junction mixer in rectangular microchannel. International Journal of Multiphase Flow, 72, 263-274. https://doi.org/

Mishima, K., Hibiki, T., 1996. Some characteristics of air-water two-phase flow in small diameter vertical tubes. International Journal of Multiphase Flow 22 (4), 703-712. https://doi.org/10.1016/0301-9322(96)00010-9

Rao, M. A., Walter, R. H., Cooley, H. J. 1981. Effect of Heat Treatment on the Flow Properties of Aqueous Guar Gum and Sodium Carboxymethylcellulose (CMC) Solutions. Journal of Food Science 46, 896-899. https://doi.org/10.1111/j.1365-2621.1981.tb15374.x

Saisorn S., Kuaseng P., Wongwises S., 2014. Heat transfer characteristics of gas-liquid flow in horizontal rectangular micro-channels. Experimental Thermal and Fluid Science, Vol. 55, Pages 54 – 61. https://doi.org/10.1016/j.expthermflusci.2014.02.006

Serizawa, A., Feng, Z., & Kawara, Z. 2002. Two-phase flow in microchannels. Experimental Thermal and Fluid Science, 26, 703–714. https://doi.org/10.1016/S0894-1777(02)00175-9

Skurtys, O., Aguilera, J. M., 2008. Applications of microfluidic devices in food engineering, Food Biophys. vol 3. 1–15. https://doi.org/10.1007/s11483-007-9043-6

Song, H., Chen, D. L., Ismagilov, R. F., 2006. Reactions in droplets in microfluidic channels, Angew. Chem. Int. Ed. vol:45. 7336–7356.

Suo, M., dan Griffith, P. 1964. Two-Phase Flow in Capillary Tubes. Basic Engineering, September, 576–582. https://doi.org/10.1115/1.3653176

Suwankamnerd P., Wongwises S. 2015. An experimental study of two-phase air-water flow and heat transfer characteristics of segmented flow in a microchannel. Experimental Thermal and Fluid Science. Vol. 62, Pages 29 – 39. https://doi.org/10.1016/j.expthermflusci.2014.11.010

Triplett, K. A., Ghiaasiaan, S. M., Abdel-Khalik, S. I., & Sadowski, D. L. 1999. Gas-liquid two-phase flow in microchannels part I: Two-phase flow patterns. International Journal of Multiphase Flow, 25(3), 377–394. https://doi.org/10.1016/S0301-9322(98)00054-8

Ullmann, A., Brauner, N. 2006, Closure relations for two-fluid models for two-phase stratified smooth and stratified wavy flows. International Journal of Multiphase Flow, 32 (1), pp. 82-105. https://doi.org/10.1016/j.ijmultiphaseflow.2005.08.005

Ullmann, A., Brauner, N., 2007, The prediction of flow pattern maps in minichannels. Multiphase Science and Technology, 19 (1), pp. 49-73. https://doi.org/10.1615/MultScienTechn.v19.i1.20

Yang, Z.C., Bi, Q.C., Liu, B., Huang, K.X. 2010. Nitrogen/non-Newtonian fluid two-phase upward flow in non-circular microchannels. International Journal of Multiphase Flow vol. 36. 1. 60-70. https://doi.org/10.1016/j.ijmultiphaseflow.2009.07.011

Zhang, T., Cao, B., Fan, Y., Gonthier, Y., Luo, L., Wang, S., 2011. As–liquid flow in circular microchannel. Part I: Influence of liquid physical properties and channel diameter on flow patterns. Chemical Engineering Science 66, 5791–5803. https://doi.org/10.1016/j.ces.2011.07.035

Zuber, N., Findlay, J.A., 1965. Average volumetric concentration in two-phase flow system, Trans. ASME J. Heat Transfer 87, 453-468. https://doi.org/10.1115/1.3689137



DOI: https://doi.org/10.22146/jmdt.73376

Article Metrics

Abstract views : 1036 | views : 2437

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.