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Abstract. Throughout this paper, all rings considered are commutative rings R
with identity 1z. Let m and n be natural numbers such that 1 <n < m. A proper
ideal I of R is called an (m,n)—closed ideal if for every x € R with 2™ € I implies
z™ € I. An (m,n)—closed ideal generalizes semi n—absorbing ideal and, hence, also
generalizes semiprime ideal. A proper ideal I of R is called a quasi (m,n)—closed
ideal if for every x € R with 2™ € I implies ™ € I or ™" € I. Therefore, a
quasi (m,n)—closed generalizes an (m,n)—closed ideal. Research related to these
ideals is referred to Anderson and Badawi (2017) and Khashan and Celikel (2024).
In this paper, the authors presented several new properties related to these ideals
that are not discussed in the two main references.
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1. INTRODUCTION

The idea of ideal comes from the last Fermat theorem. Its proof became an
open problem until Andrew Wiles found it in 1994. Before Andrew Wiles, Ernst
Kummer (1810-1893) tried to solve it. During his work, he introduced a concept of
”ideal number”. Motivated from his idea, Richard Dedekind (1831-1916) invented
ideal concept in ring theory [IJ.

Prime ideal is one of many concepts in ring theory. It is motivated from
the prime concept in number theory. Generalization of prime ideal has been
found by many mathematician. For example, Anderson and Badawi [2] define
an n—absorbing ideal as a generalization of prime ideal and conclude that a prime
ideal is just 1—absorbing ideal. This ideal has been used by Choi [3] to prove Ander-
son and Badawi’s conjectures in locally divided commutative rings. On the other
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hand, Moghimi and Naghani [4] define the n—Krull dimension of commutative ring
R as a supremum of the lengths of chains of n—absorbing ideals of R.

There is another kind of ideal in ring theory. It is called a semiprime or
radical ideal. Generally, a prime ideal is obviuos a semiprime ideal. However, its
converse need not to be true. Not only prime ideal, Anderson and Badawi [?] define
a semi n—absorbing ideal as a generalization of semiprime ideal. They conclude
that a semiprime ideal is just a semi 1—absorbing ideal. They also prove that every
n—absorbing ideal is semi n—absorbing, but its converse need not to be true in
general.

Anderson and Badawi [5] also generalize semi n—absorbing ideal. They de-
fine it as (m,n)—closed ideal for some natural numbers m and n. Therefore, an
(m,n)—closed ideal also generalizes semiprime ideal. As a result of their research,
one of its basic properties is every semiprime ideals are (m,n)—closed ideal for
every natural numbers m and n.

Ideal generated by 2™~2 ie. (2m~2) is not (m,2)—closed ideal in Z for
every natural numbers m > 5. Khashan and Celikel [6] define a generalization
of (m,n)—closed ideal as quasi (m,n)—closed ideal. By defining this ideal, ideal
(2m=2) is a quasi (m,2)—closed ideal in Z for every natural numbers m > 5. In
addition, they also stated a sufficient condition for quasi (m,n)—closed ideal being
(m,n)—closed ideal.

Many properties of (m,n)—closed ideal and quasi (m,n)—closed has been
produced by [5] and [6] respectively. On the other hand, the applications of
(m,n)—closed to several kind of rings also have been found by several papers.
Issoual et al. [7] have investigated (m,n)—closed ideal related to the amalgamated
ring A >f J for (A, B) be a pair of rings, f : A — B be a ring homomorphism
and J be an ideal of B. Badawi et al. [§] also have explored (m,n)—closed ideal
related to trivial ring extension R = A(+)M for A is a commutative ring and M
is an A—module. In this paper, the authors give several new properties related to
these ideals that are not discussed in [5] and [6].

2. SOME CONCEPTS ABOUT (m,n)—-CLOSED AND QUASI
(m,n)—CLOSED IDEALS

In this section, we briefly give some explanations about (m,n)—closed and
quasi (m, n)—closed ideal. Throughout this paper, all rings considered are commu-
tative rings R with identity 1x and all ring homomorphisms preserve the identity.

Let R be a commutative ring with identity. An ideal is proper if I # R.
For some proper ideal I of R, the radical of I, denoted by /I, is defined by
{z € R|a™ € I for some n € N}. An element of R is called a nilpotent element if
there exists a natural number n such that 2™ = 0r. The set of all nilpotent elements
is called nilradical of R, denoted by nil(R). Clearly, we have y/{0r} = nil(R).

A proper ideal I of R is called a prime ideal if whenever xy € I for every
x,y € R, implies € T or y € I [9]. Ideal generated by a prime number p of Z,
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i.e. (p), is an example of prime ideal. A semiprime ideal is a proper ideal with the
property that whenever 22 € [ for every x € R, implies z € I [9]. Every prime ideal
is semiprime ideal, but its converse need not to be true. Ideal generated by (6) of
Z, i.e. (6), is a semiprime ideal of Z but it is not a prime ideal of Z. Anderson and
Badawi [2] generalize a prime ideal to n—absorbing ideal.

Definition 2.1. [2] Let n be a natural number. A proper ideal I of R is called an
n—absorbing ideal of R if whenever x1xo ... xnTni1 € I for everyxy,xa, ..., Ty, Tni1 €
1, then there are n of x;’s whose product is in I.

In particular, an n—absorbing ideal is expanded from 2—absorbing ideal con-
cept that has been explored by Badawi [I0] and Payrovi and Babaei [?]. Same
with prime ideal, Anderson and Badawi [5] generalize a semiprime ideal to semi
n—absorbing ideal.

Definition 2.2. [5] Let n be a natural number. A proper ideal I of R is called a
semi n—absorbing ideal if whenever x™t1 € I for every x € R, implies 2™ € I.

Thus, an n—absorbing ideal is a semi n—absorbing ideal. It follows from
definitions, a prime ideal and a semiprime ideal are a 1—absorbing ideal and a semi
n—absorbing ideal, respectively.

Anderson and Badawi [5] also generalize a semi n—absorbing to an (m, n)—closed
ideal.

Definition 2.3. [B] Let m and n be natural numbers such that 1 < n < m. A
proper ideal I of R is called an (m,n)—closed ideal if whenever ™ € I for every
x € R, implies 2" € I.

Note that Mostafanasab and Darani [I1] define a proper ideal I of R to be a
semi (m,n)—absorbing ideal if I is an (m,n)—closed ideal. Here is an example of
an (m,n)—closed ideal.

Example 2.4. Let R = Z[x,y] and I = (22, 2xy,y?). We will prove that I is an
(m, 2)—closed ideal of R for any natural numbers m > 3. Suppose f(x,y) € R such
that (f(x,y))™ € I. We have f(x,y) € VI = (z,y). Then, f(x,y) can be written
as f(z,y) = g(z,y)x + h(z,y)y for some g(x,y),h(x,y) € R. By quadrating both
sides, we get (f(z,y))* = (9(z,y))*x® + 2zyg(w,y) Mz, y) + (h(z,y))*y* € I.

By induction, we can prove that a semiprime ideal is an (m,n)—closed ideal
for every natural numbers m and n. Note that an (m,n)—closed ideal is also an
(m/,n')—closed ideal for every natural numbers m’ < m and n’ > n. The complete
properties of an (m,n)—closed ideal can be found on [5].

The concept of (m,n)—closed ideal is generalized by Khashan and Celikel [6].
They define it as a quasi (m, n)—closed ideal.

Definition 2.5. [6] Let m and n be natural numbers such that 1 < n < m. A
proper ideal I of R is called a quasi (m,n)—closed ideal if whenever ™ € I for
every x € R, implies ™ € I or ™ " € I.

Here is an example of a quasi (m,n)—closed ideal.
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Example 2.6. Let R = 7. We will show that I = (2™~2) is a quasi (m, 2)—closed
ideal of R for every natural numbers m > 5. Let ¥ € R such that 2™ € I. By
the definition of I, we have 2™~ 2|z™. This implies that 2|z. Consequently, we get
x™~2 € I. However, I is not an (m,2)—closed ideal since 2™ € I but 22 ¢ I.

It is clear that a proper ideal I of R is a quasi (m,n)- closed ideal if and only
if I is an (m,n)—closed or an (m, m —n)—closed ideal. Furthermore, a proper ideal
I of R is a quasi (m,n)—closed ideal if and only if I is a quasi (m, m — n)—closed
ideal. The comprehensive properties about quasi (m,n)—closed ideal can be found
on [6].

3. RESULT AND DISCUSSION

In this section, we deliver several new properties related to (m,n)—closed
ideals and quasi (m,n)—closed ring that are not discussed in [5] and [6].

3.1. (m,n)—closed Ideal. Let m and n be natural numbers such that 1 < n <
m. Corollary 2.4 in [B] shows that if I;,I5,...,I; are (m,n)—closed ideals of a
commutative ring R with identity 1z, then the intersection I1 N 1o N ---N I} is also
an (m,n)—closed ideal of R. Fortunately, this fact can be also extended to the
collection of (m,n)—closed ideals of R.

Theorem 3.1. Let R be a commutative ring with identity 1r and m,n be natural
numbers such that 1 < n < m. If {I,|a € A}, where § # A denotes an indexing
set, is a collection of (m,n)—closed ideals of R, then Naenals s an (m,n)—closed
ideal of R.

Proof. Let x € R such that 2™ € Nyeply, then 2™ € I, for every a € A. Since [,
is an (m, n)—closed ideal for every o € A, we have 2™ € Nyen. O

In commutative ring R, the set nil(R) is an ideal of R. Its proof can be found
on [IZ]. For an ideal I of R, the set v/T is also an ideal of R [I3]. Now, we can
prove that nil(R) and /T are (m,n)—closed ideals for every natural numbers m
and n such that 1 < n < m.

Theorem 3.2. If R is a commutative ring with identity 1, then nil(R) and V1,
for an ideal I of R, are (m,n)—closed ideals of R for every natural numbers m and
n.

Proof. Tt is enough to show that nil(R) and /T are semiprime ideals of R. Let
x € R such that 22 € v/I. Based on the definition of /T, there is a natural number
k such that 2?* = (22)* € I. Since 2k is also a natural number, we get x € /1.
Now, let y € R such that y? € nil(R). By definition, there is a natural number j
such that %/ = (y?)? = 0g. Moreover, we get y € nil(R). O

It is easy to verify that if I is a proper ideal of a commutative ring R with
identity 1g, then I[x] is a proper ideal of a polynomial ring R[z]. It is also obvious
that I = I[z] N R. Hence, we get a fact below. Definitely, this fact is a consequence
of the first statement of Corollary 2.11 on [5].
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Corollary 3.3. Let R be a commutative ring with identity 1z and m,n be natural
numbers such that 1 <n < m. If I[z] is an (m,n)—closed ideal of R[x], then I is
an (m,n)—closed ideal of R.

Proof. Note that R can be embedded to R[x], so we have R C R[z]. Applying the
first statement of Corollary 2.19 on [B] and the fact I = I[z] N R, we have I is an
(m, n)—closed ideal of R. O

In order to prove our next results, we present the second statement of Corol-
lary 2.11 on [5].

Corollary 3.4. [5] Let R be a commutative ring with identity 1g and m,n be
natural numbers such that 1 <n <m. If I C J are proper ideals of R, then J/I is
an (m,n)—closed ideal of R/I if and only if J is an (m,n)—closed ideal of R.

Proof. Note that the mapping f : R — R/I defined by f(r) = r + I is a ring
epimorphism. In addition, for this epimorphism f, we also have f(J) = J/I and
f~YJ/I) = J. Let u € ker(f), then Og + I = f(x) = 2+ I. Consequently, we have
x =12 —0gr € I CJ. This means that ker(f) C J. Finally, by applying Theorem
2.10 on [5], the proof is done. O

The first result is the addition I; + Iy + - - - + I, is (m,n)—closed ideal of R
if I, I, ..., I, are (m,n)—closed ideals of R.

Theorem 3.5. Let R be a commutative ring with identity 1r and m,n be natural
numbers such that 1 <n <m. If I, I>,..., I, are (m,n)—closed ideals of R, then
L+IL+---+1I, is an (m,n)—closed ideal of R.

Proof. We will prove by induction on p. Let p = 2, i.e. I; and I are (m,n)—closed
ideals of R. Define f: I; — % by f(i) =i+ Iz for every i € I, then f is well
defined. Moreover, f is a ring homomorphism from I;to 11}212. Let j € ker(f),
then we have j € I. Since j € I, we have ker(f) C I) N I,. For every x € I1 N I,
we see that * = « + I = O + Iy and moreover, x € ker(f). This means that

NI C ker(f). Next, we also have im(f) = % It follows from the fundamental

theorem of ring homomorphism that Illr% 5 = 11]74212 By Corollary IlIr% 7, is an
(m,n)—closed ideal in R/(I;NI3). Using the isomorphism that we have just proven,
% is an (m,n)—closed ideal of R/Is. Using Corollary again, I; + I3 is an
(m,n)—closed ideal of R. Assume that the theorem is true for p = k and we will
prove that it is also true for p=%k+ 1. Let J =11 + I> + --- + I;. By using same
method for p = 2 and induction hypothesis, ideal J+ 111 = I1 + Io + N+ I + T4
is an (m,n)—closed ideal of R. O

Not only Theorem Corollary is also useful to prove the following
theorem.

Theorem 3.6. Given a proper ideal I of a commutative ring R with identity 1 and
m,n are natural numbers such that 1 < n < m. Ideal I + (z) is an (m,n)—closed
ideal of Rlx] if and only if I is an (m,n)—closed ideal of R.
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Proof. It is sufficient to prove that I%m >~ J. Define an f : I + (z) — I by
fli+p(z)) =i for every i + p(z) € I + (x). Thus, f is well defined and is also a
ring homomorphism. Let y + h(x) € ker(f), then we have y = f(y + p(x)) = Og.
Moreover, we get y + p(x) = p(x) € (z). This means ker(f) C (z). Let f(x) € (),
then r(x) = u(x)z for some u(z) € R[x]. Applied it to f, f(r(z)) = f(Or +r(x)) =
Or. Consequently, (x) is a subset of ker(f). By the definition of f, we have
im(f) = I. It follows from the fundamental theorem of ring homomorphism that

1@(;;) &~ J. Using Corollary I+ (z) is an (m,n)—closed ideal of R[z] if and

only if I?gf;w is an (m, n)—closed ideal of %. Using the fact 1?;;70) = [, the proof
is completely done. O

Let {R;|i = 1,2,...,k} be a finite collection of commutative rings R; with
identity 1g,. A direct product Hle R; forms commutative ring with identity
(1g,, 1Ry, .-, 1R, ) under componentwise addition and multiplication operations.
If I; is a proper ideal of R;, for every ¢ =1,2,... k, then Hle I, is a proper ideal
of Hle R;. Now, we extend Theorem 2.12 on [5].

Theorem 3.7. Let R; be commutative ring with identity 1 g, for everyi=1,2,... k.
If I; is an (m;,n;)—closed ideal of R; for everyi = 1,2,...,k, then Hle I; is an
(m, n)—closed ideal of]_[f:1 R; for every natural numbers m < min{mq, ma, ..., my}
and n > max{ny, na,...,ng}.

Proof. Let y € Hle R; such that y™ € Hle I;. Then y™ can be expressed as
Yy = (ri,re, ., rE)™ = (P g, o) € Hle I;. This means that r]" € I, for

every i. Furthermore, we have r]"" = r;"""™r € I; for every i. Note that for
any ¢ = 1,2,...,k, I, is an (m;,n;)—closed ideal, so we get r;'"* € I; for every i =
1,2,..., k. Moreover, it is obvious that r* = '~ ™r™ € I, for every i = 1,2,... k.

Finally, we get y" = (r?,r%,...,r}) = (r1,72,...,7%)" € Hle I;. O

The zero ideal {0r} is a prime ideal of an integral domain R, since integral do-
main does not have zero divisor elements. Consequently, ideal {Og} is a semiprime
ideal of an integral domain R. Moreover, we have {Og} is an (m,n)—closed ideal
of an integral domain R for every natural numbers m and n such that 1 <n < m.
Finally, we have an immediate consequnece of Theorem 2.10 on [5].

Corollary 3.8. Let R be a commutative ring with identity 1g and S be an integral
domain. If f : R — S is a ring homomorphism, then ker(f) is an (m,n)—-closed
ideal of R for every natural numbers m and n such that 1 <n < m.

Proof. Using Theorem 2.10 on [5] and {0g} is an (m,n)—closed ideal for every
1 <n<m, f71({0s}) = ker(f) is an (m, n)—closed ideal for every natural numbers

m and n such that 1 <n < m. O

We give an example to understand Corollary
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Example 3.9. Consider a ring homomorphism f : ZxZ — 7 defined by f((a,b)) =
a for every (a,b) € Z x Z. Using Corollary[3.8, we get

ker(f) = {(a,b) € Z x Z|a = f((a,b)) = 0}
={(0,0)[b € Z} = {(0, 1))

is an (m,n)—closed ideal of Z X Z for every natural numbers m and n such that
1<n<m.

3.2. Quasi (m,n)—closed Ideal. Let m and n be natural numbers such that
1 <n < m and R be a commutative ring with identity 1r. Define three collections,

A(m,ny = {I|I is an (m,n) — closed ideal of R},
A’y = {I|I is an (m, m — n) — closed ideal of R}, and
B,y = {I|I is a quasi (m,n) — closed ideal of R}.

Note that A, ,) 7# 0 since nil(R) is an (m,n)—closed ideal. This is also true for
A (). Since a quasi (m,n)—closed ideal is a generalization from (m,n)—closed
ideal and (m,m — n)—closed ideal, then Ay, ny € Bim,n) and A’ ) € B ,ny- It
is easy to prove that A(,, ny = B(m,ny if m < 2n and A’ ) = B p) if m > 2n.

From the definition of quasi (m, n)—closed ideal, a quasi (m,n)—closed ideal
is a quasi (m,m — n)—closed ideal and vice versa. However, this fact need not
to be true for (m,n)—closed ideal. Example 2.2 on [5] shows that (16) is semi
2-absorbing (i.e. (3,2)—closed) ideal of Z. Unfortunately, if we choose x = 4 € Z,
then we have 4% € (16) and 4 ¢ (16). Hence, (16) is not a (3, 1)—closed ideal of Z.
Conversely, an (m, m —n)—closed ideal need not to be true an (m,n)—closed ideal.
Ideal (8) is a (4,4 — 1)—closed ideal of Z, since for every z € Z with 2* € (8), then
z € /(8) = (2) and so that 2® € (8). However, there is 2 € Z with 2* € (8) and
2 ¢ (8). Hence, (8) is not a (4,1)—closed ideal of Z.

On the above paragraph, we have A(,, ) = B ny if m < 2n and A'(,, ) =
B(m,ny if m > 2n. Hence, those facts make an immediate consequence.

Corollary 3.10. Let R be a commutative ring with identity 1 and m,n be natural
numbers such that 1 < n < m. If m = 2n, then the following statements are
equivalent.

1. A proper ideal I of R is an (m,n)—closed ideal of R.
2. A proper ideal I of R is an (m, m —n)—closed ideal of R.
3. A proper ideal I of R is a quasi (m,n)—closed ideal of R.

Recall that proper ideals I; and I of a commutative ring R with identity 1p
are comaximal if I; + I = R. If the collection of ideals of R {;]i = 1,2,...,k}
are pairwise comaximal, then Iy N Io N --- NI = I115--- I}, [I4]. Now, we modify
Corollary 2.4 on [5] in terms of quasi (m,n)—closed ideal.

Theorem 3.11. Let R be a commutative ring with identity 1z, m and n be natural
numbers such that 1 <n <m and I, I, ..., I be quasi (m,n)—closed ideals, then
we have :



1. The intersection Iy N Io N -+~ N I}, is also a quasi (m,n)—closed ideal of R.
2. If 1, I, ..., Iy, are pairwise comazimal, then I I5 - - - Iy, is a quasi (m, n)—closed
ideal of R.

Proof. Since Corollary 2.4 on [5] holds for both cases m < 2n and m > 2n, then
the first statement is fulfilled. The second statement immediately follows from the
first statement. O

Theorem can be used to prove the following theorem.

Theorem 3.12. Let R be a commutative ring with identity 1g and m,n be natural
numbers such that 1 < n < m. If {I,|a € A}, where § # A denotes an indexing
set, is a collection of quasi (m,n)—closed ideals of R, then Naealn is a quasi
(m,n)—closed ideal of R.

Proof. Since Theorem holds for both cases m < 2n and m > 2n, then it is true
that Npealn is a quasi (m, n)—closed ideal of R. O

Let a be an element of a commutative ring R with identity 1z. If I is an
ideal of R, then I, = {x € R|ax € I} is an ideal of R. Recall that ¢ € R is an
idempotent element if a? = a [12].

Theorem 3.13. Let I be a proper ideal of a commutative ring R with identity 1R,
m and n be natural numbers such that 1 < n < m and a € R — I be a nonunit
idempotent element of R. If I is a quasi (m,n)—closed ideal of R, then I, is a
quasi (m,n)—closed ideal of R.

Proof. The condition a € R — I be a nonunit element of R implies that I, is a
proper ideal of R. Let x € R such that ™ € I,. Assume that 2™ " ¢ I,.
Consequently, we have (ax)™ = az™ € I and (az)™ " = az™ ™ ¢ I. Since
I is a quasi (m,n)—closed ideal of R, then (az)” = axz™ € I. This means that
" € 1,. O

The following theorem provide a necessary condition for a proper ideal I of
R be a quasi (m,n)—closed ideal of R.

Theorem 3.14. Let R be a commutative ring with identity 1g and m,n be natural
numbers such that 1 <n < m. If whenever J™ C I for every ideal J of R implies
JYC I or J" ™ CI, then I is a quasi (m,n)—closed ideal of R.

Proof. Let x € R such that ™ € I. If (z) is an ideal generated by x, then (z)™ C I.
By assumption, we have (x)® C I or ()™~ "™ C I. If ()™ C I, then 2™ € (z)™ C I.
If (x)m=" C I, then 2™ ™ € ()™~ "™ C I. O

Corollary 2.11 on [5] can be modified for quasi (m, n)—closed ideal. It appears
in Corollary 2 on [6]. Hence, Corollary can be extended in terms of quasi
(m, n)—closed. We omit its proof since it is very similar to Corollary
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Corollary 3.15. Let R be a commutative ring with identity 1z and m,n be natural
numbers such that 1 <n < m. If I|z] is a quasi (m,n)—closed ideal of R[x], then
I is a quasi (m,n)—closed ideal of R.

Corollary also holds for quasi (m, n)—closed ideal as we can see in Corol-
lary 2 on [6]. Hence, we can extended Theorem and Theorem in terms of
quasi (m, n)—closed ideal. Same with above corollary, we omit their proofs.

Theorem 3.16. Let R be a commutative ring with identity 1g and m,n be natural
numbers such that 1 <n <m. If I, I, ..., I, are quasi (m,n)—closed ideals of R,
then Iy + I + - - - + I, is a quasi (m,n)—closed ideal of R.

Theorem 3.17. Given a proper ideal I of a commutative ring R with identity
1r and m,n are natural numbers such that 1 < n < m. Ideal I + (x) is a quasi
(m,n)—closed ideal of R[z] if and only if I is a quasi (m,n)—-closed ideal of R.

Now, we present Corollary 3 on [6] without proof to support our next result.

Corollary 3.18. Let I; be an ideal of commutative ring R; with identity 1r, for
everyi =1,2,..., k. Let m and n are natural numbers such that 1 <n < m. Then
we have :

L. If I; is a proper ideal of R; for some i = 1,2,...,k, then I; is a quasi
(m,n)—closed ideal of R; if and only if H;;ll R; x I; x H?:i-&-l R; is a quasi
(m,n)—closed ideal of Hle R;.

2. If I; is a quasi (my,n;)—closed ideal of R; for any i = 1,2,...,k and
t = max{n;,m; —n;|i =1,2,...,k}, then Hle I; is a quasi (m,n)—closed
ideal of Hle R; whenever m < min{my,ma,...,my} and m > 2t.

Corollary can be used to prove our result.

Corollary 3.19. Let I; be an ideal of commutative ring R; with identity 1g, for
everyi=1,2,...,k and n be a natural numbers. Then we have :
L. If I; is a proper ideal of R; for some ¢ = 1,2,...,k, then I; is a quasi
(2n,n)—closed ideal of R; if and only if H;;ll R; x I x H?:Hl R; is a
quasi (2n,n)—closed ideal of Hle R;.
2. If I; is a quasi (2n,n)—closed ideal of R; for any i = 1,2,...,k, then
Hle I; is a quasi (2n,n)—closed ideal of Hle R;

Proof. Let m = 2n for every i = 1,2,...,k. Using Corollary and facts that
m = 2n = min{2n} and m = 2n = 2max{n,2n — n} = 2max{n}, the proof is
completely done. O

Example 3.20. Consider proper ideals of Z, i.e. (4),(9) and (25). We can check
that \/{4) = (2),1/(9) = (3) and \/(25) = (5). Let x € Z such that z* € (4).
Then z € (2) and so that % € (2). Certainly, this fact also satisfy for (9) and (25).
Hence, (4), (9) and (25) are quasi (2n,n)— closed ideals of Z. Using Corollary|3.19
product (4) x (9) x (25) is a quasi (2n,n)—closed ideal of Z X 7. X 7.
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We already know that ideal {Ogr} is an (m,n)—closed of an integral domain
R for every natural numbers m and n such that 1 < n < m. Thus, it is a quasi
(m, n)—closed ideal of a integral domain R for every natural numbers m and n such
that 1 < n < m. Hence, Corollary also holds for quasi (m,n)—closed ideal. It
can be proved with Proposition 3 on [6].

Corollary 3.21. Let R be a commutative ring with identity 1z and S be an integral
domain. If f : R — S is a ring homomorphism, then ker(f) is a quasi (m,n)—closed
ideal for every natural numbers m and n such that 1 < n < m.

Recall that a commutative ring R with identity 1p is called a local ring if R
has exactly one maximal ideal. A local ring R with its maximal ideal M is denoted
by (R, M) [13]. Hence, we can modify Lemma 2.12 on [7].

Theorem 3.22. Let m and n be natural numbers such that 1 <n <m. If (R, M)
is a local ring which satisfies either M™ = {Or} or M™~™ = {Ogr}, then every
proper ideal I of R is a quasi (m,n)—closed ideal of R.

Proof. It M™ = {0g} holds, then by Lemma 2.12 on [7], every proper ideal I is
an (m,n)—closed ideal of R. If M™ ™ = {0g} holds, then by Lemma 2.12 on [7],
every proper ideal I is an (m, m —n)—closed ideal of R. Hence, every proper ideal
I of R is a quasi (m,n)—closed ideal of R. O

4. CONCLUSION

In this paper, we have presented several new properties about (m,n)—closed
ideal and quasi (m,n)—closed ideal. The new properties have been derived from
several theorems and corollaries on [5] and [6].

Acknowledgement. We thank the reviewers for their suggestions and revisions
to this paper.
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Abstract. Given a group G with identity e and a G—graded commutative ring
R with unity element 1r. This paper introduces a new concept, namely, graded
strongly 1—absorbing primary ideals, which is a subclass of the graded 1—absorbing
primary ideals. A proper graded ideal I of R is said to be a graded strongly
1—absorbing primary ideal of R if whenever non-unit elements a,b,c € h(R) with
abc € I, then either ab € I or ¢ € Grad(0). Several properties of graded strongly
1—absorbing primary ideals will be investigated in this paper. Furthermore, a new

structure called graded 2—absorbing [ —primary ideal is also introduced.

Keywords: Graded 1—Absorbing Primary Ideal, Graded Strongly 1—Absorbing
Primary Ideal, Graded 2—Absorbing I—Primary Ideal.

1. INTRODUCTION

Throughout this article, G will be a group with identity e and R will be
an abelian ring with a nonzero unity 1z. A ring R is said to be G—graded if
there exists a family of additive subgroups {Ry}sec such that R = @, Ry and
Ry Ry, C Ry, 4g, for every gi,92 € G. If Ry Ry, = Rg,+q, for all g1,02 € G,
then R is said to be a strongly graded ring. Moreover, a G—graded ring R is
positively graded if R, = {0} for all ¢ < 0 and negatively graded if R, = {0}
for all g > 0. The set h(R) = J,cq Ry is the set of homogeneous elements of
R. A nonzero element a, € R, is said to be a homogeneous element of degree g,
and can be written as deg(ay) = g. Every nonzero element in a G—graded ring
R can be uniquely expressed as a finite sum of homogeneous elements, denoted by
a= deg a4, where a4 is a homogeneous component of a in R,.
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Let S be a subring of a G—graded ring R. Then S is said to be a graded
subring if S = €P,cq Sg, Where S; = SN R, for each g € G. Since S is a graded
subring of R, then Sg,S;, = (SN Ry, )(SNRy,) € SN Ry 19, = Sg,4g, for all
g1, 92 € G. Consequently, every graded subring S of R is a G—graded ring.

Analogous to the concept of an ideal in a ring, the concept of a graded ideal
is introduced in graded rings. An ideal I of a graded ring R is said to be a graded
ideal if I respects the grading structure, i.e., I = ®g€G Iy, where I, = I N R,
for each ¢ € G. An important construction related to graded ideals is the graded
radical of a graded ideal I, denoted by Grad(I). The graded radical consists of
all elements a = deG ag € R such that for every g € G, there exists a positive
integer ny satisfying ag’g € I, denoted by

Grad(I) = {a: Zag €R|VgeG,Ing €N, ay? € I}.
geG
It has been established that the graded radical of a graded ideal is a graded ideal
of R.
The following summarizes several important properties related to graded
ideals in graded rings.

Lemma 1.1. [I] Let R be a G—graded ring. The following hold:

(1) If I and J are graded ideals in R, then I + J, 1J, and I N J are graded
ideals in R.
(2) If a € h(R), then Ra is a graded ideal in R.

Lemma 1.2. [2] Let R be a G—graded ring, and let I,J be graded ideals in R.
Then,

(1) Grad(Grad(I)) = Grad(I)
(2) Grad(IJ) = Grad(INJ) = Grad(I) N Grad(J).

Proof. Tt follows from ([2], Proposition 2.4). O

Refai, in [3], introduced a generalization of the graded prime ideal, called
the graded primary ideal. A graded ideal I of a G—graded ring R is said to be
a graded primary ideal if I # R and whenever a,b € h(R) with ab € I, then
a € I or a € Grad(I). Every graded prime ideal is a graded primary ideal, but
the converse does not generally hold. Later, in [4], a further generalization of the
graded primary ideal, called the graded 2—absorbing primary ideal, was studied.
A proper graded ideal I of R is said to be a graded 2—absorbing primary ideal if
whenever a,b, ¢ € h(R) with abc € I, then ab € I or ac € Grad(I) or bc € Grad(I).
In [5], Abu-Dawwas and Bataineh introduced a new subclass of graded 2—absorbing
primary ideals, called graded 1—absorbing primary ideals. A proper graded ideal
I of a graded ring R is said to be a graded 1—absorbing primary if whenever non-
unit elements a,b, ¢ € h(R) such that abc € I, then ab € I or ¢ € Grad(I). Since
the concept of a graded 1—absorbing primary ideal generalizes that of a graded
primary ideal, it follows that every graded primary ideal is necessarily a graded
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1—absorbing primary ideal. However, the converse is not necessarily true; that is,
a graded 1—absorbing primary ideal is not always a graded primary ideal.

In 2015, [6] studied rings in which every non-unit element is a product of a
unit and a nilpotent element, referring to them as UN rings. Building upon this
concept, the structure of the UN rings was later extended to graded rings.

Definition 1.3. [7] A G—graded ring R is called a HUN ring if every homogeneous
element in R is either a unit or nilpotent.

Example 1.4. [§] Let R be a graded field, and let u ¢ R be an element such that
u? = 1. Define a graded field F = {a + ub | a,b € R and u®> = 1} with respect
to the group Zs, where the grading is given by Fy = R and F; = uR. Next, we
prove that F' is a HUN-ring. Let a € Fj. Since every element of the field R is a
unit, it follows that a is a unit in Fy. Now, consider the elements in F;. Take any
ub € Fy with u?> = 1. Since b € R and b is a unit, we obtain (ub)? = u?b* = b2
Consequently, b? is trivially nilpotent if b = 0. Conversely, if b # 0, then b? is a
unit. Therefore, the graded field F' is a HUN ring.

Previously, in [9], Almahdi et al. introduced the concept of a strongly
1—absorbing primary ideal, which can be used to characterize UN rings and lo-
cal rings, rings that have exactly one maximal ideal. Based on this idea, in
[8], Abu-Dawwas developed a similar concept in graded rings, introducing the
graded strongly 1—absorbing primary ideal, which forms a new subclass of graded
1—absorbing primary ideals. Just like the strongly 1—absorbing primary ideal, the
graded strongly 1—absorbing primary ideal can also be used to characterize HUN
rings and graded local rings.

This paper is a review of the work previously written by Abu-Dawwas in []].
Our contributions in this paper include providing examples, adding properties, and
deriving corollaries from the existing propositions. We give examples (see Example
of a graded strongly 1—absorbing primary ideal, and derive corollaries from
Proposition 12} particularly when R is a graded Noetherian. Furthermore, we
investigate the structure of graded ideals in the direct product of graded rings. Since
the graded ideal in this ring is not a graded strongly 1—absorbing primary ideal,
we examine whether it satisfies the properties of a graded 2—absorbing [—ideal,
which is a generalization of graded prime ideals and was introduced by 1. Akray,
Adil K. Jabbar and Shadan A. Othman in [I0].

2. GRADED STRONGLY 1-ABSORBING PRIMARY IDEAL

In this section, we study the concept of graded strongly 1—absorbing primary
ideals, a subclass of graded 1—absorbing primary ideals.

Definition 2.1. [8] Let R be a G—graded ring and I a proper graded ideal of
R. The ideal I is said to be a graded strongly 1—absorbing primary ideal in R if

whenever non-unit elements a,b,c € h(R) such that abc € I, then either ab € I or
¢ € Grad({0}).
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The following example illustrates the concept of a graded strongly 1—absorbing
primary ideal.

Example 2.2. Let R = R[z]/(2°) be a Z—graded ring and consider the graded
ideal I = <?) in R. Then I is a graded strongly 1—absorbing primary ideal. Let
p(z) = Zf:o aixi, q(z) = Z?:o bixt,r(z) = E?:o ¢zt € h(R) be non-unit elements
such that p(z)q(x)r(x) € I. If p(x)q(z) € I, then I is trivially a graded strongly

1—absorbing primary ideal. Suppose p(x)q(xz) ¢ I. Then we analyze the following
cases:

(1) If deg(p(z)q(w)) = 0, then deg(r(z)) >
(r(z))™ € {0}. Hence, r(x) € Grad({0}
(2) If deg(p(z)q(w)) = 1, then deg(r(z)) >
(r(z))™ € {0}. Hence, r(x) € Grad(){O}

(3) If deg(p(z)q(w)) = 2, then deg(r(z)) >
(r(z))™ € {0}. Hence, r(x) € Grad({0}

Thus, for any p(x),q(z),7(z) € h(R) such that p(x)q(x)r(z) € I, we have either
p(x)q(z) € I or r(z) € Grad({0}). Therefore, I is a graded strongly 1—absorbing

primary ideal in R. In general, the ideal I = (xP) is a graded strongly 1—absorbing
primary ideal of R = R[x]/(zP").

so there exists n; > 3 such that

3,
)-
2, so there exists n; > 5 such that
)-
1, so there exists n; > 9 such that
)-

As mentioned earlier, the concept of a graded strongly 1—absorbing primary
ideal forms a new subclass of graded 1—absorbing primary ideals. Hence, every
graded strongly 1—absorbing primary ideal is a graded 1—absorbing primary ideal,
but the converse does not necessarily hold. Not every graded 1—absorbing primary
ideal is graded strongly 1—absorbing. The following example illustrates this.

Example 2.3. Let R =Z[i] and G = Zy. Then R be a G—graded ring by Ry =
and Ry = iZ. Consider the graded ideal I = 3R, which is a graded 1—absorbing
primary ideal. For arbitrary non-unit elements a,b € h(R) withab € I anda ¢ I, it
follows that 3 divides ab but does not divide a. Thus, 3 must divide b, which means
b € Grad(I). Hence, I is a graded 1—absorbing primary ideal. However, I is not a
graded strongly 1—absorbing primary ideal. Specifically, consider 2,3 € h(R) such
that 2-2-3 €1, but2-2¢ I and 3 ¢ Grad({0}). Therefore, we conclude that I is
a graded 1—absorbing primary ideal but not a graded strongly 1—absorbing primary
ideal.

Not every G—graded ring necessarily contains a graded strongly 1—absorbing
primary ideal. However, a G—graded ring does contain a graded strongly 1—absorbing
primary ideal if it has the graded prime ideal Grad({0}) or is a graded local ring.
This result is formalized in the following theorem.

Theorem 2.4. [§ Let R be a G—graded ring. A graded strongly 1—absorbing
primary ideal exists in R if and only if

(1) the ideal Grad(0) is a graded prime ideal, or
(2) the ring R is a graded local ring.
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Proof. Tt follows from ([§], Theorem 2.8.). O

In ring theory, if R and S are rings, then the direct product R x.S forms a ring.
Similarly, if R and S are G—graded rings with grading {R,}4cc and {Sg}¢cq, then
the direct product R x S is also a G—graded ring with grading (R x S), = Ry X S,
for each g € G.

Corollary 2.5. [8] If R and S are G—graded rings, then R x S does not contain
any graded strongly 1—absorbing primary ideal.

Proof. Let R and S be G—graded rings. If neither R nor S is a graded local ring,
then it is clear that R x S is also not a graded local ring. Suppose that R and
S are graded local rings with graded maximal ideals Mg and Mg, respectively.
Consequently, R x S has more than one graded maximal ideal, namely Mg x S
and R x Mg. Therefore, R x S is not a graded local ring. Next, we examine
whether Grad({Ogpxs}) = Grad({0g}) x Grad({0s}) is a graded prime ideal in
R x S. Consider elements (a,b) ¢ Grad({Orxs}) where a € Grad({Og}) and
b ¢ Grad({0s}), as well as (¢,d) ¢ Grad({Orxs}) where ¢ ¢ Grad({0g}) and d €
Grad({0s}). However, since there exist m,n € N such that (ac)” = a"c¢" = Orc™ =
Ogr and (bd)™ = b™d™ = b"0g = Og, it follows that (ac,bd) € Grad({Orxs}). As
a result, Grad({Ogxs}) is not a graded prime ideal in R x S. Since R x S is not a
graded local ring and Grad({Orxs}) is not a graded prime ideal, we conclude that
R x S does not contain any graded strongly 1—absorbing primary ideal. O

Some properties of graded strongly 1—absorbing primary ideals are presented
in the following propositions.

Proposition 2.6. [8] Let R be a G—graded ring, and let I and J be proper graded
ideals of R. If I and J are graded strongly 1—absorbing primary ideals, then I N J
is also a graded strongly 1—absorbing primary ideal.

Proof. Tt follows from ([§], Proposition 2.12). O

The following theorem is a development of the results studied in [I1],[3],
which were previously investigated in the context of 1—absorbing primary ideals
and graded primary ideals. In this study, we further develop these results within
the framework of graded strongly 1—absorbing primary ideals.

Definition 2.7. Let R be a G—graded ring and let I be a graded strongly 1—absorbing
primary ideal of R. Then J = Grad(I) is a graded prime ideal of R, and we say
that I is a J—graded strongly 1—absorbing primary ideal.

So we have the following result.

Proposition 2.8. Let R be a G—graded ring, and let I, I, . .., I, be proper graded
ideal of R. If I1, 15, ..., I, are J—graded strongly 1—absorbing primary ideal, then
I =nj_,1; is a J—graded strongly 1—absorbing primary ideal.
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Proof. First, we will prove that Grad(I) = J. Let I1,Is,...,I, are J-graded
strongly 1-absorbing primary ideal. It is given that Grad(I;) = J for every i =
1,2,...,n. By Proposition[1.2} we have Grad(I) = Grad (N\_; I;) = N, Grad(I;)
Since Grad(1;) = J for all 4, it follows that (O}, Grad(l;) = JNnJnN---NJ = J.
Thus, we have shown that Grad(I) = J. Next, by Proposition we know that
I =N, I; is a graded strongly 1—absorbing primary ideal of R. Therefore, we
conclude that [ is a J—graded strongly 1—absorbing primary ideal. (]

Proposition 2.9. [§] Let R be a G—graded ring. If every element of h(R) is either
nilpotent or a unit, then Rw is a graded strongly 1—absorbing primary ideal in R
for every non-unit element w € h(R).

Proof. Tt follows from ([§], Proposition 2.13). O

Corollary 2.10. []] Let R be a graded ring. If R is an HUN ring, then every
proper graded ideal in R is a graded strongly 1—absorbing primary ideal.

Proof. Let R be a HUN ring and I a proper graded ideal in R. By Definition [T.3]
every element in h(R) is either nilpotent or a unit. Suppose there exist nonunit
elements a,b,c € h(R) such that abc € I and ¢ ¢ Grad({0}). The objective is
to show that every proper graded ideal I in R is a graded strongly 1—absorbing
primary ideal. Since a,b, ¢ € h(R) are nonunit elements and abc € R(abc), Propo-
sition [2.9 ensures that R(abc) is a graded strongly 1—absorbing primary ideal in R.
Consequently, ab € R(abc) C I. Therefore, it is established that if every element in
h(R) is either nilpotent or a unit, then every proper graded ideal in R is a graded
strongly 1—absorbing primary ideal. (I

Example 2.11. Consider the ring 7Z/9Z. The following table demonstrates that
every element in 7./97 is either a unit or nilpotent.

TABLE 1. Multiplication (-) in Z/9Z.

ol O O O O o o o ol ol
ol wl = oo o W ol Ol ol
ol wl O o wl o o wl ol wl
G = o Nl N Wl ool x| Ol ]
Wl o O W o O Wl & Ol o
Nl | O ool =l Wl ol NI Ol I
=Nl Wl | ol O | ool Ol ool

ool = o G i wl N~ Ol -
W ool Wl NI Nl o = ol ol wil

oo NI o g | Wl N = Ol .

Since every ring can be viewed as a trivially graded ring, Z/9Z can be considered
as a Z—graded ring with grading Ry = Z/97 and R, = {0} for every n € Z,n #
0. Thus, every homogeneous element of Z/9Z is either a unit or nilpotent. By
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Corollary|2.10, every proper graded ideal in Z/9Z is a graded strongly 1—absorbing
primary ideal.

The following provides necessary and sufficient conditions for a graded prime
ideal of a graded ring to be a graded strongly 1—absorbing primary ideal.

Proposition 2.12. [8] Let R be a G—graded ring. A graded prime ideal in R is a
graded strongly 1—absorbing primary ideal if and only if

(1) R is a HUN-ring, or

(2) R is a graded local ring with a graded maximal ideal M, has exactly one

graded prime ideal that is not the graded mazimal ideal (i.e., Grad({0})),
and every graded M -primary ideal contains M?.

Proof. It follows from ([§], Proposition 2.17). O

Next, we extend the results of [9], originally on strongly 1—absorbing primary
ideals, to the graded case. A G—graded ring R is called a graded Noetherian if every
ascending chain of graded ideals in R terminates. Thus, we obtain the following
consequence of Proposition [2.12

Corollary 2.13. For any graded Noetherian ring R, the following are equivalent :

(1) Every graded primary ideal of R is graded strongly 1—absorbing primary.
(2) R is a HUN ring.

Proof. (1) = (2) Suppose that R is not a HUN ring. Then, by Proposition [2.12}
R is a graded local ring with maximal ideal M, and every graded M-primary ideal
contains M2. By Proposition we obtain

Grad(M*) = Grad(M) 0 Grad(M) N Grad(M) N Grad(M)
= Grad(M)
= Grad(Grad(I)),for some graded M—primary ideal T
= Grad(I)

=M.

Thus, M* is an M —primary ideal, and since M? C M*, we get M? = M*. Con-
sequently, M? is an idempotent ideal. Since R is Noetherian, M? is generated by
an idempotent element of R. However, because R is a graded local ring, the only
idempotent elements in R are 0 and 1. Therefore, we conclude that M? = {0}. As
a result, M? C Grad({0}), which implies M = Grad({0}). This means that R is a
HUN ring, contradicting our initial assumption. Hence, we conclude that R must
be a HUN ring.

(2) = (1) If R is a graded Noetherian ring and a HUN ring, then by Corollary
every ideal of R is graded strongly 1—absorbing primary. Similarly, every graded
primary ideal is also graded strongly 1—absorbing primary. O
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Let R be a commutative ring with identity 1z and let M be an R-module.
The idealization of the module M (trivial extension of the ring R by the module
M), denote by
R(+)M = {(r,m) | r € R,m € M},

is a commutative ring with identity (1g,0), equipped with componentwise addition
and multiplication (r1, m1)(re, ma) = (r172, rima+romy) for all (r1,my), (ra, ma) €
R(+)M. If R = @ cq Ry be a G—graded ring and M = P, My be a G—graded
R-module, then R(+)M is a G—graded ring with grading {R,(+)M,}sec. Sup-
pose that I is an ideal of R and N is a submodule of M. Then I(+)N is an
ideal of R(+)M if and only if IM C N. In the context of graded rings, I(+)N
is a graded ideal of R(+)M if and only if I is a graded ideal of R and N is a
graded submodule of M. Furthermore, the graded radical of a graded I(+)N is
defined by Grad(I(+)N) = Grad(I)(+)M. The following proposition provides a
necessary condition for a homogeneous graded ideal I(+)N to be a graded strongly
1—absorbing primary ideal in R(+)M.

Proposition 2.14. Let M be a graded R-module, and let I(+)N be a homogeneous
graded ideal of R(+)M. If I(+)N is a graded strongly 1—absorbing primary ideal
in R(+)M, then I is a graded strongly 1—absorbing primary ideal of R.

Proof. Let i1,1i2,i3 € h(R) be homogeneous non-unit elements such that i1i2i3 € T
and ig ¢ Grad({OR}) Then (i1, O)(ig,O)(i;},, 0) = (iligig, O) € I(-"-)N Since I(+)N
is a graded strongly 1—absorbing primary ideal and (13,0) ¢ Grad({Og(4yar}), it
follows that (i1,0)(i2,0) = (i1i2,0) € I(+)N, which implies i1i5 € I. Hence, I is a
graded strongly 1—absorbing primary ideal of R. (]

In the following, we introduce a class of ideals that generalizes the concept of
graded prime ideals, namely graded 2—absorbing I—ideal, where I is a fixed proper
ideal.

Definition 2.15. [I0] Let R be a G—graded ring and let I be a fized proper ideal
of R.. A proper graded ideal P of R is called a graded 2—absorbing I—ideal ideal
if for all a,b,c € h(R) such that abc € P — IP, then ab € P or ac € P or bc € P.

Theorem 2.16. [10] If P and Q are non zero graded I—prime ideals of a G—graded
ring R, then PN Q is a graded 2—absorbing I—ideal.

Proof. Tt follows from ([I0], Theorem 2.4). O

Proposition 2.17. Let P be graded strongly 1—absorbing primary ideal of a G—graded
ring R and I be a graded ideal. Then Grad(P) is a graded I—prime ideal of R.

Proof. Let a,b € h(R) be arbitrary non-unit homogeneous elements such that
ab € Grad(P) — IGrad(P), which means that ab € Grad(P) and ab ¢ IGrad(P).
Therefore, there exists n € N such that (ab)™ = a™b™ € P. Suppose n = r + s for
some 7, s € N. Since P is a graded strongly 1—absorbing primary ideal, it follows
that a"a® = a™ € P or b" € Grad({0}) C Grad(P). In other words, either a™ € P
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or b"™ € P for some m € N. Consequently, a € Grad(P) or b € Grad(P). Hence,
it is concluded that Grad(P) is a graded I—prime ideal. O

Proposition 2.18. Let P and @ be a graded strongly 1—absorbing primary ideal
of R. Then Grad(PQ) is a graded 2—absorbing I—ideal of R.

Proof. Based on Lemma [[.2] it follows that
Grad(PQ) = Grad(PN Q) = Grad(P) N Grad(Q).

Since P and @) are graded strongly 1—absorbing primary ideals, then by Proposition
both Grad(P) and Grad(Q) are graded I—prime ideals of R. Furthermore,
by Theorem [2.16] Grad(PQ) is a graded 2—absorbing I—ideal. O

It has been shown that the G—graded ring R x S does not admit any graded
strongly 1—absorbing primary ideal. Based on Definition we investigate
whether the direct product P x @ forms a graded 2—absorbing (I x J)—ideal in
R x S, where P and @ are graded strongly 1—absorbing primary ideals in R and
S, respectively. Let (a1,az3), (b1,b2), (c1,¢2) € h(R x S) such that

(al,ag)(bl,bz)(cl,CQ) = (alblcl,angCQ) S (P X Q) — (I X J)(P X Q),

which means that (a;bicy, asbaca) € P x Q and (a1bicy, asbacs) ¢ (I x J)(P x Q).
Since P and @ are graded strongly 1—absorbing primary ideals in R and S, re-
spectively, it follows that a1by € P or ¢; € Grad({0gr}), and asbs € Q or ¢y €
Grad({0s}). In other words, (a1bi,asb2) € P x Q or (c1,¢2) € Grad({Ogr}) x
Grad({0s}). Since Grad({0r}) C Grad(P) and Grad({0s}) C Grad(Q), we ob-
tain (a1by,azbs) € P x Q or (ajcy,azcs) € Grad(P) x Grad(Q) or (bicy,bacs) €
Grad(P) x Grad(Q). This result shows that in general P x @) does not satisfy the
definition of a graded 2—absorbing (I x J)—ideal. This motivates introducing a
new class of graded ideals called graded 2—absorbing I —primary ideals.

Definition 2.19. Let R be a G—graded ring and I a fized proper ideal of R.. A
proper graded ideal P of R is called a graded 2—absorbing I—primary ideal if for all
a,b,c € h(R) with abc € P — IP, then ab € P or ac € Grad(P) or bc € Grad(P).

3. CONCLUSIONS

This article establishes several key results. The intersection of any collection
of J—graded strongly 1—absorbing primary ideals is again a J—graded 1—absorbing
primary ideal. A graded Noetherian ring is a HU N —ring if and only if every graded
primary ideal is a graded strongly 1—absorbing primary ideal. A homogeneous
graded ideal of the form I(4)N is a graded strongly 1—absorbing primary ideal in
the graded idealization R(+)M if and only if I is a graded strongly 1—absorbing
primary ideal in R. Furthermore, we introduced generalizations of graded prime
ideals, namely graded I—prime ideals and graded 2—absorbing I—ideal, where I
is a fixed proper ideal of R. For any graded strongly 1—absorbing primary ideal
in a graded ring R, its graded radical is a graded I—prime ideal, and the graded
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radical of the product of two graded strongly 1—absorbing primary ideals is a
graded 2—absorbing I—ideal. Finally, even if graded rings R and S each contain
graded strongly 1—absorbing primary ideals, their direct product R x S does not
necessarily admit such an ideal. However, it was shown that a graded ideal of the
form P x @ in R x S, where P and @) are graded strongly 1—absorbing primary
ideals in R and S, respectively, forms a graded 2—absorbing I—primary ideal.
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Abstract. The objectives of this study include proving that é(q,m,éz) and
C(q,m,s3), which are Primitive BCH codes, with m > 5 are minimal codes, and
presenting specific examples of secret-sharing schemes based on dual of these codes.
To prove that é(qymy(;z) and é(qymyég) with m > 5 are minimal codes, the criterion
% > % used, where Wi,in and Winqe are the minimum weight and maxi-
mum weight, respectively. Data on the minimum weight and maximum weight of
C~’(q’m752) and é(q’m,%) are obtained from previous research. To give an example of
secret-sharing scheme construction based on these codes, the construction method
to be used is Massey construction. This research successfully proves that é(qym, 62)
and C(g,m,s;) With m > 5 are minimal codes. In addition, this research also suc-
cessfully presents an example of secret-sharing scheme construction based on these
codes using Massey’s construction.

Keywords: dual codes, Massey’s contruction, minimal codes, primitive BCH codes,
secret-sharing.

1. INTRODUCTION

The secret sharing scheme is one of the protocols in cryptography that aims
to share secret data with several parties, where the parties receiving the secret
sharing must work together to access the secret data. The idea of secret sharing
was first pioneered by Shamir [I]. The scheme he introduced is called the (k,n)
threshold scheme

The (k,n) threshold scheme uses polynomial interpolation in the sharing and
recovery of secret. Besides using polynomial interpolation, secret sharing schemes
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can be built using other mathematical objects. The idea of replacing polynomial
interpolation with other algorithms was first proposed by McEliece & Sarwate [2].
They replaced polynomial interpolation on the (k,n) threshold scheme with a Reed-
Solomon code encoding and decoding algorithm.

Apart from using Reed-Solomon codes, the secret-sharing scheme can be
constructed using linear codes in general. In the existing literature, there are two
approaches to construct textitsecret sharing schemes based on linear codes. The
first approach was developed in 1989 by Brickell [3]. While the second approach
was developed by Massey [4].

In the second construction or commonly called Massey construction, the min-
imal codeword is needed to determine the minimal access set (the smallest set of
participants that can select the secret). Therefore, the minimal codeword in a linear
code needs to be found. Finding all minimal codewords of a linear code is quite a
difficult problem as it requires testing ¢* codewords of a linear code. The problem
is one form of the covering problem.

One way to simplify the covering problem on linear codes is to use the
Ashikhmin-Barg [5] criterion. If a linear code satisfies this criterion, it is called
a minimal linear code. A minimal linear code is a type of linear code that can
produce a secret sharing scheme with an interesting access structure [6].

An example of a minimal linear code has been produced by Ding, Fan, and
Zhou [7], namely the C(g s,y code and the Ciy 5,y code with m > 5 which are
Primitive BCH codes with designed distances d2 and d3. Let m > 1 be a positive
integer, and let n = ¢™ — 1. Suppose « is the generator of Fy.., which is the
multiplicative group of Fym. For every ¢ with 0 <i < ¢™ — 2, let m;(z) denote the
minimal polynomial of o’ over F,m. For every 2 < § < n, define

9q.m.s(x) = KPK(my(z), ma(x), - ,ms—1(x)),

where KPK denotes the least common multiple. In addition, also define
gq,m,é(x) = ((E - 1)gq,m,5(x)~

Let C(g,m,5) and C'(q,m’(;) denote cyclic codes of length n with generator poly-
nomials g(q,m,s) () and g(q,m.s) (), respectively. The set C(g,m,s) is a primitive BCH
code with designed distance ¢, and C’(q,my(;) is a primitive BCH code with designed
distance §.

Actually, Ding et al. discuss the dimensions and weights of two families of
BCH codes. However, in the last part of their article, Ding et al. the code 5(q7m752)
and the code é(q)mﬁs) satisfy the Ashikhmin-Barg criterion when m > 5 so they
are minimal codes. Unfortunately, the statement has not been accompanied by a
proof. Thus, in this paper, the proof that these 2 codes are minimal codes will be
presented.
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2. Weight Distribution and Parameter of Code

Before presenting the characterization results of primitive BCH codes with
09 and d3 designed distances, the following two theorems are first presented. These
two theorems have been proved in [7]. The following theorem provides information
about the weight distribution of the code é(q,m,ég)'

Theorem 2.1. [7] The code é(q,m@) has parameters [n,l?:, |, where d>dy+1
and

3m

= 2m  for odd m,
k=
5~ for even m.

When q is an odd prime, d = 0, +1 and C~'q7m,52 1s three-weight code with the weight
distribution of Table[]] for odd m and Table[d for even m.

TABLE 1. Weight distribution of C’(q,m752) for odd m

Weight w Number of codeword A,
1
(q ) q(m 1)/2 (q _ 1)<qm—1)(qm—1 + q(m—l)/Z)/2
(¢—1)g™ (@™ = 1(g™ ' +1)
(q—1)gm ' +qm 22 (g—1)(g" ) (gmt —gmV/2)/2

TABLE 2. Weight distribution of C(q7m,52) for even m

Weight w Number of codeword A,
1

(q 1) (m 1)/2 (q _ 1)( (B3m—2)/2 _ (m—2)/2)

(@g—1)q™ qr -1

( 1)( m— 1+q(m 2)/2) q(m 2)/2 ( 7q(m+2)/2+q71)

B The following theorem informs about the weight distribution of the code
Clgm.55)-

Theorem 2.2. [7] Let m > 4. The code Cy s, has parameters [n, k,d], where
d>d3+1=(qg—1)gm™ —1—qlm+D/2] gngd

= { 2m  for odd m,
k= 5m

25+ for even m.
When ¢ is an odd prime and m > 4 is even, the code C, (@, m, 63) has minimum
distance d = 65 + 1 and its weight distribution is given in Tablela When q is an
odd prime and m > 5 is odd, the code C (¢,m,85) has minimum distance d=165+1
and its weight distribution is given in Table [}



25

TABLE 3. The weight distribution of C'(q,m’(;g) for even m and odd q

‘Weight w Number of codeword A,

0 1

(q— l)qul _ qm/2 (g™ —1) ((q2 _ 1) (q(smfe)m + quz) +2 (q(7n—2)/2 _ 1) (qus + q(7n—4)/2)) /2(q+ 1)
(¢ —1) (qm_l - q(m_2>/2) q (qm/2 + 1) (g™ —1) (qm_l + (g — 1>q("”_2>/2) /2(q +1)

(q—1)gm~1 — g(m=2/2 (qm'H —2¢" +q) (¢™/2 1) (g™t + q(m_Q)“) /2

(¢ — 1)qm71 (g™ — 1) (1 + q(3m72)/2 _ q(3m74)/2 + 2q(3m76)/2 _ quz)

(@ —1)gm™1 4 ¢(m=2)/2 q ((1"’”2 + 1) (@™ —=1)(g—1) (qm*l - (1(""72)/2) /2(q+1)

(g —1) (qm’l + q(m’2)/2) (qm“ —2¢™ + q) (117”/2 - 1) (qul - (q— l)q(m72)/2) /2(q¢ — 1)

(@ —1)gm™ 1 +qm/? M/ (g™ — 1) (g - 1) (qm’r“‘ —q(m=2/2) /2

(g —1) (q"”_l + q’"/2) (q(r”’_Q)/2 - 1) (g™ —1) (q"”_3 —(q— 1)q("”_4)/2) / (q2 - 1)

TABLE 4. The weight distribution of é(qym’gs) for odd m and odd ¢

‘Weight w Number of codeword A,,

0 T

(q—1)gm™1 — g(m+1)/2 (@™ = 1) (M3 4 q(m=3/2) (gm—1 - 1) /2(g +1)

(@—1) (a7t —qm=/2) (@™ = 1) (¢ 4 g D/2) (g2 4 (g = 1)g(m /2 2

(@ —1)gm~1 — g(m—1/2 (@™ = 1) (qM72 4 q(m=3/2) (gmA3 _ gmt2 _ gm—1 7q(m+3)/2+q(m*1>/2+q3) /2(q +1)
(g —1)g™~? (@™ —1)(1+ (q2 —q+ 1) @™ T3 4 (g — 1D@Pm T 4 (g —2)¢Pm 2 + g2t

(q—1)gm~1 4 g(m—D/2 (@™ — 1) (qm™2 = ¢(m=3)/2) (gm+3 _ gmA2 _ gm—1y g(m+3)/2 7q(m_1)/2+q3) /2(qg + 1)
(@—1) (q’"’l +q(m=D/2) (g 1) (Tt = g D/2) (g2 (g - l)q(m’s)/z) /2

(@ —1)gm™1 4 g(m+1D/2 (g™ = 1) (M3 = g(m=3/2) (gm-t - 1) /2(a+1)

3. Minimal Codeword

The following concepts of support and covering are the origin of minimal
linear codes. The definition of support is explained as follows.
Definition 3.1. [6] The support of c € Fy is defined by

supp(c) = {0 <i<n—1|c; #0}.

Definition 3.2. [6] A vector u € Fy covers a vector v € Fy if supp(v) is subset of
supp(u).

Minimal code is defined as follows.

Definition 3.3. [6] A nonzero codeword u in a linear code C' is minimal if u covers
only scalar multiples of u, but no other nonzero codewords in C. A linear code C
is minimal if every nonzero codeword in C is minimal.

The following lemma is often used in Linear Code Characterization. This
lemma will also be used in this paper

Lemma 3.4 (Ashikhmin-Barg). [6] A [n,k,d]q linear code C' is minimal if
Wmin q— 1
—_— > . 1
Wmaw q ( )

where Wyin and Wiae denote the minimum and maximum nonzero Hamming
weights of C' respectively.
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Using Lemma , many families of minimal linear codes with % >

max

qg—1
q

have been found, such as those by Carlet, Ding and Yuan [8]. However, most of

these codes have a limited number of weights. For example, [9] introduced a type

of cyclic code that has three weights, where each codeword has one of the three
different weights. The code satisfies this lemma.

4. Massey’s Construction

Consider the linear code C[n,k,d],. Suppose G = [g0,81,---,8n—1] the
generator matrix of C. The secret S is a member of ;. Share can be determined
by the following procedure. Randomly select the vector u = (ug, u1,...,up—1) € F’;
such that S = ug,. Then, the vector s can be calculated by

s=1(5,81,...,8,-1) = uG.

share for each participant P; is s; for all 1 <i <n — 1.

Assume m people collect their respective share{s;,,si,,...,;, } with 1 <
m < n — 1. Then, the secret S = sy + ug, can be determined if and only if g¢ is a
linear combination of gg, g1, ..., gn_1. Thus, resulting in the following proposition.

Proposition 4.1. Let G be a generator matriz of an [n,k,d], linear code C. In
the secret-sharing based on C with respect to the second construction, a set of share
{51'1 y Sigs

cey S Fwith1 <y <ig <+ <ip <n—1and 1 <m < n-—1, determines the
secret if and only if there is a codeword

c¢=(1,0,...,0,¢,,0,...,0,¢;,0,...,0)

in the dual code C—, where c;; # 0 for at least one j.

5. The proof of 5’(q’m,52) with m > 5 is a minimal code

In this section, we will present the results of proving that Primitive BCH
codes with designed distances d, and d3 with m > 5 satisfy Lemma[3.4] so they are
minimal codes.

The first result of this research is presented in the following theorem along
with its proof. The following theorem states that the Primitive BCH code with
Designed Distance ds satisfies Lemma [3.4]

Theorem 5.1. Let 6 = (g — 1)gm ' — 1 — ¢(m=1/2,
(1) If m > 5 and m is odd, 5((17%52) is minimal code.

2) If m > 6 and m is even, Cym.s,) 1S minimal code.
(g,m,082)

Proof. (a) From the Table we know that 5'(q’m,52) with odd m has nonzero
minimum weight Wi = (¢ — 1)¢™ ! — ¢~ Y/2 and maximum weight W,a, =
(g —1)gm " 4 ¢m=2/2,
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Using Lemma we will proof that

(g-1)g" g™ V2 g—1
(q—1)gm=1 4 qm=b/2 q

Suppose A = (¢—1)¢™ ! and B = ¢™~1/2. So that the inequality becomes

A-B g¢-—1
A+B~ q
(A=B)g>(A+B)(g—1)
Aq—Bgq>Aq— A+ Bq— B
A>2Bg— B)

A>B(2¢-1)

Substitute A = (¢ — 1)¢™ " and B = ¢("™~1)/2 back into the inequality above.

(g—1)g™ " > ¢ D22¢ - 1).
(g — 1)(](’”*1)/2 > 2q — 1.

Since ¢ is an odd prime number and m > 5 is odd, ¢(™~1/2 is a large positive
number, making the left side larger than the right side. Thus, it is proved that for
q odd primes and m > 5 odd,

(g=1)g" " —q™ V2 q—1
(q _ 1) qm—l + q(Tn—l)/Q q

(b) From Table |2 it can be seen that é(qﬂn,(;z) with even m have a nonzero min-
imum weight (Wi = (¢—1)¢™ ! — ¢™=1/2 and maximum weight (Winaz =
(@=1) (gm~" +¢lm=272).

Using Lemma [3.4] we will proof that

(g=1)g" " =g g1
(¢ —1)(gm=1 +qm=2/2) q

with algebraic manipulation the above inequality becomes

(g=1)g" " =g 272 (g—1)°
qm—l + q(m—2)/2 q !
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Suppose A = ¢™ ! and B = ¢™2)/2, So that the above inequality becomes
(@-DA-B _ (¢-1)°
A+ B q
a{(¢—=1)A~B} > (¢-1)*(A+B)

A(¢® —q) = Bg> (¢° —2¢ +1)(A+ B)

A¢®> — Aq— Bq > A¢* —2Aq+ A+ Bg> —2Bq+ B
Aq+Bqg>A+B¢*+B
Aq— A> B¢*+ B — Bq
(a-DA>(¢*—g+1)B

subtitute A = ¢™ ! and B = ¢(™2)/2 back into the inequality above.
(q—1)g™ ' > (¢° —q+ 1)gm 2/
(a—1)g"™?>(¢* —q+1)

(¢—1g"?—1>¢*—q
1
(q—l)qm/z—(q—l)q_i1 (¢—1)q

1
m/2_7>
q-—1 1

since ¢ is an odd prime number then 0 < q_% <1, and since m > 5 then ¢™/2 > ¢,
so the left side will always be greater than the right side. So it is proven that
(q—1Dgmt—qm=22 ¢-1
(- D™+ D7) 7 g

O

The next result of this research is presented in the following theorem and its
proof.

6. Proof of é(q)m’(;g) with m > 5 is a minimal code

The following theorem states that the Primitive BCH code with Designed
Distance 3 satisfies Lemma [3.4]

Theorem 6.1. Let o = (g — 1)g™ ™t — 1 — ¢(m+1)/2,

(1) If m > 6 and m is even, then C~'(q7m,53) is minimal code.

(2) If m > 5 and m is odd, then C(q p, s,y is minimal code.

Proof. (a) From the table can be seen that for even m the code é(q’m’gs)
have nonzero minimal weight (¢ — 1)¢™ ' — ¢"/? and maximum weight (¢ —
1) (qm—l + qm/2)
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Using Lemma we will show that
(@—Dg" ' —¢™? _q-1
(a- D" +q"?) " g
multiply both side by (¢ — 1) so that
—1)gm~t —gm/? -1
g 00> e
(@—=Dg" " =g _(¢-1)

@ T+ 4

suppose A = ¢! and B = ¢"/2. So that the inequality becomes
(@-DA-B _ (¢-1)
A+ B q
a{(¢—=1)A-B)} > (¢ - 1)*(A+ B)
A(¢® —q) — Bg> (¢° —2q +1)(A+ B)
Ag®> — Aqg— Bq > A¢®> —2Aq+ A+ B¢* —2Bq+ B
Aq+Bq> A+ B>+ B
Ag—A>B¢* —Bq+ B
(a-1DA>(¢*—q+1)B
sustitude A = ¢! and B = ¢"/2 back into the inequality above
(@—1)g" ' > (6" — g+ 1)g™"?
(=g P> (> —q+1)
(@= 1" 272 -1>¢*—¢

(¢—1)g"m™2/2 — (¢ — 1)ﬁ (¢—1)q

gm=D/2 _ ﬁ >q
(m—2)/2 !
q >q+ —
qg—1
Since ¢ is an odd prime number and m > 5 so the left side will always greater than
right side. So it is proven that for ¢ odd prime number and even m > 5
(¢=Dgm ' —qm? _g-1
(¢=D(gmt+qm/2) " ¢
(b) From the table 4 we know that for odd m, 5(q,m753) have nonzero minimal
weight (¢ — 1)¢g™ ' — ¢™*1/2 and maximum weight (¢ — 1)g™ ! + ¢(m=1/2,
Using Lemma we will prove that
(g—1D)gm "t =gt g-1
(g — 1)gm=1 + g(m+1)/2 ~ 7
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let A= (qg—1)¢g™ " and B = ¢(™*t1/2 then
A-B g¢g-1
>7
A+ B q
(A=B)g>(A+B)(qg—1)
Aqg— Bgq>Aq— A+ Bgq— B
A>2Bq—-B
A>B(2¢-1)

Substitute A = (g — 1)¢™ ! and B = ¢(™+1)/2 back to the inequality above
(q—1)g" " > "2 (29 1)
(q—1)g™ /2> 21
Because (¢) is odd prime number and (m > 5), (q(m2_1)/2) is a large positive

number, making the left side larger than the right side. Thus, it is proved that for
q odd primes, m > 5 and odd m,

(g=1)g" " =g D2 q—1
(¢ —1gm=t + gm0z = ¢

O

7. Example of Secret Sharing Schemes Based On Dual Code of é(q,m@)
with m > 5 using Massey’s Construction

The next goal of this paper is to provide an example of a secret sharing scheme
based on the dual code of Cg ., 5,) With m > 5 using Massey’s Construction.

Example 7.1. Let ¢ = 2, m = 5, then n = ¢ — 1 = 31 and designed distance
6o = (¢ — 1)g™ 1t =1 — ¢m*tD/2 = 11. With the commonly known technique to

construct the generator matriz of cyclic codes, the generator matriz of Ca 511y is
obtained, that is

MN11111101101011001011100000000 07
0111111101101011001011100000000
0011111110110101100101110000000
0001111111011010110010111000000
é 0000111111101101011001011100000
0000011111110110101100101110000
0000001111111011010110010111000
0000000111111101101011001011100
0000000011111110110101100101110
1000000000111111101101011001011 1]

Based on matriz G and Proposition there is no dictator participant in
the example textitsecret-sharing scheme based on the code dual of code CN'(q’m752).
The participant P; with 1 <i<n —1isin (¢ —1)¢" 2 = (2 —1)21072 = 28 = 256
of ¢*~1 = 2191 = 512 minimal access set.
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By using the common method, the parity check matriz of 5'(2’5711) 18 obtained,
that is

[1101000001100000000000000000000]
0110100000110000000000000000000
0011010000011000000000000000000
0001101000001100000000000000000
0000110100000110000000000000000
0000011010000011000000000000000
0000001101000001100000000000000
0000000110100000110000000000000
0000000011010000011000000000000
0000000001101000001100000000000
0000000000110100000110000000000
0000000000011010000011000000000
0000000000001101000001100000000
0000000000000110100000110000000
000000000O0O0O00011010000011000000
0000000000000001101000001100000
00000000O0O0O0O0O00O00O0O0O0110100000110000
0000000000000000011010000011000
00000000O0O0O0O0O00O00O0O0O0O0O0O1101000001100
0000000000000000000110100000110

10000000000000000000011010000011]

=
[

Suppose the secret is 0. The Massey’s construction will be applied to the dual code
of 5(q’m’52) to construct the secret sharing scheme. A vector u € F3! needs to be
chosen such that S = uﬁo, where EO is the first column of the matrix H Misalkan
u=(0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0). Then the following share can
be obtained:

s=uH
=(S,1,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,1,1,1,1,1,1,0).

Suppose there are 30 participants Py, Ps, ..., P3yy. FEach participant P; gets s; as
its share. Now, find the set of participants who can reconstruct the secret. That

is, the set of participants such that Ho s a linear combination of the column ofﬁ
corresponding to the participants in the set. Here are 3 of ¢*~! = 21071 = 512
sets of participants that can produce secrets: { Py, Py, P3, Py, Ps, Ps, Pg, Py, P11, P13,
Pyy, Pi7, Prg, Pag, Po1}, {P1, Py, P, Py, Ps, Ps, Ps,
Pio, P12, Pro, Pis, Pig, Pio, Po1, Paa, Pz, Pag, Pag, Pag, P3o}, and { Py, Py, P3, Py, Pr, Pro,
Pig, Pi7, Pis, Pao, P21, Paa, Pay, Pas, Pag}

Based on Proposition these participant sets can produce secret. Other
minimal access sets can be computed using proggramming.

Suppose the group of participants recovering share is {Pi, P, Ps, Py, Ps,
P6,~P8, Pg, 511, .1313,’\113147 Pl’Q Plg, P2A(,)’ Pgl},~can be ieen that~h0 = {1~h1 +1 '~h2 +
1133—1—1hé+1h5~+1h6—|—1h8—|—1h9+1h11+1h13+1h14—|—1h17—|—
1~h19+1-h20+1-h21}
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SothatwegetshareS:u}Nloz1-1+1-1+1-1+1-0+1~1+1~0+1~
0+1-1+1-04+1-0+1-1+1-04+1-04+41-14+1-1=0.

8. Example of Secret Sharing Schemes Based On Dual Code of é(q’m’(;g)
with m > 5 using Massey’s Construction

The next goal of this paper is to give an example of a secret sharing scheme
based on the dual code of Cy . 5,) With m > 5 with Massey construction.

Example 8.1. Let ¢ =2, m =5, thenn = 2™ —1 = 25 — 1 = 31 and designed
distance 03 = (¢ — 1)g™ ' =1 — ¢m*tD/2 =7,

By constructing the generator matriz of a commonly known cyclic code, the
generator matrix of the code 5(275,7) is obtained, that is

[1000111100001001100000000000000]
0100011110000100110000000000000
0010001111000010011000000000000
0001000111100001001100000000000
0000100011110000100110000000000
0000010001111000010011000000000
0000001000111100001001100000000
0000000100011110000100110000000
0000000010001111000010011000000
0000000001000111100001001100000
0000000000100011110000100110000
0000000000010001111000010011000
0000000000001000111100001001100
0000000000000100011110000100110

|10000000000000010001111000010011

@
I

Based on matriz G and Pmpositz'on there is no dictator participant in this
exzample. The participant P; with 1 <i<mn—1isin (¢ —1)¢g" 2 = (2 -1)21572 =
213 = 8192 of ¢~ = 2'°~1 = 16384 minimal access set.

In a common way, one can also obtain the parity check matriz of C(257y, as
follows
MNi1110101111100010000000000000 007
0111101011111000100000000000000
0011110101111100010000000000000
0001111010111110001000000000000
0000111101011111000100000000000
0000011110101111100010000000000
0000001111010111110001000000000
e 0000000111101011111000100000000
0000000011110101111100010000000
0o0o0o0000001111010111110001000000
o0oo0000000111101011111000100000
0o0o0oo000000011110101111100010000
o0oo0o0000000001111010111110001000
0o0oo0000000O0O00111101011111000100
o0oooo000000000011110101111100010
L1000000000000O000111101011111000 1
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In this step, the secret sharing scheme will be built. Since in constructing
th secret sharing scheme the dual code of 5(q,m,53) will be used, the parity check
matriz of the code will be used as the generator matriz. Suppose the secret is 1.
The Massey’s construction will be applied to this code to build the secret sharing
scheme. The vector u € F1® needs to be chosen such that S = uho, where h() is the
first column of the matriz H. Letu = (1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0). Then
the following share can be obtained:

s:ug
=(8,0,1,0,1,1,0,0,0,1,1,0,0,1,1,1,0,0,1,0,1,0,1,1,1,1,1,0,0,0,0).

Suppose there are 30 participants Py, Ps, ..., Pyy. FEach participant P; gets s; as
its share. Now find the set of participants who can recontruct the secret. That
is, the set of participants such that I~10 is a linear combination of the columns of
H corresponding to the participants in the set. Here are 3 of ¢~ 1 = 21571 =
16384 sets of participants that can produce secrets: {Py, Ps, Ps, Py, P12, P15, Pig},
{ P4, Ps, Ps, P7, P12, P14, P15, P16, P1s, Pro, Pao, Po1, Pag, P2, P30}, and

{Ps, P16, P1s, Pa2, Pa3, Pas, P}

Ezxample of the set of participants that can produce the secret are obtained
from the codeword on 6'(2,577) whose first component is 1. While the search for the
codeword can be done with programming.

Suppose the group of participants Tecovering share 1is {P4, Pg,7 Ps, Pr,
P12,P15,P16} can be seen that ho =1 h4+1 h5+1 h6+1 h7+1 h12+1 h15+1
h16+1 So, we get shareS—uho =11+1-14+1-0+1-0+1-0+1-14+1-0+1-0 = 1.

9. CLOSING

From this study it is proved that é(q,m,(m and 5(q7m753) with m > 5 are
minimal codes. In addition, this research also succefully present an example of the
construction of a secret sharing scheme based on the dual code of the code using
Massey’s construction. Nevertheless, there are still open problem related to linear
code based on secret sharing schemes. One of them is to prove the minimality of
the codes C’(q m,s,) and C’(q m,s5) When m < 5. Besides using the Ashikhmin-Barg
criterion, other criteria can also be used as in [I0] and [TT].
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Abstract. This study analyzes public sentiment and regional prioritization regard-
ing Indonesia’s Makan Bergizi Gratis (MBG) program, a national initiative aimed
at reducing stunting through the distribution of free meals to schoolchildren and
pregnant women. Sentiment analysis was conducted on 47,803 posts from the social
media platform X (formerly Twitter) using a lexicon-based labeling method and
TF-IDF feature extraction. The results show that 22,504 posts (47.1%) expressed
positive sentiment, 20,010 (41.9%) negative, and 5,289 (11.0%) neutral, indicating
strong public support accompanied by considerable concerns. Eleven classification
models were evaluated, with the Linear Support Vector Machine (SVM) achieving
the highest accuracy (96.33%), and BERT-based models also demonstrating strong
performance. Latent Dirichlet Allocation (LDA) topic modeling revealed five ma-
jor themes in the negative sentiment, including transparency issues, maternal and
child health, and inequality of access. Furthermore, provincial-level clustering using
the K-Means algorithm grouped regions into three priority levels based on socio-
economic and health indicators. These findings provide critical insights for optimiz-
ing policy targeting and efficient resource allocation in the implementation of the

MBG program.
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1. INTRODUCTION

Stunting is one of the chronic nutritional problems that has become a major
concern for the Indonesian government. Based on the 2023 Indonesian Nutrition
Status Survey, the government has targeted a reduction in the stunting rate to 14%
by 2024, considering that its prevalence was still at 21.6% in 2022 [I]. In addition,
malnutrition remains a serious public health issue in Indonesia, particularly among
children. According to data from the Ministry of Health, approximately 3.8% of
children under five in Indonesia experience malnutrition. This highlights a signifi-
cant challenge in efforts to improve child nutrition and health. Various initiatives
have been carried out to address this issue, one of which is the Makan Bergizi Gratis
(MBG) program, formerly known as the Free Lunch Program. This program is an
initiative of the President and Vice President elected in 2024, aimed at improving
the nutritional intake of children and pregnant women by providing free lunches
and milk at schools, pesantren (Islamic boarding schools), and for pregnant women,
as part of the national stunting alleviation strategy [2].

Although the Makan Bergizi Gratis program offers potential benefits in ef-
forts to combat stunting, it has also sparked controversy among the public, partic-
ularly on social media platforms such as X (formerly Twitter). One of the main
issues under scrutiny is the substantial budget required, which is estimated to reach
Rp450 trillion. Furthermore, the proposed funding plan—reportedly involving the
use of the State Budget (APBN) for the education sector and School Operational
Assistance (BOS) funds—has triggered opposition, including from the Indonesian
Teachers Union Federation (FSGI) [3]. Concerns have also been raised regarding
the potential impact of this policy on education costs, teacher welfare, and the over-
all financial stability of the country. Amid this public debate, doubts have emerged
about the program’s feasibility and long-term sustainability [4]. The growing po-
larization of public opinion highlights the need for sentiment analysis to better
understand public perceptions of the policy, which could serve as valuable input for
policymakers in evaluating and refining the program.

Sentiment analysis is a computational process aimed at evaluating individu-
als’ opinions, feelings, and emotions toward an entity, event, or related attribute
[B]. Its primary focus is to identify the polarity of a text—whether it is positive,
negative, or neutral [6]. In today’s digital era, people are increasingly active in
using social media as a medium to express their views and emotions on various
issues, including public policies. Therefore, it is important to analyze public senti-
ment and its changes over time to gain deeper insights into the public’s responses
to current issues [7]. In this study, data were collected from the social media plat-
form X, which is widely used by users to discuss and respond to trending topics.
In addition to serving as a space for expression, this platform is also considered
a representative and reliable source of data for capturing public perception and
opinion on ongoing policies and social phenomena, including Makan Bergizi Gratis
8]

In conducting sentiment classification, this study employs the Support Vector
Machine (SVM) algorithm, which is known as one of the most effective and reliable
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methods for text classification tasks [9]. SVM works by separating data into two
or more classes through the identification of an optimal hyperplane that maximizes
the margin between data points from each class [I0]. In other words, the algorithm
seeks the best decision boundary that minimizes classification errors. Its ability
to handle high-dimensional data and its robustness against overfitting make SVM
particularly suitable for text-based sentiment analysis, especially when dealing with
social media data, which tends to be diverse and unstructured.

In addition to analyzing public sentiment, this study also aims to identify
the level of need for the Makan Bergizi Gratis (MBG) program across various
provinces in Indonesia. The identification process utilizes data from the Central
Bureau of Statistics (BPS), which includes key indicators such as population size,
stunting prevalence, poverty rate, average income, and education level. To classify
the provinces based on their level of need, a clustering method is employed, allowing
the division of regions into three categories: high, moderate, and low need. The
results of this clustering are expected to provide a solid foundation for determining
priority target areas, enabling the design of policies that are more focused, well-
targeted, and efficient in accelerating the national effort to reduce stunting.

2. Related Work

Previous studies on sentiment analysis of users on platform X toward the
Makan Bergizi Gratis (MBG) program include works by [I1], [12], and [§]. These
studies were limited to the use of three classification algorithms: Support Vector
Machine (SVM), Random Forest, and Naive Bayes Classifier. In contrast, our
study not only employs a broader range of machine learning models for sentiment
classification, but also introduces a regional clustering analysis to identify variations
in MBG-related needs across different provinces in Indonesia.

3. Methodology

3.1. Data Collection. This study utilizes two main datasets corresponding to the
sentiment analysis and the clustering of MBG needs across provinces.

For the sentiment analysis, textual data were collected from the social media
platform X (formerly Twitter). The data acquisition was conducted using keyword-
based scraping with search terms such as “Makan Bergizi Gratis,” “Program Gizi,”
“Stunting,” and related hashtags. The collected data consist of user-generated
posts reflecting public opinion on the MBG program. The complete dataset can be
accessed via the following link:
https://drive.google.com/drive/folders/10Ab9G2avROfv_BL82uLIxPeeX0VWG6qV

For the MBG clustering analysis, we obtained structured quantitative data
from the official portal of Badan Pusat Statistik (BPS) Republik Indonesia.
The dataset includes a comprehensive set of socio-economic and health indicators
at the provincial level, such as:


https://drive.google.com/drive/folders/1OAb9G2avR0fv_BL82uLIxPeeXOVWG6qV
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Human Development Index (HDI)

Gini Ratio

Total Population

Special Index for Stunting Management
Stunting Prevalence among Children Under Five
Open Unemployment Rate

Number of Families at Risk of Stunting
Percentage of Population Living Below the Poverty Line
Poverty Depth Index

Poverty Severity Index

Average Hourly Wage

Expenditure per Capita

Prevalence of Inadequate Food Consumption

All indicators were compiled and normalized for clustering purposes. The
processed dataset is available at:
https://docs.google.com/spreadsheets/d/1nFo6YTkCv-it7_EHkw2T9_BkBnBzwMpJh_
rysChgEGY

3.2. Sentiment Analysis. Sentiment analysis is the process of analyzing textual
data to determine its polarity, i.e., whether the opinion is positive, negative, or
neutral. In this study, sentiment analysis is applied to X posts related to the
Makan Bergizi Gratis program.

3.2.1. Preprocessing. The preprocessing steps are critical to ensure the quality of
input data [B].

e Cleaning: Removing emojis, URLSs, symbols, and punctuations.

e Case folding: Converting all characters to lowercase.

e Normalization: Replacing informal or slang words with their formal
equivalents.

e Tokenization: Splitting text into individual words (tokens).

e Stopword removal: Eliminating common words that carry little semantic
value.

e Stemming: Reducing words to their root forms using the Sastrawi stem-
mer.

3.2.2. Labeling. Sentiment labeling is conducted using the lexicon-based method
with the InSet lexicon [13], which provides lists of positive and negative words.
Each text is assigned a score:

e Positive if score > 0
e Negative if score < 0
e Neutral if score =0

The score is calculated as:

Sentiment Score = Positive Words — Negative Words (1)


https://docs.google.com/spreadsheets/d/1nFo6YTkCv-it7_EHkw2T9_BkBnBzwMpJh_rysChgEGY
https://docs.google.com/spreadsheets/d/1nFo6YTkCv-it7_EHkw2T9_BkBnBzwMpJh_rysChgEGY
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3.2.3. Feature Extraction. Each document is transformed into a numerical vector
using Term Frequency—Inverse Document Frequency (TF-IDF) [14]:

N
TF-IDF(¢,d) = tf(t,d) x log (df(t)) (2)
where tf(t, d) represents the frequency of term ¢ in document d; df (t) denotes
the number of documents in the corpus that contain the term ¢; and N is the total
number of documents in the corpus. These components are used to compute the
TF-IDF weight, which reflects how important a word is to a document in a given
collection.

3.2.4. Classification Modeling. Eleven machine learning models are used:

e Logistic Regression
Logistic Regression is a statistical method used for binary classification
problems. It models the probability that a given input = belongs to a
certain class y = 1 using the sigmoid (logistic) function:

1
1 + e~ (Bo+Brzrt - +Bnzn) (3)

Py = 1]z) =

where x; denotes the i-th feature, 3; represents the coefficient for feature
x;, and [y is the intercept term. This method is interpretable and effective
for linearly separable data [I5].
e Multinomial Naive Bayes

Multinomial Naive Bayes is a generative model based on Bayes’ theorem,
widely used for text classification. It assumes that features (typically word
frequencies) are conditionally independent given the class. The classifica-
tion rule is given by:

P(e) [Tz, P(wilo)
P(x)

where ¢ is the class label, © = (z1, 22, ...,z,) is the feature vector repre-
senting word counts or frequencies, and P(x;|c) is the likelihood of word z;
given class c. It is simple, fast, and suitable for high-dimensional problems
16, 17, [18].
e Support Vector Machine (SVM)

Support Vector Machine (SVM) is a powerful supervised learning model
used for classification and regression tasks. It identifies the optimal hyper-
plane that maximally separates different class labels. For linear classifica-
tion:

P(c|lz) =

(4)

f(z) =sign(w -z +b) (5)
where w is the weight vector, = is the input feature vector, and b is the

bias term. For non-linear data, kernel functions such as the radial basis
function (RBF) are employed:

K(zs,25) = exp (=i — ;%) (6)



40

with v controlling the influence of a single training example. SVM excels
in both linearly and non-linearly separable data [19] 20} 21].

Random Forest

Random Forest is an ensemble learning method that constructs multiple
decision trees and merges their outputs through majority voting for classi-
fication tasks:

9 = majority _vote(hy(z), ha(2), ..., hy(x)) (7)

where h;(z) is the prediction of the i-th decision tree for input x. This
technique improves predictive accuracy and reduces overfitting [22] 23] [24].
AdaBoost

AdaBoost, or Adaptive Boosting, is an ensemble method that combines
multiple weak learners in a sequential manner. Each subsequent model
focuses on instances that were misclassified by previous ones. The weight
of each learner is computed as:

_]. 1—6t
at—21n( o ) (8)

where ¢; is the error rate of the t-th weak classifier, and oy is its weight.
Though sensitive to noisy data, AdaBoost can enhance model accuracy
significantly [25].

XGBoost

XGBoost (Extreme Gradient Boosting) is an advanced implementation of
gradient boosting algorithms. It incorporates regularization and second-
order derivatives for enhanced performance. The loss function at iteration
t is approximated by:

n

LY~ Z {gift(xi) + %hift(xi)Q + Q(fr) 9)

i=1

where g; and h; are the first and second-order gradients of the loss with
respect to predictions fi(z;), and € is a regularization term. XGBoost is
efficient, scalable, and robust against overfitting [26].

Light GBM

Light GBM is a fast and scalable gradient boosting framework that uses
histogram-based algorithms and grows trees leaf-wise with depth constraints.
It is optimized for memory usage and training time, making it suitable for
large-scale data processing [27].

BERT (Bidirectional Encoder Representations from Transform-
ers)

BERT is a transformer-based language model that captures the full con-
text of a word by looking at both its left and right surroundings. The core
mechanism is self-attention:

Attention(Q K,V ) = softmax ( > V (10)
i )
vV dk
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where @ (queries), K (keys), and V' (values) are matrices derived from the
input, and dj is the dimensionality of the keys. BERT excels in a variety
of NLP tasks including sentiment analysis, question answering, and more
[28].
e DistilBERT
DistilBERT is a distilled version of BERT that retains most of its per-
formance while being smaller and faster. It is trained using knowledge
distillation to match the behavior of BERT with fewer parameters and
computations, making it ideal for real-time or low-resource applications
[29].
¢ IndoBERTweet
IndoBERTweet is a variant of BERT pre-trained on Indonesian tweets. It
is tailored to understand informal language, slang, abbreviations, and other
characteristics unique to Indonesian social media. This makes it especially
effective for sentiment analysis and opinion mining in Indonesian contexts
[30].
Classical models are trained on TF-IDF vectors using scikit-learn [31].
Transformer-based models utilize pre-trained embeddings from Indonesian language
models such as IndoBERTweet, powered by HuggingFace Transformers [32].

3.2.5. Ewaluation Metrics. Model performance is evaluated using:

A TP+ TN (11)
T =
Y = TP Y TN+ FP+ FN
TP
Precision = ——— 12
recision = s (12)
TP
Recall = ———— 13
T TPIFN (13)
Precision - 11
Flscore — 2. recision - Reca (14)

Precision + Recall

3.3. Topic Modeling. Topic modeling is an unsupervised learning technique used
to discover hidden thematic structures in text corpora.

3.3.1. Latent Dirichlet Allocation (LDA). Topic analysis was conducted using the
Latent Dirichlet Allocation (LDA) method, an unsupervised learning algorithm
commonly used to uncover latent thematic structures within a collection of docu-
ments [33]. LDA operates under the assumption that each document is a mixture
of multiple topics, and each topic is characterized by a specific distribution over
words.

Prior to model training, data categorized as negative sentiment underwent
a series of preprocessing steps, including case folding, removal of non-alphabetic
characters, tokenization, and stopword removal using an Indonesian stopword dic-
tionary. The resulting tokens were then converted into a bag-of-words representa-

tion and further processed into a corpus and dictionary using the Gensim library
[34].
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The probability of a topic z; = k for word w; in document d; is given by:

—i —i
Nage + 0 Ny +5

P(zi = klw; = w,d; = d) oc —4 -
n,'+Ka n'+Vp

(15)

where n;ki denotes the number of words in document d that are assigned to
topic k, excluding the current word i; n,;f} represents the number of times word w
is assigned to topic k, also excluding the current word. The parameters « and [ are
Dirichlet hyperparameters that control the sparsity of topic and word distributions,
respectively. K refers to the total number of latent topics assumed in the model,
while V' denotes the vocabulary size, or the number of unique terms in the corpus.
These parameters are used in the Gibbs sampling update equation for estimating
the topic distribution in Latent Dirichlet Allocation.

The LDA model was trained using five topics and ten passes (iterations),
producing outputs in the form of dominant keywords for each topic, along with topic
distributions across the documents. Model visualization was carried out using the
pyLDAvis library to enable interactive interpretation of inter-topic relationships.

3.4. Clustering Analysis.

3.4.1. K-Means Clustering. Basic Concept of K-Means

K-Means clustering is one of the most widely used unsupervised learning algorithms
for data grouping [35]. Its main objective is to partition a set of n data points
into k distinct clusters based on similarity. The algorithm aims to assign each
observation to the cluster with the nearest mean, known as the centroid, thereby
minimizing intra-cluster variance. The centroid is calculated as the average of all
data points in a given cluster. K-Means thus seeks to minimize the total within-
cluster variation, also known as the sum of squared errors (SSE), ensuring each
cluster is as homogeneous as possible.

Algorithm Steps

The K-Means algorithm typically follows these steps [36] [37]:

(1) Initialization: Choose the number of clusters k to form.

(2) Initial Centroids: Randomly select k initial centroids from the dataset.

(3) Assignment Step: Assign each data point to the nearest centroid using
a distance metric, commonly Euclidean distance.

(4) Update Step: Recalculate the centroid of each cluster by computing the
mean of all points assigned to that cluster.

(5) Convergence Check: Repeat steps 3 and 4 until convergence, i.e., when
there are no further changes in cluster assignments or centroids.

Mathematical Formulation
FEuclidean Distance
The Euclidean distance between a data point x and a centroid g in d-dimensional
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space is calculated as:

Cluster Centroid Calculation
The centroid py of cluster k is computed as the mean of all N points in that cluster
37):

1
#k:mzl’ (17)
€Sy

where Sy is the set of data points in cluster k, and Ny = |Sk| is the number of
points in that cluster.

Objective Function (SSE)

The objective of K-Means is to minimize the total sum of squared distances between
data points and their respective cluster centroids [36]:

K
J=3 > o=l (18)

k=1x€Sg

This function, known as the within-cluster sum of squares (WCSS), quantifies the
compactness of the clusters. The algorithm stops when J converges to a local
minimum.

3.4.2. K-Median Clustering. Basic Concept

K-Median clustering is an alternative to K-Means that uses median values instead
of means to define cluster centers. It is particularly useful when the dataset contains
outliers or is not normally distributed. Unlike K-Means, which minimizes the sum
of squared Euclidean distances, K-Median minimizes the sum of absolute distances
(Manhattan distances) between data points and the cluster centroids (medians).
This makes K-Median more robust to noise and extreme values [3§].

Algorithm Steps

The K-Median algorithm proceeds as follows:

(1) Initialize: Choose the number of clusters k£ and randomly select k initial
medians.

(2) Assignment: Assign each data point to the nearest median based on
Manhattan distance.

(3) Update: For each cluster, update the median by computing the component-
wise median of the assigned points.

(4) Repeat: Iterate steps 2 and 3 until cluster assignments no longer change
or a convergence criterion is met.

Mathematical Formulation
Given a dataset X = {x1,x2,...,2,} and a set of cluster centers {my,ma, ..., my},
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the K-Median objective function is:

J = min T; — M 19
S i sl (19)
Here, || - ||; denotes the Manhattan (L1) norm. Each cluster center m; is updated

as the median of all data points assigned to cluster j:
m; = median{z; | z; € C;} (20)

Comparison with K-Means

While K-Means minimizes the sum of squared Euclidean distances and is sensitive
to outliers, K-Median is more robust by minimizing the sum of absolute deviations.
This makes K-Median particularly effective for applications involving skewed or
noisy data.

3.4.3. Clustering Analysis with Genetic Algorithm. Genetic algorithm is a search
and optimization method inspired by the principles of natural selection and biolog-
ical genetics. This approach begins by generating a number of random solutions
that form a population of chromosomes. Through evolutionary stages—including
selection, crossover, and mutation—the algorithm aims to find a globally optimal
solution. Selection is carried out by choosing chromosomes with the highest fit-
ness values to form a new generation. The crossover process then combines genetic
information from two parents to produce offspring with superior characteristics
[B9]. Genetic algorithm is applied to K-Means clustering to enhance clustering
performance. The performance of K-Means clustering is known to be sensitive to
suboptimal initial centroid selection. By using a genetic algorithm, the search for
more representative cluster centers can be conducted more thoroughly.

In the implementation of genetic algorithm for K-Means clustering, the pro-
cess begins by forming an initial population consisting of candidate solutions in the
form of different centroid positions. Each chromosome represents a set of centroids
as a potential solution. Evaluation of each chromosome is done by calculating its
fitness value, typically using the within-cluster sum of squares, which measures
how well the centroids divide the data. Selection then chooses the best-performing
chromosomes to generate the next generation, followed by a crossover process that
combines characteristics from two parent solutions to produce improved offspring.
Random mutation is applied to maintain population diversity and prevent con-
vergence to local optima. The processes of selection, crossover, and mutation are
repeated over several generations until convergence is achieved or the best fitness
solution is found, resulting in more optimal initial centroids for clustering.

3.5. Experimental Setup. This study consists of two main experimental compo-
nents: sentiment analysis and provincial clustering.

3.5.1. Sentiment Analysis. To capture public response toward the Makan Bergizi
Gratis (MBG) program, we collected textual data from social media platform X
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(formerly Twitter) using relevant keywords and hashtags (e.g., #MBG, #Makan-
BergiziGratis, #ProgramGizi). The dataset was preprocessed using standard NLP
techniques such as case-folding, tokenization, stopword removal, and stemming.

We implemented a supervised machine learning model for sentiment classifi-
cation, categorizing each post as positive, negative, or neutral. We used the Python
scikit-learn library, employing a TF-IDF vectorizer for feature extraction and a
Logistic Regression classifier. Hyperparameters were tuned using grid search with
5-fold cross-validation. Performance metrics such as accuracy, precision, recall, and
Fl-score were evaluated on a 20% hold-out test set.

3.5.2. Clustering of Provincial MBG Needs. In the second phase, we analyzed offi-
cial provincial-level indicators from Badan Pusat Statistik (BPS), including stunt-
ing prevalence, poverty rate, population, average income, and education level. The
data were normalized using Min-Max scaling.

We applied K-Means clustering to group provinces based on their relative
need for the MBG program. The optimal number of clusters (k) was determined
using the Elbow Method and Silhouette Coefficient. Provinces were then catego-
rized into three priority levels: high need, moderate need, and low need.

3.5.3. Computational Environment. All experiments were conducted using Python
on the Google Colab platform, which provides cloud-based computation and in-
teractive visualization capabilities. The main libraries used include pandas for data
manipulation, scikit-learn for machine learning modeling, and matplotlib and
seaborn for data visualization.

Sentiment data was collected from the social media platform X (formerly
Twitter) via its API using keywords and hashtags related to the MBG program.
Meanwhile, provincial-level indicator data was obtained from the official website
of Badan Pusat Statistik (BPS) and manually compiled into a structured dataset
using Google Sheets. The dataset can be accessed at the following link:
https://docs.google.com/spreadsheets/d/1nFo6YTkCv-it7_EHkw2T9_BkBnBzwlMpJh_
rysChgEGY/edit7usp=sharing

All source code and experimental documentation are publicly available for
reproducibility at the following links:

e Sentiment Analysis: https://drive.google.com/drive/folders/10Ab9G2avROfv_
BL82uLIxPeeX0VWG6qV7usp=drive_link

e MBG Clustering by Province: https://colab.research.google.com/
drive/1EJgCbXpF8VIppbvfCMVghH3ZrGQfYC6ATusp=sharing

4. Results and Discussion
4.1. Sentiment Analysis.

4.1.1. Data Preprocessing. The preprocessing stage begins with data cleaning, which
involves the removal of emojis, symbols, URLs, and irrelevant punctuation. This is
followed by case folding to standardize all characters to lowercase and the normal-
ization of informal or slang words into their formal equivalents. The next step is
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tokenization, where sentences are segmented into individual words. Subsequently,
stopword removal is applied to eliminate common words that carry little semantic
weight in the context of the analysis. Finally, stemming is performed using the
Sastrawi library to reduce words to their root forms, thereby enhancing the quality
of textual features used in the classification model.

W Positive (47.1%)
I Negative (41.9%)
O Neutral (11.0%)

FIGURE 1. Sentiment distribution in the dataset. The legend
shows each sentiment label and its corresponding percentage.

4.1.2. Labeling. Sentiment labeling was conducted using a lexicon-based approach,
categorizing each text into positive, negative, or neutral sentiment. As shown in
Figure , the dataset contains 22,504 positive samples (47.1%), 20,010 negative
samples (41.9%), and 5,289 neutral samples (11.0%). This distribution indicates
a generally positive trend in public sentiment, although a substantial portion also
expresses negative opinions, suggesting ongoing debates or concerns regarding the
topic.

4.1.3. Feature Extraction. Feature extraction was performed using the Term Fre-
quency Inverse Document Frequency (TF-IDF) method, with a maximum of 5,000
features. This method generates a numerical representation of the text by quanti-
fying the importance of each word in a document relative to the entire corpus.

4.1.4. Modeling. The dataset was divided into training and testing sets in an 80:20
ratio using stratified sampling to preserve the distribution of sentiment classes.
A total of eleven classification models were employed in this study, comprising
eight traditional machine learning models—Logistic Regression, Multinomial Naive
Bayes, Support Vector Machines (with both Linear and RBF kernels), Random
Forest, AdaBoost, XGBoost, and Light GBM—and four transformer-based models:
BERT, DistilBERT, BERTweet, and IndoBERTweet.
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4.1.5. Model Evaluation. Performance comparison among 11 sentiment classifica-
tion models is presented in Table , covering both traditional machine learning
and transformer-based approaches. The metrics evaluated include accuracy, preci-
sion, recall, and F1-score for both positive and negative classes.

TABLE 1. Performance Evaluation of Sentiment Classification Models

Model Acc Ppos Rpos Flpos PNeg RNeg FlNeg
Logistic Regression 0.9410 0.9496 0.9382 0.9439 0.9315 0.9440 0.9377
Multinomial NB 0.7976 0.8018 0.8205 0.8110 0.7927 0.7719 0.7821
SVM (Linear) 0.9633 0.9653 0.9653 0.9653 0.9610 0.9610 0.9610
SVM (RBF) 0.9467 0.9552 0.9436 0.9494 0.9374 0.9503 0.9438
Random Forest 0.8523 0.8603 0.8607 0.8605 0.8433 0.8428 0.8430
AdaBoost 0.6953 0.7870 0.5819 0.6691 0.6363 0.8228 0.7177
XGBoost 0.8578 0.8893 0.8354 0.8615 0.8267 0.8831 0.8539
LightGBM 0.8745 0.8978 0.8609 0.8790 0.8505 0.8898 0.8697
BERT 0.9153 0.9219 0.9178 0.9198 0.9080 0.9125 0.9103
DistilBERT 0.9066 0.9125 0.9109 0.9117 0.9000 0.9018 0.9009
BERTweet 0.9013 0.9148 0.8971 0.9059 0.8868 0.9060 0.8963
IndoBERTweet 0.8752 0.8914 0.8703 0.8807 0.8579 0.8808 0.8692

Among all models, Support Vector Machine with linear kernel (SVM Linear)
achieved the highest overall performance, with an accuracy of 96.33%, and balanced
precision, recall, and Fl-score for both sentiment classes (all exceeding 96%). This
indicates strong generalization and consistency in detecting sentiment polarity from
social media text.

Transformer-based models also performed competitively. BERT achieved an
accuracy of 91.53%, closely followed by DistilBERT and BERTweet, with F1-scores
above 90% for both classes. These results affirm the effectiveness of pre-trained
language models in capturing nuanced sentiment in informal and context-rich data.

In contrast, traditional models such as Multinomial Naive Bayes and Ad-
aBoost demonstrated lower accuracy, at 79.76% and 69.53% respectively, with sig-
nificantly imbalanced performance between positive and negative classes. This
highlights their limitations in handling the complexity of social media text, partic-
ularly with regard to sarcasm, slang, and varying sentence structures.

Overall, the evaluation suggests that while classical models like SVM Linear
remain highly effective with well-engineered features (e.g., TF-IDF), transformer-
based models offer robust alternatives for future work, particularly when dealing
with larger and more diverse datasets.

4.2. Topic Modelling.

4.2.1. LDA Topic Modeling. The results of LDA analysis indicate that negative
sentiment toward the free meal program can be grouped into five major themes:

(1) Children’s Education and Nutrition
Criticisms highlight disparities in access to child nutrition programs, par-
ticularly in remote regions such as Papua. Dominant keywords: susu, anak,
bantu, Papua.

(2) Maternal and Infant Welfare
Complaints focus on the lack of government support for pregnant women
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and infants, often accompanied by sarcastic remarks directed at public
officials. Dominant keywords: hamil, balita, sejahtera, hidup.

(3) Program and Funding Transparency
Criticisms address the lack of clarity regarding the distribution of informa-
tion and funds. Dominant keywords: uang, hilang, informasi, masak.

(4) Budgeting and Public Policy Implementation
Issues related to national budget (APBN) management, meal quality, and
program implementation in schools. Dominant keywords: menu, orang tua,
budget, apbn.

(5) Public Distrust of Government
Negative and often harsh expressions toward government programs, reflect-
ing widespread public distrust. Dominant keywords: tolol, tanggung, duit,
gratis.

4.3. Clustering Analysis. In this study, clustering analysis is applied to data
related to health and nutrition, social and demographic conditions, as well as eco-
nomic and employment indicators for each province in Indonesia. The data used is
from 2023 and sourced from Badan Pusat Statistik Indonesia. The analysis focuses
on data from 34 provinces in Indonesia, excluding the four new provinces estab-
lished in 2022, as data for several variables in these provinces is not yet available.
The purpose of the clustering analysis is to categorize regions based on their level
of priority for receiving Makan Bergizi Gratis (MBG) program. This will enable
the government to focus the implementation of the program on high-priority areas,
ensuring more effective and targeted resource allocation. Priority levels are de-
termined based on demographic factors, economic conditions, and the health and
nutritional status of each region, with the goal of optimizing government spending
for the program’s implementation.

The clustering analysis is conducted using several algorithms, including K-
Means, K-Median, and K-Means with Genetic Algorithm Optimization. The anal-
ysis aims to form three clusters, as predetermined by the researchers, representing
high, medium, and low priority groups. The results from the three algorithms are
then compared using the silhouette score evaluation metric to identify the most
effective algorithm for clustering provinces based on their priority level. The clus-
tering outcomes for each algorithm are presented in the following Table .

TABLE 2. Clustering Performance

Algorithm Silhoutte Score
K-Means 0.6047
K-Median 0.4266
K-Means with GA 0.5729

Based on the clustering results from the three algorithms, the K-Means al-
gorithm demonstrated the best performance, achieving the highest silhouette score
compared to K-Median and K-Means with Genetic Algorithm Optimization. There-
fore, the clustering results from K-Means will be used to determine the priority
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levels of each region. Table and Figure .presents the provincial clustering
outcomes using the K-Means algorithm.

TABLE 3. Clustering Analysis Results

Cluster

Province

Cluster 1

Cluster 2

Cluster 3

Aceh, Sumatera Utara, Sumat-
era Barat, Jambi, Sumatera
Selatan, Bengkulu, Lampung,
Jawa Tengah, Jawa Timur,
NTT, NTB, Kalimantan Barat,
Kalimantan Selatan, Sulawesi
Utara, Sulawesi Tengah, Su-
lawesi Selatan, Sulawesi Teng-
gara, Gorontalo, Sulawesi Barat,
Maluku, Maluku Utara

Riau, Kep. Bangka Beli-
tung, Kep. Riau, Jawa Barat,
DI Yogyakarta, Banten, Bali,
Kalimantan Tengah, Kaliman-
tan Timur, Kalimantan Utara,
Papua Barat, Papua

DKI Jakarta

factor(Cluster)

. Cluster 1
|:| Cluster 2
. Cluster 3

FIGURE 2. Provincial clustering results of the MBG program in
Indonesia: Cluster 1 (red), Cluster 2 (yellow), and Cluster 3

(green).

Next, to identify the priority level of each cluster, it will be determined based
on the characteristics of each cluster as observed from the centroid values of each
variable within each cluster. The following are the centroids for each cluster in

Table ().

Provinces in Cluster 1 still show a quality of life that is not yet optimal,
with the Human Development Index (HDI) categorized as moderate. The socio-
economic conditions in this area face significant challenges, as evidenced by the high
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prevalence of stunting and poverty that still threaten many families. Additionally,
the community’s purchasing power and wage levels are relatively low, while income
inequality is at a moderate level. Therefore, this region requires special attention
in social and public health development efforts to significantly improve the quality
of life of its population.

TABLE 4. Centroids Each Cluster

Variables Cluster 1 Cluster 2 Cluster 3

IPM 71.672 74.270 82.460
GR 0.338 0.349 0.431
Populasi 8301.162 7808.300 10672.100
IKPS 70.624 67.883 73.900
PBS 24.100 19.925 17.600
TPT 4.378 4.867 6.530
KRS 207.098 33.146 32.850
PPM 10.878 9.180 4.440
IKdM 1.804 1.695 0.690
IKpM 0.445 0.493 0.170
RRU 17127.905 22205.750 42354.000
PpK 1257437.670 1694760.080 2791716.000
PKK 11.247 12.654 2.570

Provinces in Cluster 2 show better development compared to Cluster 1, with
HDI and quality of life relatively improved. Poverty levels and stunting prevalence
in this area have started to decline, resulting in a much smaller number of families
at risk of stunting. Purchasing power and wages have improved, although there
are still challenges related to insufficient consumption among some groups. Then,
cluster 3 represents regions that have reached a very advanced level of development,
with a very high HDI reflecting excellent quality of education, health, and living
standards. In this area, poverty and social risks are very low, while purchasing
power is relatively high. The prevalence of stunting is also very low, indicating
the success of various health and social programs implemented. Nevertheless, these
regions still face challenges such as unemployment and income inequality that need
to be managed well.

Based on the centroids of each cluster representing the economic conditions
as well as the health and nutritional status of each region, priority levels for the
implementation of the Makan Bergizi Gratis (MBG) program can be determined.
Cluster 1 consists of provinces with a high priority for receiving Makan Bergizi
Gratis (MBG) program. This is because these areas require special attention in
social and public health development efforts to significantly improve the quality of
life of their populations. Cluster 2 falls under medium priority for Makan Bergizi
Gratis (MBG) program, where the government can target vulnerable groups such as
poor families or children in certain schools. Meanwhile, Cluster 3 includes provinces
with a low priority for Makan Bergizi Gratis (MBG) program, such as DKI Jakarta.



In this cluster, implementing Makan Bergizi Gratis (MBG) program is not yet an
urgent priority; the government can focus more on lower-budget initiatives such as
nutrition education. By referring to the results of this clustering analysis, the gov-
ernment can reassess the implementation of Makan Bergizi Gratis (MBG) program,
allowing it to be carried out more targetedly and to save budget.

4.4. Limitations. This study has several limitations that should be acknowledged.
First, the sentiment analysis was conducted solely on the social media platform X
(formerly Twitter). While this platform provides timely and high-volume user-
generated content, it does not capture sentiments from other widely used platforms
such as Facebook, Instagram, or TikTok, which may reflect different user demo-
graphics and engagement patterns. As such, the sentiment findings may not be
fully representative of the broader public opinion regarding the MBG program.

Second, the clustering analysis of MBG needs was performed at the provincial
level due to data availability and granularity. While this provides a general overview
of regional disparities, it lacks the precis

5. CONCLUSION

Sentiment analysis reveals that the majority of responses to the MBG pro-
gram are positive (47.1%), followed by negative (41.9%) and neutral (11.0%), indi-
cating strong public support, albeit with notable concerns. Among the 11 classifi-
cation models evaluated, Linear SVM achieved the highest accuracy (96.33%) with
balanced performance. Transformer-based models such as BERT and DistilBERT
also performed well, effectively capturing the nuances of social media language. In
contrast, traditional models like Naive Bayes and AdaBoost showed lower accuracy
and less consistent performance across sentiment classes. Overall, transformer-
based models are a strong choice for future analysis, particularly when dealing
with complex and informal social media data.

The clustering analysis classified 34 provinces into three priority levels for
the Makan Bergizi Gratis (MBG) program, with K-Means showing the best perfor-
mance. Cluster 1 (high priority) includes provinces with lower development indica-
tors, while Cluster 2 and Cluster 3 represent medium and low priority, respectively.
These results enable more targeted and efficient program implementation. Future
research is encouraged to use more granular data at the district or sub-district
(kecamatan) level to improve policy targeting and resource allocation.
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Abstract. Linear regression analysis is a common method that are free to vary
and are subject to error. In this study we used hybrid of linear regression and its
family to Deep Neural Network (DNN) to fill these gaps. In this paper analyze the
phenomenon of gambling in Indonesia in 2018. Results show that the hybrid model
is significantly superior to the single model, with the hybrid linear model reducing
RMSE by 15.9% and MAPE by 16.2% compared to the single linear model. The hy-
brid ridge model showed small but consistent improvements in RMSE and MAPE.
The most notable improvement was seen in the hybrid lasso model which reduced
RMSE by 34.1% and MAPE by 47.1% over the single lasso model. The hybrid
elastic net model also showed improved performance with a decrease in RMSE by
16.9% and MAPE by 18.3%. In conclusion, the integration of traditional regres-
sion methods with DNN in this hybrid model offers a significant improvement in
prediction accuracy, making it a more effective and efficient tool in the analysis of
gambling phenomena.

Keywords: Linear regression, ridge regression, LASSO regression, elastic net
regression, Deep Neural Network, Hybrid Model.

1. INTRODUCTION

Gambling is a social phenomenon that can have a negative impact on society,
both in economic and social terms. Several studies reveal the effects of gambling
including divorce [I], increased anxiety levels [2], affecting not only adults but also
children [3]. Therefore, understanding the characteristics of the community and
the factors that contribute to the incidence rate of gambling is an important step
towards formulating effective policies to address it.
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This paper uses population data by province in Indonesia to analyze the
relationship between various socio-economic factors and the incidence of gambling.
Given the relatively small amount of data, linear regression was chosen as the main
analysis method. Linear regression is an appropriate choice because it is simple and
effective in handling small datasets without requiring complex training and testing
processes as in machine learning techniques.

In regression analysis, multiple linear regression is often used to understand
the relationship between independent variables and dependent variables. However,
to overcome the problem of multicollinearity and to improve the accuracy of the
model, extensions of simple linear regression such as Ridge, Lasso, and Elastic Net
regression have been introduced [4].

Ridge regression addresses multicollinearity by adding an L, penalty to the
coefficients, thus preventing the coefficients from becoming too large [5]. Lasso re-
gression introduces the L; penalty, which not only addresses multicollinearity but
also performs feature selection by reducing some coefficients to zero, thus simplify-
ing the model (Vidaurre et al., 2013). Elastic Net Regression is a combination of L,
and Lo penalties, which allows handling multicollinearity while performing feature
selection, providing more flexibility in building robust and interpretable predictive
models [6]. These three methods are known as an “extended linear regression fam-
ily” that offers more advanced solutions for complex data analysis and potentially
better predictive performance.

As is well known, linear regression and extended linear regression approaches
can give results that differ from the actual data [7]. In some cases, simple linear
regression models may fail to capture the complexity of the data patterns, espe-
cially when multicollinearity is present or when the relationship between variables
is not strictly linear. Furthermore, to overcome the weaknesses of these traditional
regression approaches, deep-linear regression hybrid artificial neural networks are
used. This hybrid approach combines the analytical power of linear regression with
the capability of artificial neural networks to recognize non-linear patterns and
complex interactions in the data.

The purpose of this research is to explore and maximize the potential of lin-
ear regression and its families (ridge, lasso, and elastic net) in producing accurate
predictions by combining them with deep learning networks. This research aims to
identify the advantages of the hybrid approach in reducing prediction error com-
pared to the use of a single model, as well as to develop predictive models that are
more robust and efficient in handling data complexity. Thus, this research hopes
to make a significant contribution to more accurate and reliable predictive mod-
eling through the integration of traditional regression methods and deep learning
technology.



2. LITERATURE REVIEW

2.1. Linear Regression. Linear regression is an equation model that explains
the correlation of one response variable (Y) with two or more predictor variables
(X1,X2,...,Xp). In addition, it is used to determine the direction of the relation-
ship between the response variable and the predictor variables. The relationship
between the response variable and the predictor variables is expressed as follows:

Y=XB+e¢ (1)
with:

Y =n x 1 vector of dependent variables,
X =n x (p— 1) matrix of independent variables,
€ =n x 1 vector of independent normal random variables with expectation

E(g) = 0 and variance-covariance matrix o?(g) = o*1.

According to Firdaus (2004) [g], the least squares method or also called the Ordi-
nary Least Square (OLS) method is one of the most popular methods in estimating
linear regression models that produce the minimum number of squared errors. This
method was first used by Carl Friedrich Gauss in the calculation of astronomical
problems. The practical advantages of this method increased after the develop-
ment of electronic computers, the formulation of calculation techniques in matrix
notation, and the connection of the least squares concept to statistics.

Definition 2.1. Letp > 1 be a real number. The p-norm of vector x = (x1, T2, ..., Tn)

18
n (1/p)
], = (Z |$i|p> : (2)
i=1

For p = 1, we get the tazicab/manhattan norm, for p = 2 we get the Euclidean
norm, and as p approaches oo the p-norm approaches the infinity norm [9].

From Equation is obtained

e=Y-Xp3
S(B)ors = [[Y — XB|2

= ETE

=(Y-XB8)"(Y-XB)

— (YT -XTBT)(Y - XB) )

=Y'Y-Y'XB-8"XTY+3"X"X3
=Y Y-B'X'Y) -8'X"Y+3"X"X3
=Y'Y-28'X"Y)+8'X"X3
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Next, a partial derivative of 3 is performed to obtain the minimum value of the
equation:

0S(Brors) O (YTY —287XTY) +5TXTX)

o(B) o(B) )
=0-2X'Y+X'Xg+(B'X"X)T
=2X'Y+X"XB+X"Xg

and then equating it to zero, we get:
0=2X"Y+X"XB+X"Xg3
2X'X3=2X"Y
X'X3=X"Y
Bors = (XTX)'(XTY)

Therefore, Equation as the solution of the OLS method.

2.2. Ridge Regression. Ridge regression is the result of the least squares method
with the addition of a bias value ¢ to the correlation matrix and the variables
are transformed using the centering and scaling method, the selection of the bias
constant ¢ is a very instrumental thing in Ridge regression [I0]. The penalty in
ridge with the following constraints:

1Bll2 <t,t>0
Loss function ridge regression is as follow:
@) = Y - XBllz + cl|B2
=e'e+cB'p
= (Y-XB)(Y-XB)+cB'8
=(Y'-X"8")(Y-XB)+cB'B
= Y'Y-X"B'Y-Y'XB+8'X"XB+c8'3
=Y'Y-28'X"Y+8'X"XB+c¢B8"8

Next, a partial derivative of B is performed to obtain the minimum value of the
equation:

as@B) O (YTY —28TXTY +8TXTXB + cBTﬁ)

9(B) 2(B)
=0-2X"Y+X"X3+(B'X"X)" +2¢8 (7)
= 2X'Y +X"XB+X"XB + 23
=-2X"Y +2X"X8 + 2¢0



and then equating it to zero, we get:
0=—-2XTY +2X"X3+ 23
X'XB+c8=X"Y
X' XB+D)B=X"Y
Br=(X"XB+c) H(XY)

Therefore, Equation as the solution of the ridge regression.

2.3. LASSO Regression. LASSO (Regression Least Absolute Shringkage and Se-
lection Operator) is one of the shrinkage methods to overcome multicollinearity
problems. The LASSO method is a method introduced by Tibshirani in 1996 [I1]
after the LAR (Least Angle Regression) method introduced by Effron in 2004 by
changing the penalty in Ridge regression in L; regularization. This regularization
is used to reduce overfitting by adding L, and Lo penalty factors where L, reg-
ularization is called LASSO regression which uses L; penalty, an approach that
penalizes the absolute size of the coefficients. Whereas Lo regularization is called
Ridge regression which uses an Ly penalty, which is an approach that penalizes the
squared size of the coefficients. LASSO aims to improve the estimation of simple
linear regression. The penalty in LASSO with the following constraints:

1Bl <ttt >0

. The value of ¢t above is a quantity that checks the amount of shrinkage in the
LASSO coefficient estimates where ¢ > 0. If the estimator ﬁ is a least squares
estimator and ¢ = || 3|1, then values of t < ¢y will lead to solving classical regression
with OLS estimators that shrink towards zero, and allow some coefficients to also
shrink exactly towards zero. Loss function for LASSO regression is as follow:

S(B)rasso = Y — XB|2 + |81 9)

Unlike OLS estimation of linear regression in the equation and ridge regression
in the equation , LASSO regression cannot find direct results for the beta
derivative so that one way that can be done is to find the iteration value that
minimizes the loss function. The coefficient estimates in LASSO regression are
written as follows [IT]:

Brasso :argmﬁin(HY—XﬁHQ +a|Bll1) (10)

2.4. Elastic Net Regression. Elastic net is a penalty regression method similar
to ridge regression and LASSO that can overcome the problem of multicollinearity
assumption 2005 [12]. Elastic net combines the penalty between Ridge regression
and LASSO. Elastic net can overcome the problem of high correlation and has the
properties of variable selection and shrinkage of the estimation coefficient. Zou and
Hastie (2005) [12] introduced the Elastic Net penalty as follows:

(1 =NBll2 +AlBll <t,t >0
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If A =0, the Elastic Net regression becomes a Ridge regression, while if A = 1, the
Elastic Net becomes a LASSO penalty. Elastic Net regularization has a shrinkage of
the coefficient of correlated predictor variables like Ridge and LASSO. Loss function
for Elastic Net regression is as follow:

S(B)ery =Y = XBll2 + (1= N)[Bll2 + AllBl1) (11)
The coefficient estimates in Elastic Net regression are written as follows:
BeLy = argmin ([Y = XSz +v (1 = VB[l + Al Bll1)) (12)

2.5. Artificial Neural Network (ANN). Artificial Neural Network (ANN) is
an algorithm that has the same structure as the performance of the human brain in
learning the pattern of data [I3]. In an ANN cell, the weights and biases function
as variables for the input data to be output. The weight and bias values are
determined by the backpropagation method, which is an adjustment process so
that the prediction results are close to the original value. This algorithm works
by doing a back pass for each forward pass while adjusting the weights and biases.
The process is assisted by an algorithm known as optimizers.

2.6. Deep Neural Network (DNN). Neural networks with multiple hidden lay-
ers are called deep neural networks (DNN) and the practice of training those net-
works are referred to as deep learning. Deep neural networks trained to adaptive
to varied number of levels and nodes at each level, performance complex tasks,
modeling the multiple outcomes.

3. MATERIAL AND METHOD

3.1. Variable. This paper uses data taken from BPS in 2018. The description of
each variable can be explained below:

Y : Number of villages with gambling occurrences in the last year by province, 2018

X1 : Open unemployment rate (TPT) by province in 2018

Xo : Education completion rate by education level (SMA) and province, 2018

X3 : Average monthly expenditure per capita on food in urban and rural areas
by province (IDR), 2018

X, : Average monthly non-food expenditure per capita in urban and rural areas
by province (IDR), 2018

X5 : Average hourly wage of workers by province (IDR/hour)

The number of observations is 35 (35 provinces) with the dependent variable (V)

being the number of gambling cases in each province. This study uses log transfor-

mation to the dependent variable with the statistics descriptive of the variables is
shown in Table [ below:
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Variables Minimum Maximum Mean

Y 35.0 1947.0  376.8
In(Y) 3.555 7574 5422
X 1.400 8.470  4.803
X 29.56 83.48  61.19
X 402922 847847 565941
X, 301832 1191310 576476
Xs 11359 25987 15911

TABLE 1. Statistics Descriptive

3.2. Method. This paper uses natural logarithm (In) transformation on the de-
pendent variable (y* = In(y)) to increase the R-square value of the regression
model. After the transformation, modeling is done using several regression meth-
ods such as linear, ridge, lasso, and elastic net. From each model, the error is
calculated using the following formula:

€= y* - yA*single (13)

The error is then used as input to the Deep Neural Network (DNN) with the aim
of filling the gap between the original value and the predicted value and produce
the estimated error (£). The final prediction of this hybrid model is formulated as:

yA*ﬁnal = yA*single + £ (14)

To evaluate the performance of the model, Root Mean Square Error (RMSE) and
Mean Absolute Percentage Error (MAPE) is used as a comparison metric with the
following formula:

n

1 . Y 2
RMSE = | =% (4 = ¥ na) (15)

i=1

1 n
MAPE = - Z

i=1

N ~
Yi — y* final
*

%

x 100% (16)

4. RESULTS AND DISCUSSION

4.1. Variable Selection. In this subsection, the first step is the selection of inde-
pendent variables using the backward method in multiple linear regression. This
process starts by including all five independent variables along with their intercepts
into the initial model. Next, the variables are selected one by one, gradually remov-
ing the variables that have the least influence on the model. This process continues
until only those variables remain that have a significant contribution to the de-
pendent variable. The final results of this selection show that the three selected
independent variables are Xs, X3, and Xj.
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Variables in Model Description
intercept, X, Xo, X3, X4, X5 (1, B2, B3, B5 not significant
B0, B4 significant

X1, X2, X3, X4, X5 B1, B5 not significant
B2, B3, B4 significant

X2, X3, X4, X5 B2, B3, B4 not significant
Bs significant

X, X3, X4 Ba, B3, B4 significant

TABLE 2. Variable Selection

4.2. Hybrid Model. In this subsection, we performed modeling using several sin-
gle models, namely linear, ridge, lasso, and elastic net models. Each of these models
produces an error which is then used as input for the Deep Neural Network (DNN).
To improve the performance of the DNN, we performed hyperparameter tuning us-
ing the grid search method with a range of 1:50 for each layer on three different
layers. Table (3| shows the best results of the number of neurons in each layer
obtained from the tuning process with each RMSE.

Model Layer 1 Layer 2 Layer 3 RMSE
Linear 9 19 1 0.901931
Ridge 20 5 14 0.749255
Lasso 18 13 18 0.611645
Elastic Net 17 7 6 0.764042

TABLE 3. Best of Hyperparameter for DNN

The results for various combination are given in Table [ Based on this
table, it can be seen that the RMSE by the hybrid model is smaller than that of
single models such as linear, ridge, lasso, and elastic net models. This shows that
the combination of several regression models with the use of Deep Neural Network
(DNN) as the final stage of modeling is able to provide more accurate predictions.

Model RMSE MAPE RMSE Hybrid MAPE Hybrid

Linear 1.03137  15.928% 0.86786 13.347%
Ridge 0.81773 13.144% 0.81446 13.091%
Lasso 0.86023 13.611% 0.56669 7.2017%
Elastic Net 0.86377 13.730% 0.71794 11.219%

TABLE 4. Model Performance

This hybrid approach strengthens the prediction results by utilizing the ad-
vantages of each regression model and DNN shown by Figure [1} thus capturing
complex patterns that a single model may not be able to identify effectively.



62

Number of Cases

Number of Cases

Linear Regression + DNN

® Data
~ Linear Fit
—— Linear + DNN

0 5 10 15 20 25 30 35
Index
Ridge Regression + DNN
* Data ¢
~ Ridge Fit o®
— Ridge + DNN .

FI1GURE 1. Comparison of Single Model

Index

5. CONCLUSION

Number of Cases

Number of Cases

Lasso Regression + DNN

® Data
- Lasso Fit
—— Lasso +DNN

Index

Elastic Net Regression + DNN

30 35

® Data
- Elastic Net Fit
— Elastic Net + DNN

Index

vs Hybrid Model

The conclusion of this study shows that the use of linear regression and its
extensions such as ridge, lasso, and elastic net can be maximized by combining it
with a deep learning network. This hybrid approach is proven to produce smaller
errors compared to a single model, indicating that this combination is able to
provide more accurate and efficient predictions. Thus, hybrid models that integrate
linear regression and deep learning networks offer a more robust solution in handling
data complexity and improving predictive modeling performance.
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