Public Sentiment Analysis and Distribution Optimization of Indonesia's Makan Bergizi Gratis (MBG) Program

https://doi.org/10.22146/jmt.108835

Akhmad Sultoni(1*), Dimaz Andhika Putra(2), Hidayah Noor Wahidah(3), Muhammad Mahathir Arief(4), Pelangi Jingga Putria R.M.(5), Setiti Budi Utami(6)

(1) Universitas Gadjah Mada
(2) 
(3) 
(4) 
(5) 
(6) 
(*) Corresponding Author

Abstract


This study analyzes public sentiment and regional prioritization regarding Indonesia’s Makan Bergizi Gratis (MBG) program, a national initiative aimed at reducing stunting through the distribution of free meals to schoolchildren and pregnant women. Sentiment analysis was conducted on 47,803 posts from the social media platform X (formerly Twitter) using a lexicon-based labeling method and TF-IDF feature extraction. The results show that 22,504 posts (47.1%) expressed positive sentiment, 20,010 (41.9%) negative, and 5,289 (11.0%) neutral, indicating strong public support accompanied by considerable concerns. Eleven classification models were evaluated, with the Linear Support Vector Machine (SVM) achieving the highest accuracy (96.33%), and BERT-based models also demonstrating strong performance. Latent Dirichlet Allocation (LDA) topic modeling revealed five major themes in the negative sentiment, including transparency issues, maternal and child health, and inequality of access. Furthermore, provincial-level clustering using the K-Means algorithm grouped regions into three priority levels based on socio-economic and health indicators. These findings provide critical insights for optimizing policy targeting and efficient resource allocation in the implementation of the MBG program.

Keywords


Sentiment Analysis; Makan Bergizi Gratis; Clustering; Stunting.

Full Text:

PDF


References

Ika Alfina, Rina Mulia, and Mohamad Ivan Fanany. “IndoBERTweet: Pretrained Transformer-based Language Model for Indonesian Twitter”. In: arXiv preprintarXiv:2109.05238 (2021).

Vineet Arya et al. “Local search heuristics for k-median and facility location problems”. In: SIAM Journal on Computing 33.3 (2004), pp. 544–562. doi: 10.1137/S0097539702416402.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent Dirichlet Allocation”. In: Journal of Machine Learning Research 3 (2003), pp. 993–1022.

Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

T. Chen and C. Guestrin. “XGBoost: A scalable tree boosting system”. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 785–794.

Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine learning 20.3 (1995), pp. 273–297.

Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”. In: NAACL (2019).

Riza Fathoni Fajri, Mirna Adriani, et al. “InSet: A sentiment lexicon for Indonesian social media”. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). 2018.

Yoav Freund and Robert E Schapire. “A decision-theoretic generalization of online learning and an application to boosting”. In: Journal of computer and system sciences 55.1 (1997), pp. 119–139.

David W Hosmer, Stanley Lemeshow, and Rodney X Sturdivant. Applied Logistic Regression. Wiley, 2013.

Muhammad Iqbal, M Afdal, and Rice Novita. “Implementasi Algoritma Support Vector Machine Untuk Analisa Sentimen Data Ulasan Aplikasi Pinjaman Online di Google Play Store: Implementation of Support Vector Machine Algorithm for Sentiment Analysis of Online Loan Application Review Data on Google Play Store”. In: MALCOM: Indonesian Journal of Machine Learning and Computer

Science 4.4 (2024), pp. 1244–1252.

M. Jahandideh-Tehrani, G. Jenkins, and F. Helfer. “A comparison of particle swarm optimization and genetic algorithm for daily rainfall-runoff modelling: a case study for Southeast Queensland, Australia”. In: Optimization and Engineering 22.1 (2021), pp. 29–50.

Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. “Data Clustering: A Review”. In: ACM Computing Surveys 31.3 (1999), pp. 264–323. doi: 10.1145/331499.331504.

Daniel Jurafsky and James H. Martin. Speech and Language Processing (3rd ed.draft). Available at https://web.stanford.edu/~jurafsky/slp3/. Stanford University, 2021.

Febriyanti Rambu Bangu Kahi et al. “Analisis Sentimen Masyarakat Di Twitter Terhadap Pemerintahan Anies Baswedan Menggunakan Metode Naive Bayes Classifier”. In: Jurnal Minfo Polgan 13.1 (2024), pp. 324–336.

Guolin Ke et al. “Lightgbm: A highly efficient gradient boosting decision tree”. In: Advances in neural information processing systems. 2017, pp. 3146–3154.

Stuart P. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on Information Theory 28.2 (1982), pp. 129–137. doi: 10.1109/TIT.1982.1056489.

J. MacQueen. “Some Methods for Classification and Analysis of Multivariate Observations”. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Vol. 1. University of California Press, 1967, pp. 281–297.

Putri Ardelia Maharani, Alliya Riyani Namira, and Tsalsabillah Viony Chairunnisa. “Peran makan siang gratis dalam janji kampanye prabowo gibran dan realisasinya”. In: Journal Of Law And Social Society 1.1 (2024), pp. 1–10.

A. E. Maxwell, T. A. Warner, and F. Fang. “Implementation of machine-learning classification in remote sensing: An applied review”. In: International Journal of Remote Sensing 39.9 (2018), pp. 2784–2817.

Andrew McCallum and Kamal Nigam. “A comparison of event models for Naive Bayes text classification”. In: AAAI-98 workshop on learning for text categorization (1998).

N. H. Ovirianti, M. Zarlis, and H. Mawengkang. “Support Vector Machine Using A Classification Algorithm”. In: Journal not specified 7.3 (2022).

Fabian Pedregosa, Ga¨el Varoquaux, Alexandre Gramfort, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.2011. url: https://scikit-learn.org/.

Tundo & Rachmawati. “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Terhadap Program Makan Siang Gratis”. In: Jurnal Indonesia: Manajemen Informatika dan Komunikasi 5.3 (2024), pp. 2925–2939.

Nanda Aulia Rahmawati, Shalfian Agung Prasetyo, and Muhammad Wildan Ramadhani. “Memetakan Visi Prabowo Gibran Pada Masa Kampanye Dalam Prespektif Pembangunan:(Analisis Wacana Kritis Visi Dan Misi Prabowo Gibran Dalam Prespektif Moderenisasi)”. In: WISSEN: Jurnal Ilmu Sosial dan Humaniora 2.3 (2024), pp. 97–120.

A Ramadhani et al. “Analisis Sentimen Tanggapan Publik di Twitter Terkait Program Kerja Makan Siang Gratis Prabowo-Gibran Menggunakan Algoritma Naive Bayes Classifier dan Support Vector Machine”. In: Building of Informatics, Technoogy and Science (BITS) 6.3 (2024), pp. 1509–1516.

Radim Rehurek and Petr Sojka. Software Framework for Topic Modelling with Large Corpora. Gensim Python library. Valletta, Malta, 2010. url: https : //radimrehurek.com/gensim/.

Y. Religia, A. Nugroho, and W. Hadikristanto. “Analisis Perbandingan Algoritma Optimasi pada Random Forest untuk Klasifikasi Data Bank Marketing”. In: Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 5.1 (2021), pp. 187–192.

Kementerian Kesehatan RI. “Prevalensi Stunting di Indonesia Turun ke 21,6% dari 24,4%.” In: Journal Name (2024).

A. Sabrani and F. Bimantoro. “Multinomial na¨ıve bayes untuk klasifikasi artikel online tentang gempa di Indonesia”. In: Jurnal Teknologi Informasi, Komputer, Dan Aplikasinya (JTIKA) 2.1 (2020), pp. 89–100.

Saikin, S. Fadli, and M. Ashari. “Optimization of Support Vector Machine Method Using Feature Selection to Improve Classification Result”. In: Journal not specified 4.1 (2021).

Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter”. In: arXiv preprint arXiv:1910.01108 (2019).

Amril Mutoi Siregar. “Analisis Sentimen Pindah Ibu Kota Negara (IKN) Baru pada Twitter Menggunakan Algoritma Naive Bayes dan Support Vector Machine (SVM)”. In: Faktor Exacta 16.3 (2023).

Altolyto Sitanggang, Yuyun Umaidah, and Riza Ibnu Adam. “Analisis sentimen masyarakat terhadap program makan siang gratis pada media sosial X menggunakan algoritma Naıve Bayes”. In: Jurnal Informatika Dan Teknik Elektro Terapan 12.3 (2024).

Cristian Steven and Wella Wella. “The right sentiment analysis method of Indonesian tourism in social media Twitter”. In: IJNMT (International Journal of New Media Technology) 7.2 (2020), pp. 102–110.

A. W. Syaputri, E. Irwandi, and Mustakim. “Naive Bayes Algorithm for Classification of Student Major’s Specialization”. In: Journal not specified 1.1 (2020).

Elsa Triningsih. “Analisis Sentimen Terhadap Program Makan Bergizi Gratis Menggunakan Algoritma Machine Learning Pada Sosial Media X”. In: BUILDING OF INFORMATICS, TECHNOLOGY AND SCIENCE (BITS) 6.4 (2025).

Sonya Dian Wahyuni and R Hadapiningradja Kusumodestoni. “Optimalisasi Algoritma Support Vector Machine (SVM) Dalam Klasifikasi Kejadian Data Stunting”. In: Bulletin of Information Technology (BIT) 5.2 (2024), pp. 56–64.

Thomas Wolf, Lysandre Debut, Victor Sanh, et al. Transformers: State-of-the-art Natural Language Processing. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. HuggingFace Transformers library. 2020. url: https://huggingface.co/transformers.



DOI: https://doi.org/10.22146/jmt.108835

Article Metrics

Abstract views : 1419 | views : 670

Refbacks

  • There are currently no refbacks.



Copyright of Jurnal Matematika Thales ISSN 2715-1891 (e).

Number of visits: View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JMT Indexed by: