On Graded Strongly 1-Absorbing Primary Ideals and Graded 2-Absorbing I-Primary Ideals

Maria Asa Pitayani^{1*}, Sutopo², Sri Wahyuni³

 1,2,3 Department of Mathematics, Universitas Gadjah Mada, Indonesia 1 mariaasapitayani@mail.ugm.ac.id, 2 sutopo_mipa@ugm.ac.id, 3 swahyuni@ugm.ac.id

Abstract. Given a group G with identity e and a G-graded commutative ring R with unity element 1_R . This paper introduces a new concept, namely, graded strongly 1-absorbing primary ideals, which is a subclass of the graded 1-absorbing primary ideals. A proper graded ideal I of R is said to be a graded strongly 1-absorbing primary ideal of R if whenever non-unit elements $a,b,c\in h(R)$ with $abc\in I$, then either $ab\in I$ or $c\in Grad(0)$. Several properties of graded strongly 1-absorbing primary ideals will be investigated in this paper. Furthermore, a new structure called graded 2-absorbing I-primary ideal is also introduced.

Keywords: Graded 1—Absorbing Primary Ideal, Graded Strongly 1—Absorbing Primary Ideal, Graded 2—Absorbing I—Primary Ideal.

1. INTRODUCTION

Throughout this article, G will be a group with identity e and R will be an abelian ring with a nonzero unity 1_R . A ring R is said to be G-graded if there exists a family of additive subgroups $\{R_g\}_{g\in G}$ such that $R=\bigoplus_{g\in G}R_g$ and $R_{g_1}R_{g_2}\subseteq R_{g_1+g_2}$ for every $g_1,g_2\in G$. If $R_{g_1}R_{g_2}=R_{g_1+g_2}$ for all $g_1,g_2\in G$, then R is said to be a strongly graded ring. Moreover, a G-graded ring R is positively graded if $R_g=\{0\}$ for all g<0 and negatively graded if $R_g=\{0\}$ for all g>0. The set $h(R)=\bigcup_{g\in G}R_g$ is the set of homogeneous elements of R. A nonzero element $a_g\in R_g$ is said to be a homogeneous element of degree g, and can be written as $\deg(a_g)=g$. Every nonzero element in a G-graded ring R can be uniquely expressed as a finite sum of homogeneous elements, denoted by $a=\sum_{g\in G}a_g$, where a_g is a homogeneous component of a in R_g .

 $2020\ Mathematics\ Subject\ Classification:\ 11R44$

Received: 24-05-2025, accepted: 02-08-2025.

^{*}Corresponding author

Let S be a subring of a G-graded ring R. Then S is said to be a graded subring if $S=\bigoplus_{g\in G}S_g$, where $S_g=S\cap R_g$ for each $g\in G$. Since S is a graded subring of R, then $S_{g_1}S_{g_2}=(S\cap R_{g_1})(S\cap R_{g_2})\subseteq S\cap R_{g_1+g_2}=S_{g_1+g_2}$ for all $g_1,g_2\in G$. Consequently, every graded subring S of R is a G-graded ring.

Analogous to the concept of an ideal in a ring, the concept of a graded ideal is introduced in graded rings. An ideal I of a graded ring R is said to be a graded ideal if I respects the grading structure, i.e., $I = \bigoplus_{g \in G} I_g$, where $I_g = I \cap R_g$ for each $g \in G$. An important construction related to graded ideals is the graded radical of a graded ideal I, denoted by Grad(I). The graded radical consists of all elements $a = \sum_{g \in G} a_g \in R$ such that for every $g \in G$, there exists a positive integer n_g satisfying $a_g^{n_g} \in I$, denoted by

$$Grad(I) = \bigg\{ a = \sum_{g \in G} a_g \in R \mid \forall g \in G, \exists n_g \in \mathbb{N}, \ni a_g^{n_g} \in I \bigg\}.$$

It has been established that the graded radical of a graded ideal is a graded ideal of R

The following summarizes several important properties related to graded ideals in graded rings.

Lemma 1.1. [1] Let R be a G-graded ring. The following hold:

- (1) If I and J are graded ideals in R, then I + J, IJ, and $I \cap J$ are graded ideals in R.
- (2) If $a \in h(R)$, then Ra is a graded ideal in R.

Lemma 1.2. [2] Let R be a G-graded ring, and let I, J be graded ideals in R. Then,

- (1) Grad(Grad(I)) = Grad(I)
- (2) $Grad(IJ) = Grad(I \cap J) = Grad(I) \cap Grad(J)$.

Proof. It follows from ([2], Proposition 2.4).

Refai, in [3], introduced a generalization of the graded prime ideal, called the graded primary ideal. A graded ideal I of a G-graded ring R is said to be a graded primary ideal if $I \neq R$ and whenever $a, b \in h(R)$ with $ab \in I$, then $a \in I$ or $a \in Grad(I)$. Every graded prime ideal is a graded primary ideal, but the converse does not generally hold. Later, in [4], a further generalization of the graded primary ideal, called the graded 2-absorbing primary ideal, was studied. A proper graded ideal I of R is said to be a graded 2-absorbing primary ideal if whenever $a, b, c \in h(R)$ with $abc \in I$, then $ab \in I$ or $ac \in Grad(I)$ or $bc \in Grad(I)$. In [5], Abu-Dawwas and Bataineh introduced a new subclass of graded 2-absorbing primary ideals, called graded 1-absorbing primary ideals. A proper graded ideal I of a graded ring R is said to be a graded 1-absorbing primary if whenever nonunit elements $a, b, c \in h(R)$ such that $abc \in I$, then $ab \in I$ or $c \in Grad(I)$. Since the concept of a graded 1-absorbing primary ideal generalizes that of a graded primary ideal, it follows that every graded primary ideal is necessarily a graded

1—absorbing primary ideal. However, the converse is not necessarily true; that is, a graded 1—absorbing primary ideal is not always a graded primary ideal.

In 2015, [6] studied rings in which every non-unit element is a product of a unit and a nilpotent element, referring to them as UN rings. Building upon this concept, the structure of the UN rings was later extended to graded rings.

Definition 1.3. [7] A G-graded ring R is called a HUN ring if every homogeneous element in R is either a unit or nilpotent.

Example 1.4. [8] Let R be a graded field, and let $u \notin R$ be an element such that $u^2 = 1$. Define a graded field $F = \{a + ub \mid a, b \in R \text{ and } u^2 = 1\}$ with respect to the group \mathbb{Z}_2 , where the grading is given by $F_0 = R$ and $F_1 = uR$. Next, we prove that F is a HUN-ring. Let $a \in F_0$. Since every element of the field R is a unit, it follows that a is a unit in F_0 . Now, consider the elements in F_1 . Take any $ub \in F_1$ with $u^2 = 1$. Since $b \in R$ and b is a unit, we obtain $(ub)^2 = u^2b^2 = b^2$. Consequently, b^2 is trivially nilpotent if b = 0. Conversely, if $b \neq 0$, then b^2 is a unit. Therefore, the graded field F is a HUN ring.

Previously, in [9], Almahdi et al. introduced the concept of a strongly 1—absorbing primary ideal, which can be used to characterize UN rings and local rings, rings that have exactly one maximal ideal. Based on this idea, in [8], Abu-Dawwas developed a similar concept in graded rings, introducing the graded strongly 1—absorbing primary ideal, which forms a new subclass of graded 1—absorbing primary ideals. Just like the strongly 1—absorbing primary ideal, the graded strongly 1—absorbing primary ideal can also be used to characterize HUN rings and graded local rings.

This paper is a review of the work previously written by Abu-Dawwas in [8]. Our contributions in this paper include providing examples, adding properties, and deriving corollaries from the existing propositions. We give examples (see Example 2.2) of a graded strongly 1—absorbing primary ideal, and derive corollaries from Proposition 2.12, particularly when R is a graded Noetherian. Furthermore, we investigate the structure of graded ideals in the direct product of graded rings. Since the graded ideal in this ring is not a graded strongly 1—absorbing primary ideal, we examine whether it satisfies the properties of a graded 2—absorbing I—ideal, which is a generalization of graded prime ideals and was introduced by I. Akray, Adil K. Jabbar and Shadan A. Othman in [10].

2. GRADED STRONGLY 1-ABSORBING PRIMARY IDEAL

In this section, we study the concept of graded strongly 1—absorbing primary ideals, a subclass of graded 1—absorbing primary ideals.

Definition 2.1. [8] Let R be a G-graded ring and I a proper graded ideal of R. The ideal I is said to be a graded strongly 1-absorbing primary ideal in R if whenever non-unit elements $a,b,c \in h(R)$ such that $abc \in I$, then either $ab \in I$ or $c \in Grad(\{0\})$.

The following example illustrates the concept of a graded strongly 1—absorbing primary ideal.

Example 2.2. Let $R = \mathbb{R}[x]/\langle x^9 \rangle$ be a $\mathbb{Z}-graded$ ring and consider the graded ideal $I = \langle \overline{x^3} \rangle$ in R. Then I is a graded strongly 1-absorbing primary ideal. Let $\overline{p(x)} = \overline{\sum_{i=0}^8 a_i x^i}, \overline{q(x)} = \overline{\sum_{i=0}^8 b_i x^i}, \overline{r(x)} = \overline{\sum_{i=0}^8 c_i x^i} \in h(R)$ be non-unit elements such that $p(x)q(x)r(x) \in I$. If $p(x)q(x) \in I$, then I is trivially a graded strongly 1-absorbing primary ideal. Suppose $\overline{p(x)q(x)} \notin I$. Then we analyze the following cases:

- (1) If $\deg(p(x)q(x)) = 0$, then $\deg(r(x)) \ge 3$, so there exists $n_i \ge 3$ such that $(\overline{r(x)})^{n_i} \in {\{\overline{0}\}}$. Hence, $\overline{r(x)} \in \operatorname{Grad}({\{\overline{0}\}})$.
- (2) If $deg(\overline{p(x)q(x)}) = 1$, then $deg(\overline{r(x)}) \ge 2$, so there exists $n_i \ge 5$ such that $(\overline{r(x)})^{n_i} \in {\{\overline{0}\}}$. Hence, $\overline{r(x)} \in Grad({\{\overline{0}\}})$.
- (3) If $deg(\overline{p(x)q(x)}) = 2$, then $deg(\overline{r(x)}) \ge 1$, so there exists $n_i \ge 9$ such that $(\overline{r(x)})^{n_i} \in {\{\overline{0}\}}$. Hence, $\overline{r(x)} \in Grad({\{\overline{0}\}})$.

Thus, for any $\overline{p(x)}, \overline{q(x)}, \overline{r(x)} \in h(R)$ such that $\overline{p(x)q(x)r(x)} \in I$, we have either $\overline{p(x)q(x)} \in I$ or $\overline{r(x)} \in \operatorname{Grad}(\{\overline{0}\})$. Therefore, I is a graded strongly 1-absorbing primary ideal in R. In general, the ideal $I = \langle \overline{x^p} \rangle$ is a graded strongly 1-absorbing primary ideal of $R = \mathbb{R}[x]/\langle x^{p^n} \rangle$.

As mentioned earlier, the concept of a graded strongly 1—absorbing primary ideal forms a new subclass of graded 1—absorbing primary ideals. Hence, every graded strongly 1—absorbing primary ideal is a graded 1—absorbing primary ideal, but the converse does not necessarily hold. Not every graded 1—absorbing primary ideal is graded strongly 1—absorbing. The following example illustrates this.

Example 2.3. Let $R = \mathbb{Z}[i]$ and $G = \mathbb{Z}_2$. Then R be a G-graded ring by $R_0 = \mathbb{Z}$ and $R_1 = i\mathbb{Z}$. Consider the graded ideal I = 3R, which is a graded 1-absorbing primary ideal. For arbitrary non-unit elements $a, b \in h(R)$ with $ab \in I$ and $a \notin I$, it follows that 3 divides ab but does not divide a. Thus, 3 must divide b, which means $b \in Grad(I)$. Hence, I is a graded 1-absorbing primary ideal. However, I is not a graded strongly 1-absorbing primary ideal. Specifically, consider $2, 3 \in h(R)$ such that $2 \cdot 2 \cdot 3 \in I$, but $2 \cdot 2 \notin I$ and $3 \notin Grad(\{0\})$. Therefore, we conclude that I is a graded 1-absorbing primary ideal but not a graded strongly 1-absorbing primary ideal.

Not every G-graded ring necessarily contains a graded strongly 1-absorbing primary ideal. However, a G-graded ring does contain a graded strongly 1-absorbing primary ideal if it has the graded prime ideal $Grad(\{0\})$ or is a graded local ring. This result is formalized in the following theorem.

Theorem 2.4. [8] Let R be a G-graded ring. A graded strongly 1-absorbing primary ideal exists in R if and only if

- (1) the ideal Grad(0) is a graded prime ideal, or
- (2) the ring R is a graded local ring.

Proof. It follows from ([8], Theorem 2.8.).

In ring theory, if R and S are rings, then the direct product $R \times S$ forms a ring. Similarly, if R and S are G-graded rings with grading $\{R_g\}_{g \in G}$ and $\{S_g\}_{g \in G}$, then the direct product $R \times S$ is also a G-graded ring with grading $(R \times S)_g = R_g \times S_g$ for each $g \in G$.

Corollary 2.5. [8] If R and S are G-graded rings, then $R \times S$ does not contain any graded strongly 1-absorbing primary ideal.

Proof. Let R and S be G—graded rings. If neither R nor S is a graded local ring, then it is clear that $R \times S$ is also not a graded local ring. Suppose that R and S are graded local rings with graded maximal ideals \mathcal{M}_R and \mathcal{M}_S , respectively. Consequently, $R \times S$ has more than one graded maximal ideal, namely $\mathcal{M}_R \times S$ and $R \times \mathcal{M}_S$. Therefore, $R \times S$ is not a graded local ring. Next, we examine whether $Grad(\{0_{R \times S}\}) = Grad(\{0_R\}) \times Grad(\{0_S\})$ is a graded prime ideal in $R \times S$. Consider elements $(a,b) \notin Grad(\{0_{R \times S}\})$ where $a \in Grad(\{0_R\})$ and $b \notin Grad(\{0_S\})$, as well as $(c,d) \notin Grad(\{0_{R \times S}\})$ where $c \notin Grad(\{0_R\})$ and $d \in Grad(\{0_S\})$. However, since there exist $m, n \in \mathbb{N}$ such that $(ac)^n = a^nc^n = 0_Rc^n = 0_R$ and $(bd)^m = b^md^m = b^m0_S = 0_S$, it follows that $(ac,bd) \in Grad(\{0_{R \times S}\})$. As a result, $Grad(\{0_{R \times S}\})$ is not a graded prime ideal in $R \times S$. Since $R \times S$ is not a graded local ring and $Grad(\{0_{R \times S}\})$ is not a graded prime ideal, we conclude that $R \times S$ does not contain any graded strongly 1—absorbing primary ideal. □

Some properties of graded strongly 1—absorbing primary ideals are presented in the following propositions.

Proposition 2.6. [8] Let R be a G-graded ring, and let I and J be proper graded ideals of R. If I and J are graded strongly 1-absorbing primary ideals, then $I \cap J$ is also a graded strongly 1-absorbing primary ideal.

Proof. It follows from ([8], Proposition 2.12). \Box

The following theorem is a development of the results studied in [11],[3], which were previously investigated in the context of 1—absorbing primary ideals and graded primary ideals. In this study, we further develop these results within the framework of graded strongly 1—absorbing primary ideals.

Definition 2.7. Let R be a G-graded ring and let I be a graded strongly 1-absorbing primary ideal of R. Then J = Grad(I) is a graded prime ideal of R, and we say that I is a J-graded strongly 1-absorbing primary ideal.

So we have the following result.

Proposition 2.8. Let R be a G-graded ring, and let I_1, I_2, \ldots, I_n be proper graded ideal of R. If I_1, I_2, \ldots, I_n are J-graded strongly 1-absorbing primary ideal, then $I = \bigcap_{i=1}^n I_i$ is a J-graded strongly 1-absorbing primary ideal.

Proof. First, we will prove that Grad(I) = J. Let I_1, I_2, \ldots, I_n are J-graded strongly 1-absorbing primary ideal. It is given that $Grad(I_i) = J$ for every $i = 1, 2, \ldots, n$. By Proposition 1.2, we have $Grad(I) = Grad(\bigcap_{i=1}^n I_i) = \bigcap_{i=1}^n Grad(I_i)$ Since $Grad(I_i) = J$ for all i, it follows that $\bigcap_{i=1}^n Grad(I_i) = J \cap J \cap \cdots \cap J = J$. Thus, we have shown that Grad(I) = J. Next, by Proposition 2.6, we know that $I = \bigcap_{i=1}^n I_i$ is a graded strongly 1-absorbing primary ideal of R. Therefore, we conclude that I is a J-graded strongly 1-absorbing primary ideal.

Proposition 2.9. [8] Let R be a G-graded ring. If every element of h(R) is either nilpotent or a unit, then Rw is a graded strongly 1-absorbing primary ideal in R for every non-unit element $w \in h(R)$.

Proof. It follows from ([8], Proposition 2.13).

Corollary 2.10. [8] Let R be a graded ring. If R is an HUN ring, then every proper graded ideal in R is a graded strongly 1—absorbing primary ideal.

Proof. Let R be a HUN ring and I a proper graded ideal in R. By Definition 1.3, every element in h(R) is either nilpotent or a unit. Suppose there exist nonunit elements $a,b,c \in h(R)$ such that $abc \in I$ and $c \notin Grad(\{0\})$. The objective is to show that every proper graded ideal I in R is a graded strongly 1-absorbing primary ideal. Since $a,b,c \in h(R)$ are nonunit elements and $abc \in R(abc)$, Proposition 2.9 ensures that R(abc) is a graded strongly 1-absorbing primary ideal in R. Consequently, $ab \in R(abc) \subseteq I$. Therefore, it is established that if every element in h(R) is either nilpotent or a unit, then every proper graded ideal in R is a graded strongly 1-absorbing primary ideal.

Example 2.11. Consider the ring $\mathbb{Z}/9\mathbb{Z}$. The following table demonstrates that every element in $\mathbb{Z}/9\mathbb{Z}$ is either a unit or nilpotent.

Table 1. Multiplication (·) in $\mathbb{Z}/9\mathbb{Z}$.

	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$	$\overline{7}$	$\overline{8}$
$\overline{0}$									
1	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$	$\overline{7}$	8
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{6}$	8	$\overline{1}$	$\overline{3}$	$\overline{5}$	$\overline{7}$
3	$\overline{0}$	$\overline{3}$	$\overline{6}$	$\overline{0}$	$\overline{3}$	$\overline{6}$	$\overline{0}$	$\overline{3}$	$\overline{6}$
$\overline{4}$	$\overline{0}$	$\overline{4}$	8	$\overline{3}$	$\overline{7}$	$\overline{2}$	$\overline{6}$	$\overline{1}$	$\overline{5}$
5	$\overline{0}$	$\overline{5}$	$\overline{1}$	$\overline{6}$	$\overline{2}$	$\overline{7}$	$\overline{3}$	8	$\overline{4}$
6	$\overline{0}$	$\overline{6}$	$\overline{3}$	$\overline{0}$	$\overline{6}$	$\overline{3}$	$\overline{0}$	$\overline{6}$	$\overline{3}$
7	$\overline{0}$	$\overline{7}$	$\overline{5}$	$\overline{3}$	$\overline{1}$	$\overline{8}$	$\overline{6}$	$\overline{4}$	$\overline{2}$
8	$\overline{0}$	$\overline{8}$	$\overline{7}$	$\overline{6}$	$\overline{5}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

Since every ring can be viewed as a trivially graded ring, $\mathbb{Z}/9\mathbb{Z}$ can be considered as a \mathbb{Z} -graded ring with grading $R_0 = \mathbb{Z}/9\mathbb{Z}$ and $R_n = \{\overline{0}\}$ for every $n \in \mathbb{Z}, n \neq 0$. Thus, every homogeneous element of $\mathbb{Z}/9\mathbb{Z}$ is either a unit or nilpotent. By

Corollary 2.10, every proper graded ideal in $\mathbb{Z}/9\mathbb{Z}$ is a graded strongly 1-absorbing primary ideal.

The following provides necessary and sufficient conditions for a graded prime ideal of a graded ring to be a graded strongly 1—absorbing primary ideal.

Proposition 2.12. [8] Let R be a G-graded ring. A graded prime ideal in R is a graded strongly 1-absorbing primary ideal if and only if

- (1) R is a HUN-ring, or
- (2) R is a graded local ring with a graded maximal ideal M, has exactly one graded prime ideal that is not the graded maximal ideal (i.e., $Grad(\{0\})$), and every graded M-primary ideal contains M^2 .

Proof. It follows from ([8], Proposition 2.17).

Next, we extend the results of [9], originally on strongly 1—absorbing primary ideals, to the graded case. A G-graded ring R is called a graded Noetherian if every ascending chain of graded ideals in R terminates. Thus, we obtain the following consequence of Proposition 2.12.

Corollary 2.13. For any graded Noetherian ring R, the following are equivalent:

- (1) Every graded primary ideal of R is graded strongly 1-absorbing primary.
- (2) R is a HUN ring.

Proof. (1) \Rightarrow (2) Suppose that R is not a HUN ring. Then, by Proposition 2.12, R is a graded local ring with maximal ideal M, and every graded M-primary ideal contains M^2 . By Proposition 1.2, we obtain

$$\begin{split} Grad(M^4) &= Grad(M) \cap Grad(M) \cap Grad(M) \\ &= Grad(M) \\ &= Grad(Grad(I)), \text{for some graded } M\text{-primary ideal } I \\ &= Grad(I) \\ &= M. \end{split}$$

Thus, M^4 is an M-primary ideal, and since $M^2 \subseteq M^4$, we get $M^2 = M^4$. Consequently, M^2 is an idempotent ideal. Since R is Noetherian, M^2 is generated by an idempotent element of R. However, because R is a graded local ring, the only idempotent elements in R are 0 and 1. Therefore, we conclude that $M^2 = \{0\}$. As a result, $M^2 \subseteq \operatorname{Grad}(\{0\})$, which implies $M = \operatorname{Grad}(\{0\})$. This means that R is a HUN ring, contradicting our initial assumption. Hence, we conclude that R must be a HUN ring.

 $(2) \Rightarrow (1)$ If R is a graded Noetherian ring and a HUN ring, then by Corollary 2.10 every ideal of R is graded strongly 1—absorbing primary. Similarly, every graded primary ideal is also graded strongly 1—absorbing primary.

Let R be a commutative ring with identity 1_R and let M be an R-module. The idealization of the module M (trivial extension of the ring R by the module M), denote by

$$R(+)M = \{(r,m) \mid r \in R, m \in M\},\$$

is a commutative ring with identity $(1_R,0)$, equipped with componentwise addition and multiplication $(r_1,m_1)(r_2,m_2)=(r_1r_2,r_1m_2+r_2m_1)$ for all $(r_1,m_1),(r_2,m_2)\in R(+)M$. If $R=\bigoplus_{g\in G}R_g$ be a G-graded ring and $M=\bigoplus_{g\in G}M_g$ be a G-graded R-module, then R(+)M is a G-graded ring with grading $\{R_g(+)M_g\}_{g\in G}$. Suppose that I is an ideal of R and N is a submodule of M. Then I(+)N is an ideal of R(+)M if and only if $IM\subseteq N$. In the context of graded rings, I(+)N is a graded ideal of R(+)M if and only if I is a graded ideal of R and R is a graded submodule of R. Furthermore, the graded radical of a graded R is a graded submodule of R. Furthermore, the graded radical of a graded R is a necessary condition for a homogeneous graded ideal R to be a graded strongly R-absorbing primary ideal in R.

Proposition 2.14. Let M be a graded R-module, and let I(+)N be a homogeneous graded ideal of R(+)M. If I(+)N is a graded strongly 1-absorbing primary ideal in R(+)M, then I is a graded strongly 1-absorbing primary ideal of R.

Proof. Let $i_1, i_2, i_3 \in h(R)$ be homogeneous non-unit elements such that $i_1 i_2 i_3 \in I$ and $i_3 \notin Grad(\{0_R\})$. Then $(i_1,0)(i_2,0)(i_3,0) = (i_1 i_2 i_3,0) \in I(+)N$. Since I(+)N is a graded strongly 1—absorbing primary ideal and $(1_3,0) \notin Grad(\{0_{R(+)M}\})$, it follows that $(i_1,0)(i_2,0) = (i_1 i_2,0) \in I(+)N$, which implies $i_1 i_2 \in I$. Hence, I is a graded strongly 1—absorbing primary ideal of R.

In the following, we introduce a class of ideals that generalizes the concept of graded prime ideals, namely graded 2—absorbing I—ideal, where I is a fixed proper ideal.

Definition 2.15. [10] Let R be a G-graded ring and let I be a fixed proper ideal of R_e . A proper graded ideal P of R is called a graded 2-absorbing I-ideal ideal if for all $a, b, c \in h(R)$ such that $abc \in P - IP$, then $ab \in P$ or $ac \in P$ or $bc \in P$.

Theorem 2.16. [10] If P and Q are non zero graded I-prime ideals of a G-graded ring R, then $P \cap Q$ is a graded 2-absorbing I-ideal.

Proof. It follows from ([10], Theorem 2.4).

Proposition 2.17. Let P be graded strongly 1-absorbing primary ideal of a G-graded ring R and I be a graded ideal. Then Grad(P) is a graded I-prime ideal of R.

Proof. Let $a, b \in h(R)$ be arbitrary non-unit homogeneous elements such that $ab \in Grad(P) - IGrad(P)$, which means that $ab \in Grad(P)$ and $ab \notin IGrad(P)$. Therefore, there exists $n \in \mathbb{N}$ such that $(ab)^n = a^nb^n \in P$. Suppose n = r + s for some $r, s \in \mathbb{N}$. Since P is a graded strongly 1-absorbing primary ideal, it follows that $a^ra^s = a^n \in P$ or $b^n \in Grad(\{0\}) \subseteq Grad(P)$. In other words, either $a^n \in P$

or $b^{nm} \in P$ for some $m \in \mathbb{N}$. Consequently, $a \in Grad(P)$ or $b \in Grad(P)$. Hence, it is concluded that Grad(P) is a graded I-prime ideal.

Proposition 2.18. Let P and Q be a graded strongly 1-absorbing primary ideal of R. Then Grad(PQ) is a graded 2-absorbing I-ideal of R.

Proof. Based on Lemma 1.2, it follows that

$$Grad(PQ) = Grad(P \cap Q) = Grad(P) \cap Grad(Q).$$

Since P and Q are graded strongly 1-absorbing primary ideals, then by Proposition 2.17, both Grad(P) and Grad(Q) are graded I-prime ideals of R. Furthermore, by Theorem 2.16, Grad(PQ) is a graded 2-absorbing I-ideal.

It has been shown that the G-graded ring $R \times S$ does not admit any graded strongly 1-absorbing primary ideal. Based on Definition 2.15, we investigate whether the direct product $P \times Q$ forms a graded 2-absorbing $(I \times J)$ -ideal in $R \times S$, where P and Q are graded strongly 1-absorbing primary ideals in R and S, respectively. Let $(a_1, a_2), (b_1, b_2), (c_1, c_2) \in h(R \times S)$ such that

$$(a_1, a_2)(b_1, b_2)(c_1, c_2) = (a_1b_1c_1, a_2b_2c_2) \in (P \times Q) - (I \times J)(P \times Q),$$

which means that $(a_1b_1c_1, a_2b_2c_2) \in P \times Q$ and $(a_1b_1c_1, a_2b_2c_2) \notin (I \times J)(P \times Q)$. Since P and Q are graded strongly 1-absorbing primary ideals in R and S, respectively, it follows that $a_1b_1 \in P$ or $c_1 \in Grad(\{0_R\})$, and $a_2b_2 \in Q$ or $c_2 \in Grad(\{0_S\})$. In other words, $(a_1b_1, a_2b_2) \in P \times Q$ or $(c_1, c_2) \in Grad(\{0_R\}) \times Grad(\{0_S\})$. Since $Grad(\{0_R\}) \subseteq Grad(P)$ and $Grad(\{0_S\}) \subseteq Grad(Q)$, we obtain $(a_1b_1, a_2b_2) \in P \times Q$ or $(a_1c_1, a_2c_2) \in Grad(P) \times Grad(Q)$ or $(b_1c_1, b_2c_2) \in Grad(P) \times Grad(Q)$. This result shows that in general $P \times Q$ does not satisfy the definition of a graded 2-absorbing $(I \times J)$ -ideal. This motivates introducing a new class of graded ideals called graded 2-absorbing I-primary ideals.

Definition 2.19. Let R be a G-graded ring and I a fixed proper ideal of R_e . A proper graded ideal P of R is called a graded 2-absorbing I-primary ideal if for all $a, b, c \in h(R)$ with $abc \in P - IP$, then $ab \in P$ or $ac \in Grad(P)$ or $bc \in Grad(P)$.

3. CONCLUSIONS

This article establishes several key results. The intersection of any collection of J-graded strongly 1-absorbing primary ideals is again a J-graded 1-absorbing primary ideal. A graded Noetherian ring is a HUN-ring if and only if every graded primary ideal is a graded strongly 1-absorbing primary ideal. A homogeneous graded ideal of the form I(+)N is a graded strongly 1-absorbing primary ideal in the graded idealization R(+)M if and only if I is a graded strongly 1-absorbing primary ideal in R. Furthermore, we introduced generalizations of graded prime ideals, namely graded I-prime ideals and graded 2-absorbing I-ideal, where I is a fixed proper ideal of R. For any graded strongly 1-absorbing primary ideal in a graded ring R, its graded radical is a graded I-prime ideal, and the graded

radical of the product of two graded strongly 1—absorbing primary ideals is a graded 2—absorbing I—ideal. Finally, even if graded rings R and S each contain graded strongly 1—absorbing primary ideals, their direct product $R \times S$ does not necessarily admit such an ideal. However, it was shown that a graded ideal of the form $P \times Q$ in $R \times S$, where P and Q are graded strongly 1—absorbing primary ideals in R and S, respectively, forms a graded 2—absorbing I—primary ideal.

REFERENCES

- F. Farzalipour and P. Ghiasvand, "On the union of graded prime submodules," Thai J. Math., vol. 9, no. 1, pp. 49–55, 2011.
- [2] M. Refai, "Graded radicals and graded prime spectra," Far East J. Math. Sci., pp. 59–73, 2000.
- [3] M. Refai and K. Al-Zoubi, "On graded primary ideals," Turkish J. Math., vol. 28, no. 3, pp. 217–230, 2004.
- [4] K. Al-Zoubi and N. Sharafat, "On graded 2-absorbing primary and graded weakly 2-absorbing primary ideals," J. Korean Math. Soc., vol. 54, no. 2, pp. 675–684, 2007.
- [5] R. Abu-Dawwas and M. Bataineh, "Graded 1-absorbing primary ideals," in Turkish J. Math. - Studies on Scientific Developments in Geometry, Algebra, and Applied Mathematics, pp. 1–3, 2022.
- [6] G. Călugăreanu, "Un-rings," J. Algebra Appl., vol. 15, 2015. .
- [7] A. S. Alshehry, R. Abu-Dawwas, and M. Al-Rashdan, "Some notes on graded weakly 1-absorbing primary ideals," *Demonstratio Math.*, vol. 56, no. 1, pp. 42–52, 2023.
- [8] R. Abu-Dawwas, "On graded strongly 1-absorbing primary ideals," Khayyam J. Math., vol. 8, no. 1, pp. 42–52, 2022.
- [9] F. A. A. Almahdi, E. M. Bouba, and A. N. A. Koam, "On strongly 1-absorbing primary ideals of commutative rings," *Bull. Korean Math. Soc.*, vol. 57, no. 5, pp. 1250–1213, 2020.
- [10] I. Akray, A. K. Jabbar, and S. A. Othman, "Graded n-absorbing i-ideals," Palestine J. Math., vol. 13, no. 1, 2024.
- [11] A. Badawi and E. Y. Celikel, "On 1-absorbing primary ideals of commutative rings," J. Algebra Appl., vol. 19, no. 6, 2020.