Studi Kinetika Proses Atmospheric Pressure Acid Leaching Bijih Laterit Limonit Menggunakan Larutan Asam Nitrat Konsentrasi Rendah

https://doi.org/10.22146/jrekpros.35644

Kevin Cleary Wanta(1*), Felisha Hapsari Tanujaya(2), Ratna Frida Susanti(3), Himawan Tri Bayu Murti Petrus(4), Indra Perdana(5), Widi Astuti(6)

(1) Program Studi Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Jl Ciumbuleuit No. 94, Bandung, 40141
(2) Program Studi Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Jl Ciumbuleuit No. 94, Bandung, 40141
(3) Jurusan Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan Jl Ciumbuleuit No. 94, Bandung, 40141
(4) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada, Jl Grafika No 2, Yogyakarta 55281
(5) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada, Jl Grafika No 2, Yogyakarta 55281
(6) Balai Penelitian Teknologi Mineral, Lembaga Ilmu Pengetahuan Indonesia, Jl. Ir. Sutami Km. 15, Tanjung Bintang, Lampung Selatan, 35361
(*) Corresponding Author

Abstract


A B S T R A C T

Kinetics study of atmospheric pressure acid leaching (APAL) process is indispensable for extractor design in an industrial scale. So far, the kinetic model used for this process is the shrinking core model. In this study, the shrinking core model was evaluated against experimental data for laterite leaching process using a solution of low concentration nitric acid (0.1 M). Variations in temperature and particle size were carried out at 303–358 K and <75–250 microns. Other operating conditions, such as pulp density, stirring speed, and time were kept at 20% w/v, 200 rpm, and 120 minutes, respectively. The model evaluation results showed that the shrinking core model was not suitable for this process because the process controlling stage is not just one stage only.

Keywords: kinetics; laterite; leaching; shrinking core.


A B S T R A K

Studi terkait kinetika proses atmospheric pressure acid leaching (APAL) sangat diperlukan untuk proses perancangan ekstraktor dalam skala industri. Selama ini, model kinetika yang digunakan untuk proses tersebut adalah model shrinking core. Dalam studi ini, model shrinking core dievaluasi terhadap data percobaan proses leaching bijih laterit dengan menggunakan larutan asam nitrat konsentrasi rendah, 0,1 M. Variasi suhu dan ukuran partikel dilakukan pada 303–358 K dan <75–250 mikron. Kondisi operasi lainnya, seperti densitas pulp, kecepatan pengadukan, dan lama proses dijaga tetap pada 20%b/v, 200 rpm, dan 120 menit, secara berurutan. Hasil evaluasi model menunjukkan bahwa model shrinking core tidak cocok untuk proses ini karena tahapan pengendali proses tidak hanya satu tahapan saja.

Kata kunci: kinetika; laterit; leaching; shrinking core



Keywords


kinetics; laterite; leaching; shrinking core

Full Text:

PDF


References

Astuti, W., Hirajima, T., Sasaki, K., Okibe, N., 2015, Kinetics of nickel extraction from Indonesian saprolitic ore by citric acid leaching under atmospheric pressure, Miner. Metall. Process., 32(3), 176–185.

Astuti, W., Hirajima, T., Sasaki, K., Okibe, N., 2016, Comparison of effectiveness of citric acid and other acids in leaching of low–grade Indonesian saprolitic ores, Miner. Eng., 85, 1–16.

Ayanda, O.S., Adekola, F.A., Baba, A.A., Fatoki, O.S., dan Ximba, B.J., 2011, Comparative study of the kinetics of dissolution of laterite in some acidic media, J. Miner. Mater. Charact. Eng., 10(15), 1457 – 1472.

Fathoni M.W. dan Mubarok, M.Z., 2015, Studi perilaku pelindian bijih besi nikel limonit dari Pulau Halmahera dalam larutan asam nitrat, Majalah Metalurgi, 3, 115–124.

Habbache, N., Alane, N., Djerad, S., Tifouti, L., 2009, Leaching of copper oxide with different acid solutions, Chem. Eng. J., 152, 503–508.

Kuck, P.H., 2011, Nickel, Mineral Commodity Summaries 2011: U.S. Geological Survey, 108–109.

Kyle, J., 2010, Nickel laterite processing technologies–where to next?, ALTA 2010 Nickel/Cobalt/Copper Conference, Perth, 24–27 Mei 2010.

Levenspiel, O., 1995, Chemical Reaction Engineering, 2nd edition, John Wiley & Sons, Inc, New York, USA

Liddell, K.C., 2005, Shrinking core models in hydrometallurgy: What students are not being told about the pseudo–steady approximation, Hydrometallurgy, 79, 62–68.

McDonald, R.G., Whittington, B.I., 2008, Atmospheric acid leaching of nickel laterites review Part I. Sulphuric acid technologies, Hydrometallurgy, 91, 35–55.

Thubakgale Thubakgale, C.K., Mbaya, R.K.K., Kabongo, K., 2012, Leaching Behaviour of a low–grade South African nickel laterite, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 6(8), 228–232.

Tundermann, J.H., Tien, J.K., Howson, T.E., 2013, Nickel and Nickel Alloys, Kirk – Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, USA

Wanta, K.C., Perdana, I., Petrus, H.T.B.M., 2016, Evaluation of shrinking core model in leaching process of Pomalaa nickel laterite using citric acid as leachant at atmospheric conditions, IOP Conf. Ser.: Mater. Sci. Eng., 162, 012018.

Wanta, K.C., Petrus, H.T.B.M, Perdana, I., dan Astuti, W., 2017, Uji validitas model shrinking core terhadap pengaruh konsentrasi asam sitrat dalam proses leaching nikel laterit, Jurnal Rekayasa Proses, 11(1), 30–35.



DOI: https://doi.org/10.22146/jrekpros.35644

Article Metrics

Abstract views : 4886 | views : 10927

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 The authors

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.