ABSTRACT REAL NUMBERS

(BILANGAN REAL ABSTRAK)

SOEPARNA DARMAWIJAYA

Abstract

In this paper we represent a result of our study in field of analysis, that is, an abstraction of the system of real numbers. We start by defining a set of positive elements in a countable infinite (denumerable) field and, hence, we obtain a linearly ordered field which we call a field of rational elements or a rational field. After that we may introduce irrationals elements in our rational field. And, at last we have a system of real abstract numbers.

Keywords:

1 A RATIONAL FIELD

We remind that an algebraic structure \mathcal{F} is called a field if
(i). \mathcal{F} is a commutative group with respect to binary addition operation $(+)$; the null element is denoted by 0 ,
(ii). $\mathcal{F}-\{0\}$ is a group with respect to binary product operation (\cdot); the unit element is denoted by 1 ,
(iii). $x \cdot 0=0 \cdot x=0$ for every $x \in \mathcal{F}$ and \mathcal{F} has distributive property:

$$
x \cdot(y+z)=x \cdot z+y \cdot z \text { and }(x+y) \cdot z=x \cdot z+y \cdot z
$$

for every $x, y, z \in \mathcal{F}$.
In what follows we only consider that our field \mathcal{F} has a countable infinite (denumerable) elements and $\mathcal{F}-0$ is a commutative group with respect to binary product operation (.), that is

$$
x \cdot y=y \cdot x
$$

for every $x, y \in \mathcal{F}$.

[^0]Definition 1.1. ([5]) Let \mathcal{F} be a field. A set P of \mathcal{F} is called the set of positive elements if:
(i). $0 \notin P$,
(ii). $x, y \in P \Rightarrow x+y \in P$,
(iii). $x, y \in P \Rightarrow x \cdot y \in P$,
(iv). If $x \in \mathcal{F}$ then only one of the following statements is true:

$$
x \in P,-x \in P, \text { or } x=0
$$

If $x \in P$ then x is called a positive element and if $-x \in P$ then x is called a negative element.

Theorem 1.2. If $x \in \mathcal{F}$ and $x \neq 0$ then $x^{2} \in P$, especially $1 \in P$
Proof. $x^{2}=x \cdot x=-x \cdot-x \in P$, especially $x=1$.
Definition 1.3. Let \mathcal{F} be a field. If $x, y \in \mathcal{F}$ we define

$$
x<y \Leftrightarrow y-x \in P
$$

Theorem 1.4. Let \mathfrak{F} be a field. For every $x, y \in \mathcal{F}$ then only one of the following statements is true:

$$
x<y, y<x, \quad \text { or } x=y
$$

Proof. By Definition 1.3, it is true that

$$
x<y, y<x, \quad \text { or } x=y \Leftrightarrow y-x \in P, x-y \in P \text { or } x-y=0
$$

Corollary 1.5. Every filed \mathcal{F} is a linearly ordered set with respect to binary relation " $<$ " then \mathcal{F} is called a linearly ordered field or a rational field and its members are called rational elements.

In order in speaking of our rational field \mathcal{F} more detail and more clear we shall rewrite in writing its elements as follows. x, y, \cdots denote the positive element and $-x,-y, \cdots$ denote the negative elements. Since $\mathcal{F}-\{0\}$ is commutative group with respect binary opreation (\cdot) then every its element has an inverse element. $x^{-1}=\frac{1}{x}$ is the inverse element of x and $(-x)^{1}=\frac{1}{-x}=-\frac{1}{x}$ is the inverse element of $-x$. Therefore we have the following formulas:

$$
\begin{gathered}
\frac{x}{y}=x \cdot \frac{1}{y}=x \cdot y^{-1} \text { and } \frac{x}{-y}=-x \cdot \frac{1}{y}=-x \cdot y^{-1}=\frac{-x}{y} \\
1=(x \cdot y)(x \cdot y)^{-1}=(x \cdot y) \frac{1}{x \cdot y}=(x \cdot y) \frac{1}{x} \cdot \frac{1}{y} \Rightarrow(x \cdot y)^{-1}=\frac{1}{x \cdot y}=\frac{1}{x} \cdot \frac{1}{y} \\
\frac{x}{y}=\frac{x \cdot v}{y \cdot v}=\frac{x \cdot-v}{y \cdot-v} \text { for every } v, \frac{x}{y} \cdot \frac{u}{v}=\frac{x \cdot u}{y \cdot v} \\
\frac{x}{y}+\frac{u}{v}=\frac{x \cdot v}{y \cdot v}+\frac{y \cdot u}{y \cdot v}=\frac{x \cdot v+y \cdot u}{y \cdot v} \text { and } \frac{x}{y}-\frac{u}{v}=\frac{x \cdot v}{y \cdot v}-\frac{y \cdot u}{y \cdot v}=\frac{x \cdot v-y \cdot u}{y \cdot v},
\end{gathered}
$$

$$
\begin{gathered}
\frac{x}{y}=\frac{u}{v} \Leftrightarrow x \cdot v=y \cdot u \\
0=\frac{0}{y} \notin P, \frac{x}{y}, \frac{u}{v} \in P \Rightarrow \frac{x}{y}+\frac{u}{v}, \frac{x}{y} \cdot \frac{u}{v} \in P \\
\frac{x}{y}<\frac{u}{v} \Leftrightarrow \frac{x \cdot v}{y \cdot v}<\frac{y \cdot u}{y \cdot v} \Leftrightarrow \frac{x \cdot v<y \cdot u}{y \cdot v} \Leftrightarrow \frac{u}{v}-\frac{x}{y} \in P .
\end{gathered}
$$

Since our rational field \mathcal{F} is a linearly ordered set we shall show that the binary relation " $=$ " is an equivalent relation.

Theorem 1.6. The binary relation "=" is an equivalent relation in our rational field \mathcal{F}.
(i). "=" is reflexive since

$$
\frac{x}{y}=\frac{x}{y} \text { for every } \frac{x}{y} \in \mathcal{F}
$$

(ii). "=" is transitive:

$$
\frac{x}{y}=\frac{u}{v} \text { and } \frac{u}{v}=\frac{w}{z} \Rightarrow \frac{x}{y}=\frac{w}{z}
$$

since

$$
x \cdot v=y \cdot u \text { and } u \cdot z=v \cdot w \Rightarrow x \cdot v \cdot z=y \cdot v \cdot w \Rightarrow x \cdot z=y \cdot w
$$

(iii). "=" is symmetric since

$$
\frac{x}{y}=\frac{u}{v} \Leftrightarrow x \cdot v=y \cdot u \Leftrightarrow \frac{u}{v}=\frac{x}{y}
$$

Corollary 1.7. Every rational field splits into disjoint posets; every poset contains every its two element are equivalent and the set of all posets is a linearly ordered set.

2 A SYSTEM OF REAL ELEMENTS (A SYSTEM OF ABSTRACT NUMBERS)

Definition 2.1. ([3]) Let \mathcal{F} be rational field. If $A, B \subset \mathcal{F}$ such that

$$
A \cup B=\mathcal{F} \text { and } A \cap B=\phi
$$

and every element of B is less than every element of A then the pair B / A is called a cut of \mathcal{F}.

Further, if B / A and B_{1} / A_{1} are two cut of \mathcal{F} we say B / A is less than B_{1} / A_{1} and we write

$$
B / A<B_{1} / A_{1}
$$

if $B \subset B_{1}$ and $B_{1}-B \neq \varphi$.
Theorem 2.2. If B / A a cut of a rational field \mathcal{F} then only one of the following statements is true:
(i). A has a least element and B has no a largest element.
(ii). A has no a least element and B has a largest element.
(iii). That is, there is a gap between B and A.

Proof. Since our rational field \mathcal{F} only has a coutable infinte elements, \mathcal{F} is linearly ordered set, and element of B is less than every element of A then only one of the following statents is true :
(i) A has a least element and B has no a largest element. It means that if α is the least element of A then beta $<\alpha$ for every $\beta \in B$
(ii) A has no a least element and B has a largest element. It means that if γ is the largest element of B then $\gamma<\delta$ for every $\delta \in A$.

Since if B / A is a cut of a rational field \mathcal{F} there is a gap between B and A we want to fill the gap by an entity $\rho(B / A)$ which we call it an original irrational element.

Definition 2.3. Let B / A be a cut of a rational field \mathcal{F}.
(i). If B has some positive elements we define an entity $\rho(B / A)$ which satisfies the following property:

$$
-\frac{x}{y}, \frac{u}{v}<\rho(B / A)<\frac{w}{z}
$$

for every $-\frac{x}{y}, \frac{u}{v} \in B$ and $\frac{w}{z} \in A$.
(ii). If A has some negative elements we define an entity $\rho(B / A)$ which satisfies the following property:

$$
-\frac{x}{y}<-\rho(B / A)<-\frac{u}{v}, \frac{w}{z}
$$

for every $-\frac{x}{y} \in B$ and $-\frac{u}{v}, \frac{w}{z} \in A$.
$\rho(B / A)$ is called a (positive) original irrational element.
Straightly, by the Definition 2.3 be have the following theorem.
Theorem 2.4. If \mathcal{R} is the collection of all elements of a rational field \mathcal{F} and all original irrational elements then \mathcal{R} is a completely linearly ordered set. Hence \mathcal{R} is a completely ordered field with respect to binary operations "+" and "." and linear ordering " i ". Every increasing (decreasing) sequence bounded above (bellow) in \mathcal{R} has supremum (infimum).

Let B / A be a cut of a rational field with B have some positive elements, and hence, every element of A is positive. We define:

$$
-A=\left\{-\frac{x}{y} ; \frac{x}{y} \in A\right\} \text { and }-B=(-A)^{c}
$$

Then we have $-A /-B$ is a cut of \mathcal{F} and $-B$ has some negative elements. Therefore we have the following theorem.

Theorem 2.5. Let B / A be a cut of a rational field \mathcal{F} with B has some positive elements. Then:

$$
-\frac{x}{y}, \frac{u}{v}<\rho(B / A)<\frac{w}{z}
$$

for every $-\frac{x}{y}, \frac{u}{v} \in B$ and $\frac{w}{z} \in A$ if and only if

$$
-\frac{w}{z}-A<-\rho(A / B)<\frac{x}{y},-\frac{u}{v}
$$

for every $-\frac{w}{z} \in-A$ and $\frac{x}{y},-\frac{u}{v} \in-B$.
By Theorem 2.4 and Theorem 2.5 we may the following conclusion since:
(i). \mathcal{R} is a field and it can be considered as a generalization of a rational field \mathcal{F}; and we call \mathcal{R} is a system of abstract real numbers. Every member of \mathcal{R} is called an abstract real number. Every member of \mathcal{R} is called an abstract real number.
(ii). \mathcal{R} is symmetric with respect to 0 (zero number):

$$
\begin{aligned}
& \frac{x}{y}, \rho(B / A) \text { are positive abstract real numbers } \\
\Leftrightarrow & -\frac{x}{y},-\rho(B / A) \text { are negative abstract real numbers. }
\end{aligned}
$$

(iii). Every member of \mathcal{R} is called an abstract real number, especially

$$
\pm \frac{x}{y} \pm \frac{u}{v} \rho(B / A)
$$

REFERENCES

[1] Drozd, Y,A. and Kirichenko, V.V., Finite Dimensional Algebra, Springer-Verlag: Berlin, Heidelberg, New York, London, Paris, Tokyo, Hongkong Barcelona, Budapest, 1993.
[2] Ganapathy Iyer, Mathematical Analysis, Tata Mc Graw-Hill Company Lmt.: New Delhi, 1977.
[3] Landau and Edmund, Fundation Of Analysis, Chelcea Publishing Company: New York, 1929.
[4] Soeparna Darmawijaya, Teori Bilangan, FMIPA-UGM: Yogyakarta-Indonesia, 2002.
[5] Sxena, S.C. and Shah, S.M., Introduction To Real Variable Theory, Prentice-Hall Limited: New Delhi, 1980.
[6] Sze Tsen Hu, Element Of Real Analysis, Holding-Day Inc.: San Francisco, Cambridge, London, Amsterdam, 1967.

Soeparna Darmawijaya
Department of Mathematics, Universitas Gadjah Mada
soeparna@ugm.ac.id

[^0]: 2010 Mathematics Subject Classification:

