Potensi Polisakarida dari Limbah Buah-buahan sebagai Koagulan Alami dalam Pengolahan Air dan Limbah Cair: Review


Hans Kristianto(1*), Angelica Jennifer(2), Asaf Kleopas Sugih(3), Susiana Prasetyo(4)

(1) Jurusan Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan Jl. Ciumbuleuit No. 94 Bandung 40141
(2) Jurusan Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan Jl. Ciumbuleuit No. 94 Bandung 40141
(3) Jurusan Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan Jl. Ciumbuleuit No. 94 Bandung 40141
(4) Jurusan Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan Jl. Ciumbuleuit No. 94 Bandung 40141
(*) Corresponding Author


Nowadays, various studies related to utilization of biobased materials as natural coagulants have been explored. Based on the source, natural coagulants can be classified as animal, vegetable, or microbial based. Furthermore, based on the active ingredients, it can be classified as protein, polyphenols, and polysaccharides. Polysaccharides are abundant natural ingredients and are often found in plants or animals. In this study, we focused on polysaccharides, especially those from fruit waste, such as seeds and fruit peels. It is known that around 25-30% of the total weight of fruit is generally wasted, even though it contains phytochemicals and various active ingredients that can be utilized, especially as a natural coagulant. This review will focus on the use of pectin and starch from fruit waste as natural coagulants for water- wastewater treatment. Generally, pectin is commonly found in the skin of fruits as part of the cell wall structure, while starch is found in fruit seeds as food reserves. To be used as a natural coagulant, pectin or starch need to be extracted first. In particular, starch needs to be modified either physically or chemically. The coagulation mechanism of pectin and starch usually follows the interparticle bridging mechanism. The use of pectin and starch from fruit waste needs to be explored and further investigated, to substitute the use of chemical coagulants.

Keywords: coagulation; fruit waste; natural coagulant; polysaccharides


Dewasa ini berbagai studi terkait pemanfaatan bahan alam sebagai koagulan alami telah banyak dieksplorasi. Berdasarkan sumbernya, koagulan alami dapat digolongkan berbasis hewani, nabati, maupun mikrobial, sementara berdasarkan bahan aktifnya dapat digolongkan sebagai protein, polifenol, dan polisakarida. Polisakarida merupakan bahan alam yang berlimpah dan seringkali dijumpai pada tumbuh-tumbuhan dan hewan. Pada kajian ini difokuskan pada polisakarida terutama yang berasal dari limbah buah-buahan yang tidak termanfaatkan, seperti biji dan kulit buah. Diketahui sekitar 25-30% dari total berat buah pada umumnya terbuang, padahal memiliki kandungan fitokimia dan berbagai bahan aktif yang dapat dimanfaatkan, salah satunya sebagai koagulan alami. Pada tinjauan ini akan difokuskan pada pemanfaatan pektin dan pati dari limbah buah-buahan sebagai koagulan alami untuk pengolahan air dan limbah cair. Secara umum pektin umum dijumpai pada bagian kulit buah-buahan sebagai bagian dari struktur dinding sel, sementara pati umum dijumpai pada biji buah-buahan sebagai cadangan makanan. Untuk dapat dimanfaatkan sebagai koagulan alami, pektin ataupun pati perlu diekstrak terlebih dahulu, dan pati secara khusus perlu dimodifikasi baik secara fisika maupun kimia. Secara umum mekanisme koagulasi oleh pektin dan pati mengikuti mekanisme interparticle bridging. Pemanfaatan pektin dan pati dari limbah buah-buahan perlu dieksplorasi dan diteliti lebih lanjut, agar dapat mensubstitusi penggunaan koagulan kimia secara komersial.

Kata kunci: koagulasi; koagulan alami; limbah buah-buahan; polisakarida


coagulation; fruit waste; natural coagulant; polysaccharides

Full Text:



Ahmad, I. and Chua, P. C., 2013, Trends in production and trade of tropical fruits in ASEAN countries, Acta Hort., 975, 559-580

Alwi, H., Idris, J., Musa, M. and Hamid, K. H. K., 2013, A preliminary study of banana stem juice as a plant-based coagulant for treatment of spent coolant wastewater, Journal of Chemistry, 2013, No. 165057

Ang, T.-H., Kiatkittipong, K., Kiatkittipong, W., Chua, S.-C., Lim, J. W., Show, P.-L., Bashir, M. J. K. and Ho, Y.-C., 2020, Insight on extraction and characterization of biopolymers as the green coagulants for microalgae harvesting, Water, 12 (5),  No. 1388

Ang, W. L. and Mohammad, A. W., 2020, State of the art and sustainability of natural coagulants in water and wastewater treatment, J. Clean Prod., 262, No. 121267

Asif, M. B., Majeed, N., Iftekhar, S., Habib, R., Fida, S. and Tabraiz, S., 2016, Chemically enhanced primary treatment of textile effluent using alum sludge and chitosan, Desalin. Water Treat., 57, 7280-7286

Asrafuzzaman, M., Fakhruddin, A. N. M. and Hossain, M. A., 2011, Reduction of turbidity of water using locally available natural coagulants, ISRN Microbiology, 2011, 1-6

Aziz, H. A. and Sobri, N. I. M., 2015, Extraction and application of starch-based coagulants from sago trunk for semi-aerobic landfill leachate treatment, Environ. Sci. Pollut. Res., 22, 16943–16950

Bele, A. A., Jadhav, V. M. and Kadam, V. J., 2010, Potential of tannins: A review, Asian Journal of Plant Sciences, 9(4), 209-214

Bertoft, E., 2017, Understanding starch structure: Recent progress, Agronomy, 7(3), No. 56

Bhattacharya, A. and Misra, B. N., 2004, Grafting: A versatile means to modify polymers: Techniques, factors, and applications, Prog. Polym. Sci., 29(8), 767-814

Birima, A. H., Hammad, H. A., Desa, M. N. M. and Muda, Z. C., 2013, Extraction of natural coagulant from peanut seeds for treatment of turbid water IOP Conf. Series: Earth and Environmental Science, 16, 1-4

BPS (2020), Tabel dinamis subjek hortikultura, diakses 31 Maret 2020 dari https://bps.go.id/subject/55/hortikultura.html#subjekViewTab6.

Braccini, I. and Perez, S., 2001, Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited, Biomacromolecules, 2, 1089-1096

Chan, S.-Y. and Choo, W.-S., 2013, Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks, Food Chem., 141, 3752–3758

Choy, S. Y., Prasad, K. M. N., Wu, T. Y., Raghunandan, M. E. and Ramanan, R. N., 2014, Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification, J. Environ. Sci., 26(11), 2178-2189

Choy, S. Y., Prasad, K. M. N., Wu, T. Y., Raghunandan, M. E., Yang, B., Phang, S.-M. and Ramanan, R. N., 2017, Isolation, characterization and the potential use of starch from jackfruit seed wastes as a coagulant aid for treatment of turbid water, Environ. Sci. Pollut. Res., 24, 2876–2889

Choy, S. Y., Prasad, K. M. N., Wu, T. Y. and Ramanan, R. N., 2015, A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification, Int. J. Environ. Sci. Technol., 12, 367-390

Choy, S. Y., Prasad, K. N., Wu, T. Y., Raghunandan, M. E. and Ramanan, R. N., 2016, Performance of conventional starches as natural coagulants for turbidity removal, Ecological Engineering, 94, 352-364

Chua, S.-C., Chong, F.-K., Malek, M. A., Mustafa, M. R. U., Ismail, N., Sujarwo, W., Lim, J.-W. and Ho, Y.-C., 2020, Optimized use of ferric chloride and sesbania seed gum (SSG) as sustainable coagulant aid for turbidity reduction in drinking water treatment, Sustainability, 12, Article No. 2273

Ciriminna, R., Chavarría-Hernández, N., Hernández, A. I. R. and Pagliaro, M., 2015, Pectin: A new perspective from the biorefinery standpoint, Biofuels, Bioprod. Bioref., 9(4), 368-377

Egharevba, H. O., 2020, Chemical Properties of Starch and Its Application in the Food Industry, IntechOpen, London

Emaga, T. H., Robert, C., Ronkart, S. N., Wathelet, B. and Paquot, M., 2008, Dietary fiber components and pectin chemical features of peels during ripening in banana and plantain varieties, Biores. Technol., 99, 4346–4354

Freitas, T. K. F. S., Almeida, C. A., Manholer, D. D., Geraldino, H. C. L., Souza, M. T. F. d. and Garcia, J. C., 2018, Review of Utilization Plant-based Coagulants as Alternatives to Textile Wastewater Treatment. in: S. S. Muthu (Eds.), Textile Science and Clothing Technology, Springer Nature, Singapore, pp 27-79.

Grenda, K., Arnold, J., Hunkeler, D., Gamelas, J. A. F. and Rasteiro, M. G., 2018, Tannin-based coagulants from laboratory to pilot plant scales for coloured wastewater treatment, BioRes, 13(2), 2727-2747.

Habtemariam, S., 2019, The Chemical and Pharmacological Basis of Okra (Abelmoschus esculentus (l.) moench) as Potential Therapy for Type 2 Diabetes in Medicinal Foods as Potential Therapies for Type-2 Diabetes and Associated Diseases, Elsevier, Amsterdam, 307-332.

Held, M. A., Jiang, N., Basu, D., Showalter, A. M. and Faik, A., 2014, Plant cell wall polysaccharides, in: Ramawat K., Mérillon JM. (Eds) Polysaccharides, Springer, Cham.

Ho, Y. C., Norli, I., Alkarkhi, A. F. M. and Morad, N., 2009, Analysis and optimization of flocculation activity and turbidity reduction in kaolin suspension using pectin as a biopolymer flocculant, Water Sci. Techol., 60(3), 771-781.

Ho, Y. C., Norli, I., Alkarkhi, A. F. M. and Morad, N., 2010, Characterization of biopolymeric flocculant (pectin) and organic synthetic flocculant (PAM): A comparative study on treatment and optimization in kaolin suspension, Biores Technol, 101,  1166–1174

Hu, Z., Zhao, L., Hu, Z. and Wang, K., 2018, Hierarchical structure, gelatinization, and digestion characteristics of starch from longan (Dimocarpus longan lour.) seeds, Molecules, 23, No. 3262.

Karim, R., Uddin, M. B. and Jubayer, M. F., 2014, Optimization of pectin isolation method from pineapple (Ananas comosus l.) waste, Carpathian Journal of Food Science and Technology, 6(2), 116-122.

Kebaili, M., Djellali, S., Radjai, M., Drouiche, N. and Lounici, H., 2018, Valorization of orange industry residues to form a natural coagulant and adsorbent, J. Ind. Eng. Chem., 64, 292-299.

Kringel, D. H., Dias, A. R. G., Zavareze, E. d. R. and Gandra, E. A., 2020, Fruit wastes as promising sources of starch: Extraction, properties, and applications, Starch, 72 (3-4),  No 1900200.

Kristianto, H., 2017, The potency of indonesia native plants as natural coagulant: A mini review, Water Conserv. Sci. Eng., 2, 51–60.

Kristianto, H., Paulina, S. and Soetedjo, J. N. M., 2018, Exploration of various Indonesian indigenous plants as natural coagulant for synthetic turbid water, IJTech, 9(3), 464-471.

Kristianto, H., Prasetyo, S. and Sugih, A. K., 2019a, Pemanfaatan ekstrak protein dari kacang-kacangan sebagai koagulan alami, Jurnal Rekayasa Proses, 13(2), 65-80.

Kristianto, H., Rahman, H., Prasetyo, S. and Sugih, A. K., 2019b, Removal of congo red aqueous solution using Leucaena leucocephala seed’s extract as natural coagulant, Appl. Water Sci., 9(4), No 88.

Kuhiyop, E. A., Adie, D. B. and Abubakar, U. A., 2020, Application of Mangifera indica (mango) and Phoenix dactylifera (dates) seeds powders as coagulants in wastewater treatment, Nigerian Journal of Technology,  39(1),  269-277.

Kukic, D. V., Sciban, M. B., Prodanovic, J. M., Tepic, A. N. and Vasic, M. A., 2015, Extracts of fava bean (Vicia faba l.) seeds as natural coagulants, Ecol. Eng.,  84,  229-232.

Kumar, V., Othman, N. and Asharuddin, S., 2017, Applications of natural coagulants to treat wastewater − a review, MATEC Web of Conferences, 103, 06016.

Lattanzio, V., Cardinali, A. and Linsalata, V., 2012, Plant Phenolics: A Biochemical and Physiological Perspective, in:  Cheynier, V. Sarni-Manchado P. and Quideau S. (Eds.), Recent Advances in Polyphenol Research., John Wiley & Sons Ltd, New Jersey

Lee, C. S., 2017, Extraction of bio-flocculant from okra using hydrothermal and microwave extraction methods combined with a techno-economic assessment, PhD thesis, University of Nottingham.

Lee, C. S., Chong, M. F., Robinson, J. and Binner, E., 2014, A review on development and application of plant-based bioflocculants and grafted bioflocculants, Ind. Eng. Chem. Res., 53(48), 18357-18369.

Lee, S.-G., Kim, H.-S. and Son, J.-Y., 1999, Physicochemical properties of the durian seed starch, Korean J. Food Sci. Technol., 31(6), 1410-1414.

Lichtfouse, E., Crini, N. M., Fourmentin, M., Zemmouri, H., Nascimento, I. O. d. C., Queiroz, L. M., Tadza, M. Y. M., Corrales, L. A. P., Pei, H., Wilson, L. D. and Crini, G., 2019, Chitosan for direct bioflocculation of wastewater, Environ. Chem. Lett., 17, 1603–1621.

Madruga, M. S., Albuquerque, F. S. M. d., Silva, I. R. A., Amaral, D. S. d., Magnani, M. and Neto, V. Q., 2014, Chemical, morphological and functional properties of Brazilian jackfruit (Artocarpus heterophyllus l.) seeds starch, Food Chem.,  143,  440-445.

Marić, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brnčić, M. and Brnčić, S. R., 2018, An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction, Trends Food Sci. Technol.,  76,  28-37.

Mbogo, S. A., 2008, A novel technology to improve drinking water quality using natural treatment methods in rural Tanzania, Environ. Health, 70(7), 46-50.

Meraz, K. A. S., Vargas, S. M. P., Maldonado, J. T. L., Bravo, J. M. C., Guzman, M. T. O. and Maldonado, E. A. L., 2016, Eco-friendly innovation for nejayote coagulation–flocculation process using chitosan: Evaluation through zeta potential measurements, Chem. Eng. J.,  284,  536-542.

Munarin, F., Tanzi, M. C. and Petrini, P., 2012, Advances in biomedical applications of pectin gels, International Journal of Biological Macromolecules, 51(4), 681-689.

Nsom, M. V., Etape, E. P., Tendo, J. F., Namond, B. V., Chongwain, P. T., Yufanyi, M. D. and William, N., 2019, A green and facile approach for synthesis of starch-pectin magnetite nanoparticles and application by removal of methylene blue from textile effluent, Journal of Nanomaterials, 2019,  No 4576135.

O’Neill, M. A., Ishii, T., Albersheim, P. and Darvill, a. A. G., 2004, Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide, Annu. Rev. Plant Biol., 55, 109–139.

Oates, C. G. and Powell, A. D., 1996, Bioavailability of carbohydrate material stored in tropical fruit seeds, Food Chem., 56(4), 405-414.

Okuda, T., Baes, A. U., Nishijima, W. and Okada, M., 2001, Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds, Wat. Res., 35(3), 830-834.

Oladoja, N. A., Unuabonah, E. I., Amuda, O. S. and Kolawole, O. M., 2017a,. Mechanistic Insight into the Coagulation Efficiency of Polysaccharide-based Coagulants, In: Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment, SpringerBriefs in Molecular Science, Springer, Cham

Oladoja, N. A., Unuabonah, E. I., Amuda, O. S. and Kolawole, O. M., 2017b, Operational Principles and Material Requirements for Coagulation/Flocculation and Adsorption-based Water Treatment Operations, In: Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment, SpringerBriefs in Molecular Science. Springer, Cham

Oladoja, N. A., Unuabonah, E. I., Amuda, O. S. and Kolawole, O. M., 2017c, Tapping into microbial polysaccharides for water and wastewater purifications, In: Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment, SpringerBriefs in Molecular Science, Springer, Cham

Palacios-Fonseca, A. J., Castro-Rosas, J., Gomez-Aldapa, C. A., Tovar-Benitez, T., Millan-Malo, B. M., Real, A. d. and Rodriguez-Garcia, M. E., 2013, Effect of the alkaline and acid treatments on the physicochemical properties of corn starch, CyTA - Journal of Food, 11(S1), 67-74.

Pérez, S., Baldwin, P. M. and Gallant, D. J., 2009, Structural Features of Starch Granules I, in: BeMiller, J. and Whistler, R. (Eds.), Starch: Chemistry and Technology 3rd, Elsevier, Amsterdam

Picot-Allain, M. C. N., Ramasawmy, B. and Emmambux, M. N., 2020, Extraction, characterization, and application of pectin from tropical and sub-tropical fruits: A review, Food Reviews International, In Press, DOI: 10.1080/87559129.2020.1733008

Quincieu, E., 2015, Summary of Indonesia’s Agriculture, Natural Resources, and Environment Sector Assessment, Asian Development Bank.

Rasool, M. A., Tavakoli, B., Chaibakhsh, N., Pendashteh, A. R. and Mirroshandel, A. S., 2016, Use of a plant-based coagulant in coagulation–ozonation combined treatment of leachate from a waste dumping site, Ecol. Eng.,  90,  431-437.

Robledo, V. R. and Vázquez, L. I. C, 2019, Pectin - Extraction, Purification, Characterization, and Applications, in: Masuelli, M. (Eds), Pectins: Extraction, Purification, Characterization and Applications. IntechOpen, London

Saadany, R. M. A. E., Foda, Y. H. and Saadany, F. M. E., 1980, Studies on starch extracted from mango seeds (Mangifera indica) as a new source of starch, Starch, 32(4), 113-116.

Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M. and Lobo, M. G., 2018, Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization, Compr. Rev. Food Sci. Food Saf., 17(3),  512-531.

Sandarani, M. D. J. C., 2017, A review: Different extraction techniques of pectin, J. Pharmacogn. Nat. Prod., 3(3), No 1000143.

Sanghi, R., Bhattacharya, B., Dixit, A. and Singh, V., 2006, Ipomorea dasysperma seed gum: An effective natural coagulant for the decolorization of textile dye solutions, Journal of Environmental Management, 81(1), 36-41.

Sanghi, R., Bhatttacharya, B. and Singh, V., 2002, Cassia angustifolia seed gum as an effective natural coagulant for decolourisation of dye solutions, Green Chemistry, 4, 252–254.

Saranya, P., Ramesh, S. T. and Gandhimathi, R., 2014, Effectiveness of natural coagulants from non-plant-based sources for water and wastewater treatment—a review, Desalin. Water Treat., 52(31-33), 6030-6039.

Schols, H. A. and Voragen, A. G. J., 1996, Complex pectins: Structure elucidation using enzymes, Prog. Biotechnol., 14, 3–19.

Serna-Saldivar, S. O., 2010, Cereal Grains: Properties, Processing, and Nutritional Attributes, CRC Press, Boca Raton

Shahrim, N. A., Sarifuddin, N. and Ismail, H., 2018, Extraction and characterization of starch from mango seeds, IOP Conf. Series: Journal of Physics: Conf. Series, 1082, Article No 012019.

Shak, K. P. Y. and Wu, T. Y., 2014, Coagulation–flocculation treatment of high-strength agro-industrial wastewater using natural Cassia obtusifolia seed gum: Treatment efficiencies and flocs characterization, Chemi. Eng. J., 256, 293-305.

Sillanpaa, M., Ncibi, M. C., Matilainen, A. and Vepsalainen, M., 2018, Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review, Chemosphere, 190, 54-71

Sotheeswaran, S., Nand, V., Matakite, M. and Kanayathu, K., 2011, Moringa oleifera and other local seeds in water purification in developing countries, Res. J. Chem. Environ, 15(2), 135-138

Sriamornsak, P., 2003, Chemistry of pectin and its pharmaceutical uses: A review, Silpakorn Univ Int. J., 3, 206–228

Srinivasan, R., 2013, Natural Polysaccharides as Treatment Agents for Wastewater, in: Mishra, A. and Clark J. H., Green Materials for Sustainable Water Remediation and Treatment., Royal Society of Chemistry, London

Subramonian, W., Wu, T. Y. and Chai, S.-P., 2014, A comprehensive study on coagulant performance and floc characterization of natural Cassia obtusifolia seed gum in treatment of raw pulp and paper mill effluent, Industrial Crops and Products, 61, 317-324.

Sutherland, J. P., Folkard, G. K. and Grant, W. D., 1990, Natural coagulants for appropriate water treatment: A novel approach, Waterlines, 8(4), 30-32.

Teh, C. Y., Wu, T. Y. and Juan, J. C., 2014, Optimization of agro-industrial wastewater treatment using unmodified rice starch as a natural coagulant, Industrial Crops and Products, 56, 17–26.

Tongdang, T., 2008, Some properties of starch extracted from three Thai aromatic fruit seeds, Starch/Stärke, 60, 199-207.

Vanitha, T. and Khan, M., 2019, Role of Pectin in Food Processing and Food Packaging, in:  Masuelli, M., Pectins: Extraction, Purification, Characterization and Applications, IntechOpen, London

Venkatanagaraju, E., Bharathi, N., Sindhuja, R. H., Chowdhury, R. R. and Sreelekha, Y., 2019, Extraction and Purification of Pectin from Agro-Industrial Wastes, in: Masuelli, M., Pectins - Extraction, Purification, Characterization and Applications, IntechOpen, London

Vijayaraghavan, G. and Shanthakumar, S., 2016, Performance study on algal alginate as natural coagulant for the removal of congo red dye, Desalin. Water Treat., 57, 6384–6392.

Vijayaraghavana, G. and Shanthakumara, S., 2015, Removal of sulphur black dye from its aqueous solution using alginate from Sargassum sp. (brown algae) as a coagulant, Environ. Prog. Sustainable Energy, 34(5), 1427–1434.

Vilaplana, F., Zou, W. and Gilbert, R. G., 2018, Starch and Plant Storage Polysaccharides, in:  Lamboni, G. Y. L. X. L., Bioinspired Materials Science and Engineering., John Wiley & Sons Inc., New Jersey

Wai, W. W., Alkarkhi, A. F. M. and Easa, A. M., 2010, Effect of extraction conditions on yield and degree of esterification of durian rind pectin: An experimental design, Food Bioprod. Process, 88, 209–214.

Xiong, B., Loss, R. D., Shields, D., Pawlik, T., Hochreiter, R., Zydney, A. L. and Kumar, M., 2018, Polyacrylamide degradation and its implications in environmental systems, NPJ Clean Water,  1,  Article No 17.

Yapo, B. M. and Gnakri, D., 2014, Pectic Polysaccharides and Their Functional Properties, in: Ramawat, K. G. and Mérillon J.-M. (Eds), Polysaccharides: Bioactivity and Biotechnology., Springer, Cham. 1729-1749.

Yashoda, H. M., Prabha, T. N. and Tharanathan, R. N., 2005, Mango ripening—chemical and structural characterization of pectic and hemicellulosic polysaccharides, Carbohydr Res., 340, 1335–1342.

Yin, C.-Y., 2010, Emerging usage of plant-based coagulants for water and wastewater treatment, Process Biochem., 45, 1437-1444.

Yoshida, Z., Osawa, E. and Oda, R., 1964, Intermolecular hydrogen bond involving a p-base as the proton acceptor. I. Detection by the refractive index method., J. Phys. Chem. B, 68(10), 2895–2898.

Yusoff, M. S., Aziz, H. A., Zamri, M. F. M. A., Suja', F., Abdullah, A. Z. and Basri, N. E. A., 2018, Floc behavior and removal mechanisms of cross-linked Durio zibethinus seed starch as a natural flocculant for landfill leachate coagulation-flocculation treatment, Waste Management,  74,  362-372.

Zamri, M. F. M. A., Suja, F., Yusoff, M. S., Aziz, H. A. and Bahru, R., 2018, The comparison of Durio zibethinus seed starch extraction for landfill leachate treatment, Mater. Res. Express, 5, No 075507.

Zhang, P., Wang, L., Qian, Y., Wang, X., Zhang, S., Chang, J., Ruan, Y. and Ma, B., 2019, Influences of extraction methods on physicochemical and functional characteristics of three new bulbil starches from Dioscorea opposita thunb. cv. Tiegun, Molecules, 24(12), No 2232.

Zhao, S., Gao, B., Yue, Q., Sun, S., Song, W. and Jia, R., 2015, Influence of enteromorpha polysaccharides on variation of coagulation behavior, flocs properties and membrane fouling in coagulation–ultrafiltration process, J. Hazard Mater., 285, 294-303.

Zobel, H. F., 1988, Molecules to granules: A comprehensive starch review, Starch, 40(2), 44-50.

DOI: https://doi.org/10.22146/jrekpros.57798

Article Metrics

Abstract views : 587 | views : 820


  • There are currently no refbacks.

Copyright (c) 2020 The authors

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Rekayasa Proses  (print ISSN 1978-287X; online ISSN 2549-1490) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada. View website statistics.