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Abstract. Linear regression analysis is a common method that are free to vary
and are subject to error. In this study we used hybrid of linear regression and its
family to Deep Neural Network (DNN) to fill these gaps. In this paper analyze the
phenomenon of gambling in Indonesia in 2018. Results show that the hybrid model
is significantly superior to the single model, with the hybrid linear model reducing
RMSE by 15.9% and MAPE by 16.2% compared to the single linear model. The hy-
brid ridge model showed small but consistent improvements in RMSE and MAPE.
The most notable improvement was seen in the hybrid lasso model which reduced
RMSE by 34.1% and MAPE by 47.1% over the single lasso model. The hybrid
elastic net model also showed improved performance with a decrease in RMSE by
16.9% and MAPE by 18.3%. In conclusion, the integration of traditional regres-
sion methods with DNN in this hybrid model offers a significant improvement in
prediction accuracy, making it a more effective and efficient tool in the analysis of
gambling phenomena.
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1. INTRODUCTION

Gambling is a social phenomenon that can have a negative impact on society,
both in economic and social terms. Several studies reveal the effects of gambling
including divorce [I], increased anxiety levels [2], affecting not only adults but also
children [3]. Therefore, understanding the characteristics of the community and
the factors that contribute to the incidence rate of gambling is an important step
towards formulating effective policies to address it.
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This paper uses population data by province in Indonesia to analyze the
relationship between various socio-economic factors and the incidence of gambling.
Given the relatively small amount of data, linear regression was chosen as the main
analysis method. Linear regression is an appropriate choice because it is simple and
effective in handling small datasets without requiring complex training and testing
processes as in machine learning techniques.

In regression analysis, multiple linear regression is often used to understand
the relationship between independent variables and dependent variables. However,
to overcome the problem of multicollinearity and to improve the accuracy of the
model, extensions of simple linear regression such as Ridge, Lasso, and Elastic Net
regression have been introduced [4].

Ridge regression addresses multicollinearity by adding an L, penalty to the
coefficients, thus preventing the coefficients from becoming too large [5]. Lasso re-
gression introduces the L; penalty, which not only addresses multicollinearity but
also performs feature selection by reducing some coefficients to zero, thus simplify-
ing the model (Vidaurre et al., 2013). Elastic Net Regression is a combination of L,
and Lo penalties, which allows handling multicollinearity while performing feature
selection, providing more flexibility in building robust and interpretable predictive
models [6]. These three methods are known as an “extended linear regression fam-
ily” that offers more advanced solutions for complex data analysis and potentially
better predictive performance.

As is well known, linear regression and extended linear regression approaches
can give results that differ from the actual data [7]. In some cases, simple linear
regression models may fail to capture the complexity of the data patterns, espe-
cially when multicollinearity is present or when the relationship between variables
is not strictly linear. Furthermore, to overcome the weaknesses of these traditional
regression approaches, deep-linear regression hybrid artificial neural networks are
used. This hybrid approach combines the analytical power of linear regression with
the capability of artificial neural networks to recognize non-linear patterns and
complex interactions in the data.

The purpose of this research is to explore and maximize the potential of lin-
ear regression and its families (ridge, lasso, and elastic net) in producing accurate
predictions by combining them with deep learning networks. This research aims to
identify the advantages of the hybrid approach in reducing prediction error com-
pared to the use of a single model, as well as to develop predictive models that are
more robust and efficient in handling data complexity. Thus, this research hopes
to make a significant contribution to more accurate and reliable predictive mod-
eling through the integration of traditional regression methods and deep learning
technology.



2. LITERATURE REVIEW

2.1. Linear Regression. Linear regression is an equation model that explains
the correlation of one response variable (Y) with two or more predictor variables
(X1,X2,...,Xp). In addition, it is used to determine the direction of the relation-
ship between the response variable and the predictor variables. The relationship
between the response variable and the predictor variables is expressed as follows:

Y=XB+e¢ (1)
with:

Y =n x 1 vector of dependent variables,
X =n x (p— 1) matrix of independent variables,
€ =n x 1 vector of independent normal random variables with expectation

E(g) = 0 and variance-covariance matrix o?(g) = o*1.

According to Firdaus (2004) [8], the least squares method or also called the Ordi-
nary Least Square (OLS) method is one of the most popular methods in estimating
linear regression models that produce the minimum number of squared errors. This
method was first used by Carl Friedrich Gauss in the calculation of astronomical
problems. The practical advantages of this method increased after the develop-
ment of electronic computers, the formulation of calculation techniques in matrix
notation, and the connection of the least squares concept to statistics.

Definition 2.1. Letp > 1 be a real number. The p-norm of vector x = (x1, T2, ..., Tn)

18
n (1/p)
], = (Z |$i|p> : (2)
i=1

For p = 1, we get the tazicab/manhattan norm, for p = 2 we get the Euclidean
norm, and as p approaches oo the p-norm approaches the infinity norm [9].

From Equation is obtained

e=Y-Xp3
S(B)ors = [[Y — XB|2

= ETE

=(Y-XB8)"(Y-XB)

— (YT -XTBT)(Y - XB) )

=Y'Y-Y'XB-8"XTY+3"X"X3
=Y Y-B'X'Y) -8'X"Y+3"X"X3
=Y'Y-28'X"Y)+8'X"X3
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Next, a partial derivative of 3 is performed to obtain the minimum value of the
equation:

0S(Brors) O (YTY —287XTY) +5TXTX)

o(B) o(B) )
=0-2X'Y+X'Xg+(B'X"X)T
=2X'Y+X"XB+X"Xg

and then equating it to zero, we get:
0=2X"Y+X"XB+X"Xg3
2X'X3=2X"Y
X'X3=X"Y
Bors = (XTX)'(XTY)

Therefore, Equation as the solution of the OLS method.

2.2. Ridge Regression. Ridge regression is the result of the least squares method
with the addition of a bias value ¢ to the correlation matrix and the variables
are transformed using the centering and scaling method, the selection of the bias
constant ¢ is a very instrumental thing in Ridge regression [I0]. The penalty in
ridge with the following constraints:

1Bll2 <t,t>0
Loss function ridge regression is as follow:
@) = Y - XBllz + cl|B2
=e'e+cB'p
= (Y-XB)(Y-XB)+cB'8
=(Y'-X"8")(Y-XB)+cB'B
= Y'Y-X"B'Y-Y'XB+8'X"XB+c8'3
=Y'Y-28'X"Y+8'X"XB+c¢B8"8

Next, a partial derivative of B is performed to obtain the minimum value of the
equation:

as@B) O (YTY —28TXTY +8TXTXB + cBTﬁ)

9(B) 2(B)
=0-2X"Y+X"X3+(B'X"X)" +2¢8 (7)
= 2X'Y +X"XB+X"XB + 23
=-2X"Y +2X"X8 + 2¢0



and then equating it to zero, we get:
0=—-2XTY +2X"X3+ 23
X'XB+c8=X"Y
X' XB+D)B=X"Y
Br=(X"XB+c) H(XY)

Therefore, Equation as the solution of the ridge regression.

2.3. LASSO Regression. LASSO (Regression Least Absolute Shringkage and Se-
lection Operator) is one of the shrinkage methods to overcome multicollinearity
problems. The LASSO method is a method introduced by Tibshirani in 1996 [11]
after the LAR (Least Angle Regression) method introduced by Effron in 2004 by
changing the penalty in Ridge regression in L; regularization. This regularization
is used to reduce overfitting by adding L, and Lo penalty factors where L, reg-
ularization is called LASSO regression which uses L; penalty, an approach that
penalizes the absolute size of the coefficients. Whereas Lo regularization is called
Ridge regression which uses an Ly penalty, which is an approach that penalizes the
squared size of the coefficients. LASSO aims to improve the estimation of simple
linear regression. The penalty in LASSO with the following constraints:

1Bl <ttt >0

. The value of ¢t above is a quantity that checks the amount of shrinkage in the
LASSO coefficient estimates where ¢ > 0. If the estimator ﬁ is a least squares
estimator and ¢ = || 3|1, then values of t < ¢y will lead to solving classical regression
with OLS estimators that shrink towards zero, and allow some coefficients to also
shrink exactly towards zero. Loss function for LASSO regression is as follow:

S(B)rasso = Y — XB|2 + |81 9)

Unlike OLS estimation of linear regression in the equation and ridge regression
in the equation , LASSO regression cannot find direct results for the beta
derivative so that one way that can be done is to find the iteration value that
minimizes the loss function. The coefficient estimates in LASSO regression are
written as follows [I1]:

Brasso :argmﬁin(HY—XﬁHQ +a|Bll1) (10)

2.4. Elastic Net Regression. Elastic net is a penalty regression method similar
to ridge regression and LASSO that can overcome the problem of multicollinearity
assumption 2005 [12]. Elastic net combines the penalty between Ridge regression
and LASSO. Elastic net can overcome the problem of high correlation and has the
properties of variable selection and shrinkage of the estimation coefficient. Zou and
Hastie (2005) [12] introduced the Elastic Net penalty as follows:

(1 =NBll2 +AlBll <t,t >0
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If A =0, the Elastic Net regression becomes a Ridge regression, while if A = 1, the
Elastic Net becomes a LASSO penalty. Elastic Net regularization has a shrinkage of
the coefficient of correlated predictor variables like Ridge and LASSO. Loss function
for Elastic Net regression is as follow:

S(B)ery =Y = XBll2 + (1= N)[Bll2 + AllBl1) (11)
The coefficient estimates in Elastic Net regression are written as follows:
BeLy = argmin ([Y = XSz +v (1 = VB[l + Al Bll1)) (12)

2.5. Artificial Neural Network (ANN). Artificial Neural Network (ANN) is
an algorithm that has the same structure as the performance of the human brain in
learning the pattern of data [I3]. In an ANN cell, the weights and biases function
as variables for the input data to be output. The weight and bias values are
determined by the backpropagation method, which is an adjustment process so
that the prediction results are close to the original value. This algorithm works
by doing a back pass for each forward pass while adjusting the weights and biases.
The process is assisted by an algorithm known as optimizers.

2.6. Deep Neural Network (DNN). Neural networks with multiple hidden lay-
ers are called deep neural networks (DNN) and the practice of training those net-
works are referred to as deep learning. Deep neural networks trained to adaptive
to varied number of levels and nodes at each level, performance complex tasks,
modeling the multiple outcomes.

3. MATERIAL AND METHOD

3.1. Variable. This paper uses data taken from BPS in 2018. The description of
each variable can be explained below:

Y : Number of villages with gambling occurrences in the last year by province, 2018

X1 : Open unemployment rate (TPT) by province in 2018

Xo : Education completion rate by education level (SMA) and province, 2018

X3 : Average monthly expenditure per capita on food in urban and rural areas
by province (IDR), 2018

X, : Average monthly non-food expenditure per capita in urban and rural areas
by province (IDR), 2018

X5 : Average hourly wage of workers by province (IDR/hour)

The number of observations is 35 (35 provinces) with the dependent variable (V)

being the number of gambling cases in each province. This study uses log transfor-

mation to the dependent variable with the statistics descriptive of the variables is
shown in Table [ below:
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Variables Minimum Maximum Mean

Y 35.0 1947.0  376.8
In(Y) 3.555 7574 5422
X 1.400 8.470  4.803
X 29.56 83.48  61.19
X 402922 847847 565941
X, 301832 1191310 576476
Xs 11359 25987 15911

TABLE 1. Statistics Descriptive

3.2. Method. This paper uses natural logarithm (In) transformation on the de-
pendent variable (y* = In(y)) to increase the R-square value of the regression
model. After the transformation, modeling is done using several regression meth-
ods such as linear, ridge, lasso, and elastic net. From each model, the error is
calculated using the following formula:

€= y* - yA*single (13)

The error is then used as input to the Deep Neural Network (DNN) with the aim
of filling the gap between the original value and the predicted value and produce
the estimated error (£). The final prediction of this hybrid model is formulated as:

yA*ﬁnal = yA*single + £ (14)

To evaluate the performance of the model, Root Mean Square Error (RMSE) and
Mean Absolute Percentage Error (MAPE) is used as a comparison metric with the
following formula:

n

1 . Y 2
RMSE = | =% (4 = ¥ na) (15)

i=1

1 n
MAPE = - Z

i=1

N ~
Yi — y* final
*

%

x 100% (16)

4. RESULTS AND DISCUSSION

4.1. Variable Selection. In this subsection, the first step is the selection of inde-
pendent variables using the backward method in multiple linear regression. This
process starts by including all five independent variables along with their intercepts
into the initial model. Next, the variables are selected one by one, gradually remov-
ing the variables that have the least influence on the model. This process continues
until only those variables remain that have a significant contribution to the de-
pendent variable. The final results of this selection show that the three selected
independent variables are Xs, X3, and Xj.
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Variables in Model Description
intercept, X, Xo, X3, X4, X5 (1, B2, B3, B5 not significant
B0, B4 significant

X1, X2, X3, X4, X5 B1, B5 not significant
B2, B3, B4 significant

X2, X3, X4, X5 B2, B3, B4 not significant
Bs significant

X, X3, X4 Ba, B3, B4 significant

TABLE 2. Variable Selection

4.2. Hybrid Model. In this subsection, we performed modeling using several sin-
gle models, namely linear, ridge, lasso, and elastic net models. Each of these models
produces an error which is then used as input for the Deep Neural Network (DNN).
To improve the performance of the DNN, we performed hyperparameter tuning us-
ing the grid search method with a range of 1:50 for each layer on three different
layers. Table (3| shows the best results of the number of neurons in each layer
obtained from the tuning process with each RMSE.

Model Layer 1 Layer 2 Layer 3 RMSE
Linear 9 19 1 0.901931
Ridge 20 5 14 0.749255
Lasso 18 13 18 0.611645
Elastic Net 17 7 6 0.764042

TABLE 3. Best of Hyperparameter for DNN

The results for various combination are given in Table Based on this
table, it can be seen that the RMSE by the hybrid model is smaller than that of
single models such as linear, ridge, lasso, and elastic net models. This shows that
the combination of several regression models with the use of Deep Neural Network
(DNN) as the final stage of modeling is able to provide more accurate predictions.

Model RMSE MAPE RMSE Hybrid MAPE Hybrid

Linear 1.03137  15.928% 0.86786 13.347%
Ridge 0.81773 13.144% 0.81446 13.091%
Lasso 0.86023 13.611% 0.56669 7.2017%
Elastic Net 0.86377 13.730% 0.71794 11.219%

TABLE 4. Model Performance

This hybrid approach strengthens the prediction results by utilizing the ad-
vantages of each regression model and DNN shown by Figure [1] thus capturing
complex patterns that a single model may not be able to identify effectively.
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Number of Cases

Number of Cases

Linear Regression + DNN

® Data
~ Linear Fit
—— Linear + DNN

0 5 10 15 20 25 30 35
Index
Ridge Regression + DNN
* Data ¢
~ Ridge Fit o®
— Ridge + DNN .

FI1GURE 1. Comparison of Single Model

Index

5. CONCLUSION

Number of Cases

Number of Cases

Lasso Regression + DNN

® Data
- Lasso Fit
—— Lasso +DNN

Index

Elastic Net Regression + DNN

30 35

® Data
- Elastic Net Fit
— Elastic Net + DNN

Index

vs Hybrid Model

The conclusion of this study shows that the use of linear regression and its
extensions such as ridge, lasso, and elastic net can be maximized by combining it
with a deep learning network. This hybrid approach is proven to produce smaller
errors compared to a single model, indicating that this combination is able to
provide more accurate and efficient predictions. Thus, hybrid models that integrate
linear regression and deep learning networks offer a more robust solution in handling
data complexity and improving predictive modeling performance.
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