Mekanisme Fouling pada Membran Mikrofiltrasi Mode Aliran Searah dan Silang
Iqbal Shalahuddin(1), Yusuf Wibisono(2*)
(1) Kurita Indonesia PT, Jalan Jababeka XIIA No. V-6, Cikarang Utara, Bekasi 17530
(2) MILI Water Research Institute, PO Box 301 ML, Malang 65101 Program Studi Teknik Bioproses, Fakultas Teknologi Pertanian, Universitas Brawijaya, Jalan Veteran 1, Malang 65145
(*) Corresponding Author
Abstract
A B S T R A C T
Microfiltration is a low pressure driven membrane process of about 1 bar trans-membrane pressure which is used frequently for separating dissolved particles within 0.1 to 10 μm size. Microfiltration membranes are utilized in water and wastewater treatment processes either during pretreatment, treatment, or post-treatment steps. Moreover in bioprocessing, microfiltration is used in upstream process for substrate sterilization or in downstream process for microbial suspension separation. Fouling is one major concern of membrane filtration processes, including microfiltration. In this article, the fouling mechanism on microfiltration membrane is explained based on the blocking model refer to cake filtration due to the complexity of fouling phenomena. Fouling mechanism on dead-end and cross-flow modes microfiltration are explained, and basically distinguished into four different mechanisms, i.e. complete blocking, standard blocking, intermediate blocking and cake filtration. The proposed models are based on constant pressure operation on the uniform membrane pores, both for dead-end and cross-flow modes. Cross-flow mode, however, is restricted on the beginning of filtration until critical flux condition is reached.
Keywords: bioprocess; blocking model; cake filtration; fouling; microfiltration; wastewater
A B S T R A K
Membran mikrofiltrasi merupakan salah satu teknologi membran yang menggunakan tekanan rendah sekitar 1 bar sebagai gaya pendorong dan digunakan untuk proses pemisahan partikel terlarut yang berukuran antara 0,1 hingga 10 μm. Membran mikrofiltrasi banyak digunakan baik dalam proses pra-pengolahan, pengolahan, maupun pasca-pengolahan air dan air limbah. Pada bioproses, mikrofitrasi juga digunakan pada proses hulu untuk sterilisasi substrat atau pada proses hilir untuk pemisahan suspensi mikrob. Masalah yang paling utama dalam proses filtrasi membran adalah fouling. Dalam artikel ini, mekanisme terjadinya fouling pada membran mikrofiltrasi dijelaskan dengan menggunakan model pemblokiran yang mengacu pada filtrasi deposit partikel (cake) untuk menguraikan kerumitan fenomena fouling dalam mikrofiltrasi. Pada tulisan ini dijelaskan lebih rinci mengenai mekanisme fouling baik pada mikrofiltrasi searah (dead-end) maupun aliran silang (cross-flow). Mekanisme fouling pada proses mikrofiltrasi bisa dimodelkan dengan empat model yaitu pemblokiran pori, penyempitan pori, pemblokiran pori bersamaan dengan endapan permukaan dan formasi endapan permukaan. Mekanisme tersebut berlaku pada kondisi operasional bertekanan tetap dan ukuran pori yang seragam, baik pada aliran searah ataupun silang. Hanya saja, model mekanisme pada aliran silang hanya berlaku pada kondisi awal filtrasi hingga tercapai kondisi fluks kritis.
Kata kunci: air limbah; bioproses; filtrasi cake; fouling; mikrofiltrasi; model pemblokiran
Keywords
Full Text:
PDFReferences
Amosa, M.K., Alkhatib M., Jami M.S., and Majozi T., 2017, Cake compressibility analysis of BPOME from a hybrid adsoprtion-microfiltration process, Water Environ. Res., 292-300.
Baker, R.W., 2004, Membrane Technology and Applications, John Willey & Sons, Ltd, second ed, Sussex, England.
Botstein, D., and Fink, G.R., 2011, Yeast: an experimental organism for 21st century biology, Genetics, 189, 695-704.
Bowen, W.R., Calvo, J.I., and Hernández, A., 1995, Steps of membrane blocking in flux decline during protein microfiltration, J. Membr. Sci., 101, 153-165.
Broeckmann, A., Busch, J., Wintgens, T., and Marquardt, W., 2006, Modeling of pore blocking and cake layer formation in membrane filtration for wastewater treatment, Desalination, 189, 97-109.
Chandler, M., and Zydney, A., 2006, Effects of membrane pore geometry on fouling behavior during yeast cell microfiltration, J. Membr. Sci., 285, 334-342.
Chen, W.H., Hsieh, Y.H., Tung, K.L., Li, Y.L., Lai, S.C., and Lin, S.J., 2010, An integrated fouling monitoring technique for a water treatment microfiltration process, Chem. Eng. Technol., 33 (8), 1269-1275.
Devianto, L.A., Aprilia, D.N., Indriani D.W., Sukarni, S., Sumarlan, S.H., Wibisono, Y. (2018) Marine microalge Nannochloropsis oculata biomass harvesting using ultrafiltration in cross-flow mode, IOP Conf Ser Earth Environ , 131 (1), 012042.
Field, R.W., Wu, D., Howell, J.A., and Gupta, B.B., 1995, Critical flux concept for microfiltration fouling, J.Membr. Sci., 100, 259-272.
Foley G, 2006, A review of factors affecting filter cake properties in dead-end microfiltration of microbial suspensions, J. Membr. Sci., 274, 38-46.
Gabrus, E., and Szaniawska, D., 2009, Application of backflushing for fouling reduction during microfiltration of yeast suspensions, Desalination, 240, 46-53.
Grenier A, Meireles M, Aimar P, Carvin P. 2008. Analysing flux decline in dead-end filtration. Chem. Eng. Res. Des., 86, 1281-1293.
Hermans, P.H., and Bredee, H.L., 1936, Principles of the mathematical treatment of constant pressure filtration, J.Soc. Chem. Indust., 55(1), 1-11.
Hermia, J., 1982, Constant pressure blocking filtration laws – Application to power-law non-Newtonian fluids, Trans.Inst. Chem. Eng., 60, 183-187.
Marroquin, M., Vu, A., Bruce, T., Wickramasinghe, S.R., Zhau, L., and Husson, S.M., 2014, Evaluation of fouling mechanisms in asymmetric microfiltration membranes using advanced imaging, J. Membr. Sci., 465, 1 – 13.
Ogunbiy, O.O., Miles, N.J., and Hilal, N., 2008, The effects of performance and cleaning cycles of new tubular ceramic microfiltration membrane fouled with a model yeast suspension, Desalination, 220, 273-289.
Rayess, Y.E., Albasi, C., Bacchin, P., Tailandier, P., Peuchot, M.M., and Devatine, A., 2012, Analysis of membrane fouling during cross-flow microfiltration of wine, Innov. Food Sci. Emerg. Technol., 16, 398-408.
Shalahuddin, I., 2008, Dead end microfiltration of crosslinked Saccharomyces cerevisiae suspensions, Master Thesis, Chung Yuan Christian University, Taiwan.
Tung, K.L., Li, Y.L., Hwang, K.J., and Lu, W.M., 2008, Analysis and prediction of fouling layer structure in microfiltration, Desalination, 234, 99-106.
Wibisono, Y., 2014a, Two-phase flow for fouling control in membranes, PhD Thesis, University of Twente, The Netherlands.
Wibisono, Y., Cornelissen, E.R., Kemperman, A.J.B., Van der Meer, W.G.J., and Nijmeijer, K., 2014b, Two-phase flow in membrane processes: a technology with a future, J. Membr. Sci., 453, 566-602.
Wibisono, Y., Ahmad, F., Cornelissen, E.R., Kemperman, A.J.B., Nijmeijer, D.C., 2016, Dominant factors controlling the efficiency of two-phase flow cleaning in spiral-wound membrane elements, Desalin. and Water Treat., 57 (38), 17625-17636.
Wibisono, Y., Sucipto, S., Perdani, C.G., Astuti, R., Dahlan, M., 2018a, Halal compliance on drinking water industries: a future perspective, dalam: Muhammad Hashim N., Md Shariff N., Mahamood S., Fathullah Harun H., Shahruddin M., Bhari A. (eds.) Proceeding of the 3rd International Halal Conference (INHAC2016), Springer, Singapore.
Wibisono, Y., Faradilla, A., Utoro, P.A., Sukoyo, A., Izza, N., Dewi, S.R., 2018b, Anti-biofoulan Alami Moringa oleifera Sebagai Bahan Pengisi Membran Mixed Matrix Selulosa Asetat untuk Klarifikasi Jus Buah, J. Rekayasa Kimia dan Lingkungan, 13 (2), 100-109.
DOI: https://doi.org/10.22146/jrekpros.40458
Article Metrics
Abstract views : 6965 | views : 19514Refbacks
- There are currently no refbacks.
Copyright (c) 2019 The authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.