Pengaruh Derajat Keasaman (pH) dalam Proses Presipitasi Hidroksida Selektif Ion Logam dari Larutan Ekstrak Spent Catalyst
Kevin Cleary Wanta(1*), Federick Dwi Putra(2), Ratna Frida Susanti(3), Gelar Panji Gemilar(4), Widi Astuti(5), Shinta Virdhian(6), Himawan Tri Bayu Murti Petrus(7)
(1) Jurusan Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Jl Ciumbuleuit No. 94, Bandung 40141
(2) Jurusan Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Jl Ciumbuleuit No. 94, Bandung 40141
(3) Jurusan Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Jl Ciumbuleuit No. 94, Bandung 40141
(4) PT. Petrokimia Gresik, Jl Jenderal Ahmad Yani, Gresik, 61119
(5) Balai Penelitian Teknologi Mineral, Lembaga Ilmu Pengetahuan Indonesia, Jl Ir. Sutami Km. 15, Tanjung Bintang, Lampung Selatan, 35361
(6) Balai Besar Logam dan Mesin, Kementerian Perindustrian, Jl Sangkuriang No. 12, Bandung, 40135
(7) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada, Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55281
(*) Corresponding Author
Abstract
A B S T R A C T
Nickel hydroxide [Ni(OH)2] is an important compound in producing rechargeable batteries. The synthesis of Ni(OH)2 can be carried out using a hydroxide precipitation method from a solution containing nickel (II) (Ni2+) ions. In this study, the synthesis of Ni(OH)2 was investigated from the solution of extracted spent catalyst using sulfuric acid (H2SO4) solution. The selective precipitation was conducted using sodium hydroxide (NaOH) solution and the degree of acidity (pH) was varied in the range of 4–14. The operating temperature was kept constant at 30oC. The experimental results showed that the optimum precipitation conditions of Al3+ and Ni2+ ions were obtained at different pH where the optimum pH values were 6 and 10, respectively. Precipitate samples were characterized and the results showed that the purity of Ni(OH)2 in those samples was 13.1%. The XRD results indicated that the structure of precipitate still contains other impurities, such as Na2SO4, Al(OH)3 and those compounds were mutually agglomerate.
A B S T R A K
Nikel hidroksida [Ni(OH)2] merupakan senyawa penting dalam produksi baterai yang dapat didaur ulang. Sintesis senyawa Ni(OH)2 dapat dilakukan melalui metode presipitasi hidroksida dari suatu larutan yang mengandung ion nikel (II) (Ni2+). Pada studi ini, sintesis Ni(OH)2 dilakukan dari larutan induk hasil ekstraksi spent catalyst dengan menggunakan larutan asam sulfat (H2SO4). Proses presipitasi selektif dilakukan dengan menggunakan larutan natrium hidroksida (NaOH) dan derajat keasaman (pH) divariasikan pada kisaran 4 hingga 14. Temperatur operasi dijaga konstan pada 30 oC. Hasil percobaan menunjukkan bahwa proses presipitasi ion Al3+ dan ion Ni2+ mencapai keadaan optimum pada pH yang berbeda dengan nilai pH optimumnya adalah 6 dan 10, secara berurutan. Hasil karakterisasi sampel menunjukkan bahwa kemurnian Ni(OH)2 dalam sampel sebesar 13,1%. Hasil pengujian XRD mengindikasikan bahwa struktur presipitat yang terbentuk masih mengandung senyawa pengotor lain, seperti senyawa Na2SO4, Al(OH)3 dan senyawa–senyawa tersebut saling mengaglomerasi.
Keywords
Full Text:
PDFReferences
Abdel–Aal, E.A., Rashad, M.M., 2004, Kinetic study on the leaching of spent nickel oxide catalyst with sulfuric acid, Hydrometallurgy, 74, 189–194.
Al–Mansi, N.M., Monem, N.M.A., 2002, Recovery of nickel oxide from spent catalyst, Waste Manage., 22, 85–90.
Ananikov, V.P., 2015, Nickel: the “spirited horse” of transition metal catalysis, ACS Catal., 5, 1964–1971.
Barbooti, M.M., Abid, B.A., Al–Shuwaiki, N.M., 2011, removal of heavy metals using chemicals precipitation, Eng. & Tech. Journal, 29(3), 595–612.
Basturkcu, H., Acarkan, N., 2017, Selective nickel–iron separation from atmospheric leach liquor of a lateritic nickel ore using the para–goethite method, Physicochem. Probl. Miner. Process, 53(1), 212–226.
Borst, K.E., McNulty, R., 2018, Analysis of Aluminum (III) in Water, diakses di www.emich.edu/chemistry/genchemlab/ diakses pada April 2018.
Campagnol, N., Hoffman, K., Lala, A., Ramsbottom, O., 2017, The future of nickel: A class act, Basic Materials, McKinsey & Company.
Chen, J., Bradhurst, D.H., Dou, S.X., Liu, H.K., 1999, Nickel Hydroxide as an active material for the positive electrode in rechargeable alkaline batteries, J. Electrochem. Soc., 146, 3606–3612.
Haar, K.T., Westerveld, W., 1948, The colorimetric determination of nickel as Ni(4) dimethylglyoxime, Recueil, 67, 71–81.
International Agency for Research on Cancer (IARC), 2012, IARC Monographs: Arsenic, Metals, Fibres, and Dusts – A review of human carcinogens, vol. 100 C, World Health Organization, Lyon, pp. 169–218.
Lee, J. Y., Rao, S.V., Kumar, B.N., Kang, D.J., Reddy, B.R., 2010, Nickel recovery from spent Raney nickel catalyst through dilute sulfuric acid leaching and soda ash precipitation, J. Hazard. Mater., 176, 1122–1125.
Lewis, A.E., 2010, Review of metal sulphide precipitation, Hydrometallurgy, 104, 222–234.
Marafi, M., Stanislaus, A., 2003, Options and process for spent catalyst handling and utilization, J. Hazard. Mater., B101, 123–132.
McRae, M.E., 2018, Nickel, Mineral Commodity Summaries 2018: U.S. Geological Survey, 112–113.
Mubarok, M.Z., Lieberto, J., 2013, Precipitation of nickel hydroxide from simulated and atmospheric–leach solution of nickel laterite ore, Procedia Earth and Planetary Science, 6, 457–464.
Mudd, G.M., 2009, Nickel Sulfide Versus Laterite: The Hard Sustainability Challenge Remains, 48th Annual Conference of Metallurgists, Canadian Metallurgical Society, Ontario, Agustus 2009.
Mulak, W., Miazga, B., Szymczycha, A., 2005, Kinetics of nickel leaching from spent catalyst in sulphuric acid solution, Int. J. Miner. Process, 77, 231–235.
Nazemi, M.K., Rashchi, F., Mostoufi, N., 2011, A new approach for identifying the rate controlling step applied to the leaching of nickel from spent catalyst, Int. J. Miner. Process., 100, 21–26.
Negrea, D., David, E., Malinovschi, V., Moga, S., Ducu, C., 2010, X–ray analysis of spent catalysts and recovered metals, Environ. Eng. Manage. J., 9(9), 1235–1241.
Nickel Institute, 2015, Nickel Compounds: The inside story.
Oustadakis, P., Agatzini–Leonardou, S., Tsakiridis, P.E., 2006, Nickel and cobalt precipitation from sulphate leach liquor using MgO pulp as neutralizing agent, Miner. Eng., 19, 1204–1211.
Pinto, I.S.S., Soares, H.M.V.M., 2013, Microwave–assisted selective leaching of nickel from spent hydrodesulphurization catalyst: A comparative study between sulphuric and organic acids, Hydrometallurgy, 140, 20–27.
Rajamathi, M., Subbanna, G.N., Kamath, P.V., 1997, On the existence of a nickel hydroxide phase which is neither α nor β, J. Mater. Chem., 7(11), 2293–2296.
Ramesh, T.N., Kamath, P.V., 2006, Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder, J. Power Sources, 156, 655–661.
Sahu, K.K., Agarwal, A., Pandey, B.D., 2005, Nickel recovery from spent nickel catalyst, Waste Manage Res, 23, 148–154.
Sahu, K.K., Pandey, B.D., Chand, P., 2004, Process for Recovery of Nickel from Spent Catalyst, US Patent No. 6.733.564 BI.
Soller–Illia, G.J.de.A.A, Jobbágy, M., Regazzoni, A.E., Blesa, M.A., 1999, Synthesis of nickel hydroxide by homogeneous alkalinization. Precipitation mechanism, Chem. Mater., 11, 3140–3146.
Song, Q., Tang, Z., Guo, H., Chan, S.L.I., 2002, Structural characteristics of nickel hydroxide synthesized by a chemical precipitation route under different pH values, J. Power Sources, 112, 428–434.
Szymczycha–Madeja, A., Mulak, W., Leśniewicz, A., 2007, Physicochemical study of spent hydrodesulphurization (HDS) catalyst, Physicochem. Probl. Miner. Process., 41, 125–132.
Wang, L.K., Vaccari, D.A., Li, Y., Shammas, N.K., 2005, Chemical Precipitation dalam Physicochemical Treatment Processes, Handbook of Environmental Engineering, vol 3. Humana Press, pp. 141–197.
Wanta, K.C., Perdana, I., Petrus, H.T.B.M., 2017, Evaluation of shrinking core model in leaching process of Pomalaa nickel laterite using citric acid as leachant at atmospheric conditions, IOP Conf. Series: Materials Science and Engineering, 162, 012018.
Wanta, K.C., Petrus, H.T.B.M., Perdana, I., Astuti, W., 2017, Uji validitas model shrinking core terhadap pengaruh konsentrasi asam sitrat dalam proses leaching nikel laterit, Jurnal Rekayasa Proses, 11(1), 30–35.
Wanta, K.C., Tanujaya, F.H., Susanti, R.F., Petrus, H.T.B.M., Perdana, I., Astuti, W., 2018, Studi kinetika proses atmospheric pressure acid leaching bijih laterit limonit menggunakan larutan asam nitrat konsentrasi rendah, Jurnal Rekayasa Proses, 12(2), 19–26.
www.umich.edu/~chem125/F08/Lec09F08key.pdf diakses pada Februari 2019.
DOI: https://doi.org/10.22146/jrekpros.44007
Article Metrics
Abstract views : 11274 | views : 33706Refbacks
- There are currently no refbacks.
Copyright (c) 2019 The authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.