The Effect of Biomass-Water Ratio on Bio-crude Oil Production from Botryococcus braunii using Hydrothermal Liquefaction Process

https://doi.org/10.22146/jrekpros.48963

Laras Prasakti(1*), Rochmadi Rochmadi(2), Arief Budiman(3)

(1) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl Grafika No. 2 Kampus UGM, 55281 Yogyakarta
(2) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl Grafika No. 2 Kampus UGM, 55281 Yogyakarta
(3) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl Grafika No. 2 Kampus UGM, 55281 Yogyakarta
(*) Corresponding Author

Abstract


The increasing demand of energy in Indonesia has led to the urgency to conduct research and development in renewable energy. Biomass is one of the largest renewable energy sources in Indonesia. For biomass to energy conversion, hydrothermal liquefaction (HTL) has been considered as one of the potential methods where biomass is processed using subcritical water to produce bio-oil, aqueous phase, gas, and solid product. In this research, the effect of biomass-water ratio on hydrothermal liquefaction (HTL) process of microalgae Botryococcus braunii has been investigated. The HTL was conducted using biomass/water ratio 1:10, 1:20 and 1:30 with various holding time for each ratio. The product was bio-crude oil with similar characteristics to crude oil. Experimental results showed that biomass-water ratio affected the distribution of bio-crude oil yields. For biomass-water ratio of 1:10 and 1:20, it was found that bio-crude oil yields reached a maximum at 20 minutes, while the highest bio-crude oil yield of 4% was obtained at biomass-water ratio of 1:10. On the other hand, with biomass-water ratio of 1:30, bio-crude oil yield was continuously increasing with holding time until it reached the maximum yield of 4% at 40 minutes of holding time. The aforementioned results indicated that the highest bio-crude oil yield was obtained using biomass-water ratio 1:10 and 20 minutes of HTL processing time.

 

A B S T R A K

Peruraian anaerobik merupakan salah satu bidang riset yang sangat menarik perhatian dalam era krisis energi. Biogas tidak hanya menyediakan energi alternatif, tetapi juga dapat mencegah pencemaran akibat limbah organik. Limbah lemak susu adalah substrat yang potensial untuk proses peruraian anaerobik karena memiliki potensi biogas teoritis yang tinggi akibat kandungan lemaknya yang tinggi. Namun, peruraian anaerobik dari limbah organik dengan kandungan lemak yang tinggi memiliki tantangan tersendiri. Hambatan utama dalam peruraian anaerobik dari limbah lemak susu adalah kecenderungan untuk membentuk lapisan padatan yang tidak larut dan mengapung di bagian atas fase cair. Fenomena ini menghambat akses bakteri hidrolisis terhadap substrat. Saponifikasi adalah salah satu cara untuk meningkatkan kelarutan lapisan padatan tersebut, sehingga meningkatkan ketersediaan substrat untuk bakteri. Saponifikasi akan mengubah kandungan lemak menjadi sabun yang memiliki gugus fungsi polar maupun non-polar. Gugus fungsi yang bersifat polar akan meningkatkan kelarutan substrat dalam air. Studi ini mengevaluasi pengaruh dari berbagai dosis larutan basa yang ditambahkan sebagai reaktan selama perlakuan awal saponifikasi terhadap peruraian anaerobik limbah lemak susu. Kinetika proses peruraian anaerobik dianalisis dengan menggunakan model matematika. Variasi dosis yang diamati pengaruhnya untuk perlakuan awal saponifikasi adalah 0,04 mol basa/g sCOD; 0,02 mol basa/g sCOD; dan nol (tanpa perlakuan awal saponifikasi). Dari penelitian ini, terbukti bahwa saponifikasi berhasil meningkatkan kelarutan limbah lemak susu dan juga ditunjukkan oleh nilai konstanta hidrolisis (kH) 0,00782/hari lebih tinggi dua puluh kali lipat dibandingkan dengan nilai kH 0,00032/hari pada reaktor tanpa saponifikasi. Akan tetapi, penelitian ini juga mengindikasikan bahwa bakteri asidogenik bawaan substrat terhambat kinerjanya oleh paparan pH yang tinggi selama perlakuan awal saponifikasi berlangsung sehingga hasil gas metan yang diperoleh lebih rendah daripada reaktor kontrol.


Keywords


bio-crude oil; biomass-water ratio; Botryococcus braunii; hydrothermal liquefaction; microalgae

Full Text:

PDF


References

Badan Pusat Statistik Indonesia, 2013, Proyeksi Penduduk Indonesia Indonesia Population Projection 2010-2035, Badan Pusat Statistik Indonesia.

Biswas, B., Arun Kumar, A., Bisht, Y., Singh, R., Kumar, J. and Bhaskar, T., 2017, Effects of temperature dan solvent on hydrothermal liquefaction of Sargassum tenerrimum algae, Bioresour. Technol., 242, 344–350.

BP, 2017, BP Statistical Review of World Energy June 2017. Available at: https://www.bp.com/ content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energi-2017-full-report.pdf.

Caprariis, B. de, Filippis, P. De, Petrullo, A. and M. Scarsella., 2017, Hydrothermal liquefaction of biomass: Influence of temperature dan biomass composition on the bio-oil production, Fuel., 208, 618–625.

Dimitriadis, A. and Bezergianni, S., 2017, Hydrothermal liquefaction of various biomass dan waste feedstocks for biocrude production: A state of the art review, Renew.Sus. Energ.Rev., 68, 113–125.

Gai, C.,Zhang, Y., W. T. Chen, P. Zhang, and Y. Dong, 2015, An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa dan Spirulina platensis, Energ.Conver.Manage., 96, 330–339.

Gollakota, A. R. K., Kishore, N. and Gu, S., 2016, A review on hydrothermal liquefaction of biomass, Renew.Sus.Energ.Rev., 1–15.

Huber, G. W., Sara, I. and Corma, A., 2006, Synthesis of Transportation Fuels from Biomass, Chem Rev., 2 (106), 4044–4098.

Jena, U., Das, K.C. and Kastner, J.R., 2011, Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis, Bioreseource Technology, 102 (10), 6221-6229.

Kang, S., Fu, J. and Zhang, G., 2018, From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis, Renewable and Sustainable Energy Reviews, 94, 340-362.

Ky, T., Kim, S., Vu, H., E. Yeol, C. Lee, and Kim, J, 2017, Bioresource Technology A general reaction network dan kinetic model of the hydrothermal liquefaction of microalgae Tetraselmis sp., Bioresour.Technol., 241, 610–619.

Mujiyanto, S. and Tiess, G., 2013, Secure energy supply in 2025: Indonesia’s need for an energy policy strategy, Energy Policy., 61(5), 31–41.

Phang, S., Yeoing, H., Ganzon-Fortes, E.T., Lewmanomont, K., Prathep, A., Hau, L. N., Gerung, G.S. and Tan, K.S., 2016, Marine algae of the South China Sea bordered by Indonesia, Malaysia, Phippines, Singapore, Thailand and Vietnam, Raffles Bulletin Of Zoology, 34, 15-39.

Peterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr. M. J., and Tester, J. W., 2008, Thermochemical biofuel production in hydrothermal media: A review of sub- dan supercritical water technologies, Energ. Environ. Sci., 1 (1), 32.

Sari, A. M., Mayasari, H. E., Rachimoellah and S. Zullaikah., 2013, Pertumbuhan dan kandungan lipida dari Botryococcus braunii dalam media air laut, Jurnal Teknik POMITS, 2 (1), 1–6.

Sugiyono, A., 2016, Outlook Energi Indonesia 2016: Pengembangan Energi untuk Mendukung Industri Hijau., Jakarta. Available at: www.bppt.go.id.

Susilaningsih, D., Khuzaemah, Rahman, D.Y. and Sekiguchi, H., 2014, Screening for lipid depositor of Indonesian microalgae isolated from seashore and peat-land, Int. J. Hydrogen Energy, 39, 19394-19399.

Thiruvenkadam, S., Izhar, S., Yoshida, H., Danquah, M.K. and Harun, R., 2015, Process application of subcritical water extraction (SWE) for algal bio-products and biofuels production. Appl. Energy.,154, 815–28.

Valdez, P. J., Nelson, M. C., Wang, H. Y., Lin, X. N. and Savage., P. E., 2012, Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables dan analysis of the product fractions, Biomass. Bioenerg., 46, 317–331.

Valdez, P. J., Tocco, V. J. and Savage, P. E., 2014, A general kinetic model for the hydrothermal liquefaction of microalgae, Bioresour. Technol., 163, 123–127.

Vardon, D.R., Sharma, B.K., Scott J., Yu, G., Wang, Z., Schideman, L., Zhang, Y. and Strathmann, T.J., 2011, Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge, Bioresour. Technol., 102 (17), 8295–303.

Vo, T.K., Lee O.K, Lee, E.Y., Kim, C.H., Seo, J.W., Kim, J. and Kim, S.S., Kinetics study of the hydrothermal liquefaction of the microalga Aurantiochytrium sp. KRS101. Chem. Eng. J. 2016, 306, 763–71.

Xu, D. and Savage, P. E., 2017, Bioresource technology effect of temperature, biomass-water ratio, and Ru/C catalyst on water-insoluble dan water-soluble biocrude fractions from hydrothermal liquefaction of algae, Bioresour.Technol., 239, 1–6.



DOI: https://doi.org/10.22146/jrekpros.48963

Article Metrics

Abstract views : 2895 | views : 2328

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 The authors

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.