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Abstract. The objectives of this study include proving that C̃(q,m,δ2) and

C̃(q,m,δ3), which are Primitive BCH codes, with m ≥ 5 are minimal codes, and

presenting specific examples of secret-sharing schemes based on dual of these codes.

To prove that C̃(q,m,δ2) and C̃(q,m,δ3) with m ≥ 5 are minimal codes, the criterion
Wmin
Wmax

> q−1
q

used, where Wmin and Wmax are the minimum weight and maxi-

mum weight, respectively. Data on the minimum weight and maximum weight of

C̃(q,m,δ2) and C̃(q,m,δ3) are obtained from previous research. To give an example of

secret-sharing scheme construction based on these codes, the construction method

to be used is Massey construction. This research successfully proves that C̃(q,m,δ2)

and C̃(q,m,δ3) with m ≥ 5 are minimal codes. In addition, this research also suc-

cessfully presents an example of secret-sharing scheme construction based on these

codes using Massey’s construction.

Keywords: dual codes, Massey’s contruction, minimal codes, primitive BCH codes,

secret-sharing.

1. INTRODUCTION

The secret sharing scheme is one of the protocols in cryptography that aims
to share secret data with several parties, where the parties receiving the secret
sharing must work together to access the secret data. The idea of secret sharing
was first pioneered by Shamir [1]. The scheme he introduced is called the (k, n)
threshold scheme

The (k, n) threshold scheme uses polynomial interpolation in the sharing and
recovery of secret. Besides using polynomial interpolation, secret sharing schemes
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can be built using other mathematical objects. The idea of replacing polynomial
interpolation with other algorithms was first proposed by McEliece & Sarwate [2].
They replaced polynomial interpolation on the (k, n) threshold scheme with a Reed-
Solomon code encoding and decoding algorithm.

Apart from using Reed-Solomon codes, the secret-sharing scheme can be
constructed using linear codes in general. In the existing literature, there are two
approaches to construct textitsecret sharing schemes based on linear codes. The
first approach was developed in 1989 by Brickell [3]. While the second approach
was developed by Massey [4].

In the second construction or commonly called Massey construction, the min-
imal codeword is needed to determine the minimal access set (the smallest set of
participants that can select the secret). Therefore, the minimal codeword in a linear
code needs to be found. Finding all minimal codewords of a linear code is quite a
difficult problem as it requires testing qk codewords of a linear code. The problem
is one form of the covering problem.

One way to simplify the covering problem on linear codes is to use the
Ashikhmin-Barg [5] criterion. If a linear code satisfies this criterion, it is called
a minimal linear code. A minimal linear code is a type of linear code that can
produce a secret sharing scheme with an interesting access structure [6].

An example of a minimal linear code has been produced by Ding, Fan, and

Zhou [7], namely the C̃(q,m,δ2) code and the C̃(q,m,δ3) code with m ≥ 5 which are
Primitive BCH codes with designed distances δ2 and δ3. Let m > 1 be a positive
integer, and let n = qm − 1. Suppose α is the generator of F∗

qm , which is the
multiplicative group of Fqm . For every i with 0 ≤ i ≤ qm − 2, let mi(x) denote the
minimal polynomial of αi over Fqm . For every 2 ≤ δ < n, define

gq,m,δ(x) = KPK(m1(x),m2(x), · · · ,mδ−1(x)),

where KPK denotes the least common multiple. In addition, also define

g̃q,m,δ(x) = (x− 1)gq,m,δ(x).

Let C(q,m,δ) and C̃(q,m,δ) denote cyclic codes of length n with generator poly-
nomials g(q,m,δ)(x) and g̃(q,m,δ)(x), respectively. The set C(q,m,δ) is a primitive BCH

code with designed distance δ, and C̃(q,m,δ) is a primitive BCH code with designed
distance δ.

Actually, Ding et al. discuss the dimensions and weights of two families of

BCH codes. However, in the last part of their article, Ding et al. the code C̃(q,m,δ2)

and the code C̃(q,m,δ3) satisfy the Ashikhmin-Barg criterion when m ≥ 5 so they
are minimal codes. Unfortunately, the statement has not been accompanied by a
proof. Thus, in this paper, the proof that these 2 codes are minimal codes will be
presented.
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2. Weight Distribution and Parameter of Code

Before presenting the characterization results of primitive BCH codes with
δ2 and δ3 designed distances, the following two theorems are first presented. These
two theorems have been proved in [7]. The following theorem provides information

about the weight distribution of the code C̃(q,m,δ2).

Theorem 2.1. [7] The code C̃(q,m,δ2) has parameters [n, k̃, d̃], where d̃ ≥ δ2 + 1
and

k̃ =

{
2m for odd m,
3m
2 for even m.

When q is an odd prime, d̃ = δ2+1 and C̃q,m,δ2 is three-weight code with the weight
distribution of Table 1 for odd m and Table 2 for even m.

Table 1. Weight distribution of C̃(q,m,δ2) for odd m

Weight w Number of codeword Aw

0 1
(q − 1)qm−1 − q(m−1)/2 (q − 1)(qm−1)(qm−1 + q(m−1)/2)/2
(q − 1)qm−1 (qm − 1)(qm−1 + 1)
(q − 1)qm−1 + q(m−2)/2 (q − 1)(qm−1)(qm−1 − q(m−1)/2)/2

Table 2. Weight distribution of C̃(q,m,δ2) for even m

Weight w Number of codeword Aw

0 1
(q − 1) qm−1 − q(m−1)/2 (q − 1)(q(3m−2)/2 − q(m−2)/2)
(q − 1) qm−1 qm − 1
(q − 1) (qm−1 + q(m−2)/2) q(m−2)/2(qm − q(m+2)/2 + q − 1)

The following theorem informs about the weight distribution of the code

C̃(q,m,δ3).

Theorem 2.2. [7] Let m ≥ 4. The code C̃q,m,δ3 has parameters [n, k̃, d̃], where

d̃ ≥ δ3 + 1 = (q − 1)qm − 1− q⌊(m+1)/2⌋ and

k̃ =

{
2m for odd m,
5m
2 for even m.

When q is an odd prime and m ≥ 4 is even, the code C̃(q,m, δ3) has minimum

distance d̃ = δ3 + 1 and its weight distribution is given in Table 3. When q is an
odd prime and m ≥ 5 is odd, the code C̃(q,m,δ3) has minimum distance d̃ = δ3 + 1
and its weight distribution is given in Table 4
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Table 3. The weight distribution of C̃(q,m,δ3) for even m and odd q

Weight w Number of codeword Aw

0 1

(q − 1)qm−1 − qm/2 (qm − 1)
((

q2 − 1
) (

q(3m−6)/2 + qm−2
)
+ 2

(
q(m−2)/2 − 1

) (
qm−3 + q(m−4)/2

))
/2(q + 1)

(q − 1)
(
qm−1 − q(m−2)/2

)
q
(
qm/2 + 1

)
(qm − 1)

(
qm−1 + (q − 1)q(m−2)/2

)
/2(q + 1)

(q − 1)qm−1 − q(m−2)/2
(
qm+1 − 2qm + q

) (
qm/2 − 1

) (
qm−1 + q(m−2)/2

)
/2

(q − 1)qm−1 (qm − 1)
(
1 + q(3m−2)/2 − q(3m−4)/2 + 2q(3m−6)/2 − qm−2

)
(q − 1)qm−1 + q(m−2)/2 q

(
qm/2 + 1

)
(qm − 1) (q − 1)

(
qm−1 − q(m−2)/2

)
/2(q + 1)

(q − 1)
(
qm−1 + q(m−2)/2

) (
qm+1 − 2qm + q

) (
qm/2 − 1

) (
qm−1 − (q − 1)q(m−2)/2

)
/2(q − 1)

(q − 1)qm−1 + qm/2 q(m−2)/2 (qm − 1) (q − 1)
(
qm−2 − q(m−2)/2

)
/2

(q − 1)
(
qm−1 + qm/2

) (
q(m−2)/2 − 1

)
(qm − 1)

(
qm−3 − (q − 1)q(m−4)/2

)
/
(
q2 − 1

)

Table 4. The weight distribution of C̃(q,m,δ3) for odd m and odd q

Weight w Number of codeword Aw

0 1

(q − 1)qm−1 − q(m+1)/2 (qm − 1)
(
qm−3 + q(m−3)/2

) (
qm−1 − 1

)
/2(q + 1)

(q − 1)
(
qm−1 − q(m−1)/2

)
(qm − 1)

(
qm−1 + q(m−1)/2

) (
qm−2 + (q − 1)q(m−3)/2

)
/2

(q − 1)qm−1 − q(m−1)/2 (qm − 1)
(
qm−2 + q(m−3)/2

) (
qm+3 − qm+2 − qm−1 − q(m+3)/2 + q(m−1)/2 + q3

)
/2(q + 1)

(q − 1)qm−1 (qm − 1)
(
1 +

(
q2 − q + 1

)
qm−3 + (q − 1)q2m−4 + (q − 2)q2m−2 + q2m−1

)
(q − 1)qm−1 + q(m−1)/2 (qm − 1)

(
qm−2 − q(m−3)/2

) (
qm+3 − qm+2 − qm−1 + q(m+3)/2 − q(m−1)/2 + q3

)
/2(q + 1)

(q − 1)
(
qm−1 + q(m−1)/2

)
(qm − 1)

(
qm−1 − q(m−1)/2

) (
qm−2 − (q − 1)q(m−3)/2

)
/2

(q − 1)qm−1 + q(m+1)/2 (qm − 1)
(
qm−3 − q(m−3)/2

) (
qm−1 − 1

)
/2(q + 1)

3. Minimal Codeword

The following concepts of support and covering are the origin of minimal
linear codes. The definition of support is explained as follows.

Definition 3.1. [6] The support of c ∈ Fn
q is defined by

supp(c) = {0 ≤ i ≤ n− 1|ci ̸= 0}.
Definition 3.2. [6] A vector u ∈ Fn

q covers a vector v ∈ Fn
q if supp(v) is subset of

supp(u).

Minimal code is defined as follows.

Definition 3.3. [6] A nonzero codeword u in a linear code C is minimal if u covers
only scalar multiples of u, but no other nonzero codewords in C. A linear code C
is minimal if every nonzero codeword in C is minimal.

The following lemma is often used in Linear Code Characterization. This
lemma will also be used in this paper

Lemma 3.4 (Ashikhmin-Barg). [6] A [n, k, d]q linear code C is minimal if

Wmin

Wmax
>

q − 1

q
. (1)

where Wmin and Wmax denote the minimum and maximum nonzero Hamming
weights of C respectively.
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Using Lemma 3.4, many families of minimal linear codes with Wmin

Wmax
> q−1

q

have been found, such as those by Carlet, Ding and Yuan [8]. However, most of
these codes have a limited number of weights. For example, [9] introduced a type
of cyclic code that has three weights, where each codeword has one of the three
different weights. The code satisfies this lemma.

4. Massey’s Construction

Consider the linear code C[n, k, d]q. Suppose G = [g0,g1, . . . ,gn−1] the
generator matrix of C. The secret S is a member of Fq. Share can be determined
by the following procedure. Randomly select the vector u = (u0, u1, . . . , uk−1) ∈ Fk

q

such that S = ug0. Then, the vector s can be calculated by

s = (S, s1, . . . , sn−1) = uG.

share for each participant Pi is si for all 1 ≤ i ≤ n− 1.

Assume m people collect their respective share{si1 , si2 , . . . , sim} with 1 ≤
m ≤ n− 1. Then, the secret S = s0 + ug0 can be determined if and only if g0 is a
linear combination of g0, g1, . . . , gn−1. Thus, resulting in the following proposition.

Proposition 4.1. Let G be a generator matrix of an [n, k, d]q linear code C. In
the secret-sharing based on C with respect to the second construction, a set of share
{si1 , si2 ,
. . . , sim} with 1 ≤ i1 < i2 < · · · < im ≤ n − 1 and 1 ≤ m ≤ n − 1, determines the
secret if and only if there is a codeword

c = (1, 0, . . . , 0, ci1 , 0, . . . , 0, cim , 0, . . . , 0)

in the dual code C⊥, where cij ̸= 0 for at least one j.

5. The proof of C̃(q,m,δ2) with m ≥ 5 is a minimal code

In this section, we will present the results of proving that Primitive BCH
codes with designed distances δ2 and δ3 with m ≥ 5 satisfy Lemma 3.4, so they are
minimal codes.

The first result of this research is presented in the following theorem along
with its proof. The following theorem states that the Primitive BCH code with
Designed Distance δ2 satisfies Lemma 3.4.

Theorem 5.1. Let δ2 = (q − 1)qm−1 − 1− q(m−1)/2,

(1) If m ≥ 5 and m is odd, C̃(q,m,δ2) is minimal code.

(2) If m ≥ 6 and m is even, C̃(q,m,δ2) is minimal code.

Proof. (a) From the Table 1, we know that C̃(q,m,δ2) with odd m has nonzero

minimum weight Wmin = (q − 1)qm−1 − q(m−1)/2 and maximum weight Wmax =
(q − 1)qm−1 + q(m−2)/2.
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Using Lemma 3.4, we will proof that

(q − 1) qm−1 − q(m−1)/2

(q − 1) qm−1 + q(m−1)/2
>

q − 1

q
.

Suppose A = (q− 1)qm−1 and B = q(m−1)/2. So that the inequality becomes

A−B

A+B
>

q − 1

q

(A−B)q > (A+B)(q − 1)

Aq −Bq > Aq −A+Bq −B

A > 2Bq −B)

A > B(2q − 1)

Substitute A = (q − 1)qm−1 and B = q(m−1)/2 back into the inequality above.

(q − 1)qm−1 > q(m−1)/2(2q − 1).

(q − 1)q(m−1)/2 > 2q − 1.

Since q is an odd prime number and m > 5 is odd, q(m−1)/2 is a large positive
number, making the left side larger than the right side. Thus, it is proved that for
q odd primes and m > 5 odd,

(q − 1) qm−1 − q(m−1)/2

(q − 1) qm−1 + q(m−1)/2
>

q − 1

q
.

(b) From Table 2, it can be seen that C̃(q,m,δ2) with even m have a nonzero min-

imum weight (Wmin = (q − 1) qm−1 − q(m−1)/2 and maximum weight (Wmax =
(q − 1) (qm−1 + q(m−2)/2).

Using Lemma 3.4, we will proof that

(q − 1)qm−1 − q(m−2)/2

(q − 1)(qm−1 + q(m−2)/2)
>

q − 1

q
.

with algebraic manipulation the above inequality becomes

(q − 1)qm−1 − q(m−2)/2

qm−1 + q(m−2)/2
>

(q − 1)2

q
.
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Suppose A = qm−1 and B = q(m−2)/2. So that the above inequality becomes

(q − 1)A−B

A+B
>

(q − 1)2

q

q{(q − 1)A−B} > (q − 1)2(A+B)

A(q2 − q)−Bq > (q2 − 2q + 1)(A+B)

Aq2 −Aq −Bq > Aq2 − 2Aq +A+Bq2 − 2Bq +B

Aq +Bq > A+Bq2 +B

Aq −A > Bq2 +B −Bq

(q − 1)A > (q2 − q + 1)B

subtitute A = qm−1 and B = q(m−2)/2 back into the inequality above.

(q − 1)qm−1 > (q2 − q + 1)q(m−2)/2

(q − 1)qm/2 > (q2 − q + 1)

(q − 1)qm/2 − 1 > q2 − q

(q − 1)qm/2 − (q − 1)
1

q − 1
> (q − 1)q

qm/2 − 1

q − 1
> q

since q is an odd prime number then 0 < 1
q−1 ≤ 1, and since m ≥ 5 then qm/2 > q,

so the left side will always be greater than the right side. So it is proven that

(q − 1)qm−1 − q(m−2)/2

(q − 1)(qm−1 + q(m−2)/2)
>

q − 1

q
.

□

The next result of this research is presented in the following theorem and its
proof.

6. Proof of C̃(q,m,δ3) with m ≥ 5 is a minimal code

The following theorem states that the Primitive BCH code with Designed
Distance δ3 satisfies Lemma 3.4.

Theorem 6.1. Let δ2 = (q − 1)qm−1 − 1− q(m+1)/2,

(1) If m ≥ 6 and m is even, then C̃(q,m,δ3) is minimal code.

(2) If m ≥ 5 and m is odd, then C̃(q,m,δ3) is minimal code.

Proof. (a) From the table 3, can be seen that for even m the code C̃(q,m,δ3)

have nonzero minimal weight (q − 1)qm−1 − qm/2 and maximum weight (q −
1)

(
qm−1 + qm/2

)
.
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Using Lemma 3.4, we will show that

(q − 1)qm−1 − qm/2

(q − 1)(qm−1 + qm/2)
>

q − 1

q

multiply both side by (q − 1) so that

(q − 1)qm−1 − qm/2

(q − 1)(qm−1 + qm/2)
· (q − 1) >

q − 1

q
· (q − 1)

(q − 1)qm−1 − qm/2

(qm−1 + qm/2)
>

(q − 1)2

q

suppose A = qm−1 and B = qm/2. So that the inequality becomes

(q − 1)A−B

A+B
>

(q − 1)2

q

q{(q − 1)A−B)} > (q − 1)2(A+B)

A(q2 − q)−Bq > (q2 − 2q + 1)(A+B)

Aq2 −Aq −Bq > Aq2 − 2Aq +A+Bq2 − 2Bq +B

Aq +Bq > A+Bq2 +B

Aq −A > Bq2 −Bq +B

(q − 1)A > (q2 − q + 1)B

sustitude A = qm−1 and B = qm/2 back into the inequality above

(q − 1)qm−1 > (q2 − q + 1)qm/2

(q − 1)q(m−2)/2 > (q2 − q + 1)

(q − 1)q(m−2)/2 − 1 > q2 − q

(q − 1)q(m−2)/2 − (q − 1)
1

q − 1
> (q − 1)q

q(m−2)/2 − 1

q − 1
> q

q(m−2)/2 > q +
1

q − 1

Since q is an odd prime number and m > 5 so the left side will always greater than
right side. So it is proven that for q odd prime number and even m > 5

(q − 1)qm−1 − qm/2

(q − 1)(qm−1 + qm/2)
>

q − 1

q

(b) From the table 4, we know that for odd m, C̃(q,m,δ3) have nonzero minimal

weight (q − 1)qm−1 − q(m+1)/2 and maximum weight (q − 1)qm−1 + q(m−1)/2.

Using Lemma 3.4, we will prove that

(q − 1)qm−1 − q(m+1)/2

(q − 1)qm−1 + q(m+1)/2
>

q − 1

q
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let A = (q − 1)qm−1 and B = q(m+1)/2, then

A−B

A+B
>

q − 1

q

(A−B)q > (A+B)(q − 1)

Aq −Bq > Aq −A+Bq −B

A > 2Bq −B

A > B(2q − 1)

Substitute A = (q − 1)qm−1 and B = q(m+1)/2 back to the inequality above

(q − 1)qm−1 > q(m+1)/2(2q − 1)

(q − 1)q(m
2−1)/2 > 2q − 1

Because (q) is odd prime number and (m ≥ 5), (q(m
2−1)/2) is a large positive

number, making the left side larger than the right side. Thus, it is proved that for
q odd primes, m ≥ 5 and odd m,

(q − 1)qm−1 − q(m+1)/2

(q − 1)qm−1 + q(m+1)/2
>

q − 1

q

□

7. Example of Secret Sharing Schemes Based On Dual Code of C̃(q,m,δ2)

with m ≥ 5 using Massey’s Construction

The next goal of this paper is to provide an example of a secret sharing scheme

based on the dual code of C̃(q,m,δ2) with m ≥ 5 using Massey’s Construction.

Example 7.1. Let q = 2, m = 5, then n = qm − 1 = 31 and designed distance
δ2 = (q − 1)qm−1 − 1 − q(m+1)/2 = 11. With the commonly known technique to

construct the generator matrix of cyclic codes, the generator matrix of C̃(2,5,11) is
obtained, that is

G̃ =



1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1


Based on matrix G̃ and Proposition 4.1, there is no dictator participant in

the example textitsecret-sharing scheme based on the code dual of code C̃(q,m,δ2).

The participant Pi with 1 ≤ i ≤ n− 1 is in (q − 1)qk−2 = (2− 1)210−2 = 28 = 256
of qk−1 = 210−1 = 512 minimal access set.
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By using the common method, the parity check matrix of C̃(2,5,11) is obtained,
that is

H̃ =



1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1


Suppose the secret is 0. The Massey’s construction will be applied to the dual code

of C̃(q,m,δ2) to construct the secret sharing scheme. A vector u ∈ F21
2 needs to be

chosen such that S = uh̃0, where h̃0 is the first column of the matrix H̃ Misalkan
u = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0). Then the following share can
be obtained:

s = uH̃

= (S, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0).

Suppose there are 30 participants P1, P2, . . . , P30. Each participant Pi gets si as
its share. Now, find the set of participants who can reconstruct the secret. That

is, the set of participants such that h̃0 is a linear combination of the column of H̃
corresponding to the participants in the set. Here are 3 of qk−1 = 210−1 = 512
sets of participants that can produce secrets: {P1, P2, P3, P4, P5, P6, P8, P9, P11, P13,
P14, P17, P19, P20, P21}, {P1, P2, P3, P4, P5, P6, P8,
P10, P12, P10, P15, P18, P19, P21, P22, P23, P26, P28, P29, P30}, and {P1, P2, P3, P4, P7, P10,
P16, P17, P18, P20, P21, P22, P24, P25, P26}

Based on Proposition 4.1, these participant sets can produce secret. Other
minimal access sets can be computed using proggramming.

Suppose the group of participants recovering share is {P1, P2, P3, P4, P5,

P6, P8, P9, P11, P13, P14, P17, P19, P20, P21}, can be seen that h̃0 = {1 · h̃1 + 1 · h̃2 +

1 · h̃3 + 1 · h̃4 + 1 · h̃5 + 1 · h̃6 + 1 · h̃8 + 1 · h̃9 + 1 · h̃11 + 1 · h̃13 + 1 · h̃14 + 1 · h̃17 +
1 · h̃19 + 1 · h̃20 + 1 · h̃21}
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So that we get share S = uh̃0 = 1 · 1 + 1 · 1 + 1 · 1 + 1 · 0 + 1 · 1 + 1 · 0 + 1 ·
0 + 1 · 1 + 1 · 0 + 1 · 0 + 1 · 1 + 1 · 0 + 1 · 0 + 1 · 1 + 1 · 1 = 0.

8. Example of Secret Sharing Schemes Based On Dual Code of C̃(q,m,δ3)

with m ≥ 5 using Massey’s Construction

The next goal of this paper is to give an example of a secret sharing scheme

based on the dual code of C̃(q,m,δ3) with m ≥ 5 with Massey construction.

Example 8.1. Let q = 2, m = 5, then n = 2m − 1 = 25 − 1 = 31 and designed
distance δ3 = (q − 1)qm−1 − 1− q(m+1)/2 = 7 .

By constructing the generator matrix of a commonly known cyclic code, the

generator matrix of the code C̃(2,5,7) is obtained, that is

G̃ =



1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1


Based on matrix G̃ and Proposition 4.1, there is no dictator participant in this

example. The participant Pi with 1 ≤ i ≤ n− 1 is in (q − 1)qk−2 = (2− 1)215−2 =
213 = 8192 of qk−1 = 215−1 = 16384 minimal access set.

In a common way, one can also obtain the parity check matrix of C̃(2,5,7), as
follows

H̃ =



1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1


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In this step, the secret sharing scheme will be built. Since in constructing

th secret sharing scheme the dual code of C̃(q,m, δ3) will be used, the parity check
matrix of the code will be used as the generator matrix. Suppose the secret is 1.
The Massey’s construction will be applied to this code to build the secret sharing

scheme. The vector u ∈ F16
2 needs to be chosen such that S = uh̃0, where h̃0 is the

first column of the matrix H̃. Let u = (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0). Then
the following share can be obtained:

s = uH̃

= (S, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0).

Suppose there are 30 participants P1, P2, . . . , P30. Each participant Pi gets si as
its share. Now find the set of participants who can recontruct the secret. That

is, the set of participants such that h̃0 is a linear combination of the columns of

H̃ corresponding to the participants in the set. Here are 3 of qk−1 = 215−1 =
16384 sets of participants that can produce secrets: {P4, P5, P6, P7, P12, P15, P16},
{P4, P5, P6, P7, P12, P14, P15, P16, P18, P19, P20, P21, P26, P29, P30}, and
{P8, P16, P18, P22, P23, P25, P26}

Example of the set of participants that can produce the secret are obtained

from the codeword on C̃(2,5,7) whose first component is 1. While the search for the
codeword can be done with programming.

Suppose the group of participants recovering share is {P4, P5, P6, P7,

P12, P15, P16}, can be seen that h̃0 = 1 · h̃4+1 · h̃5+1 · h̃6+1 · h̃7+1 · h̃12+1 · h̃15+1 ·
h̃16+1·. So, we get share S = uh̃0 = 1·1+1·1+1·0+1·0+1·0+1·1+1·0+1·0 = 1.

9. CLOSING

From this study it is proved that C̃(q,m,δ2) and C̃(q,m,δ3) with m ≥ 5 are
minimal codes. In addition, this research also succefully present an example of the
construction of a secret sharing scheme based on the dual code of the code using
Massey’s construction. Nevertheless, there are still open problem related to linear
code based on secret sharing schemes. One of them is to prove the minimality of

the codes C̃(q,m,δ2) and C̃(q,m,δ3) when m ≤ 5. Besides using the Ashikhmin-Barg
criterion, other criteria can also be used as in [10] and [11].
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