Densification process of Merbau (Intsia bijuga) and Matoa (Pometia pinnata J.R. Forster & J.G Forster) Sawdust Waste for Biomass Based Solid Fuel Source in West Papua Indonesia: Optimization using Response Surface Methodology (RSM)
Agus Prasetya(1), Halomoan Siagian(2), Felix Arie Setiawan(3), Himawan Tri Bayu Murti Petrus, S.T., M.E, D.Eng.(4*)
(1) Department of Chemical Engineering (Sustainable Mineral Processing Research Group), Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2 Kampus UGM Bulaksumur, D. I. Yogyakarta 55281, Indonesia
(2) Magister Teknik Sistem, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2 Kampus UGM Bulaksumur, D. I. Yogyakarta 55281, Indonesia
(3) Department of Chemical Engineering, Faculty of Engineering, University of Jember, Jalan Kalimantan No.37, Krajan Timur, Sumbersari, Kabupaten Jember, Jawa Timur 68121, Indonesia
(4) Department of Chemical Engineering (Sustainable Mineral Processing Research Group), Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2 Kampus UGM Bulaksumur, D. I. Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Merbau (Intsia bijuga) and matoa (Pometia pinnata J.R. Forster & J.G Forster) are two amongst many prominent biomass sources from West Papua, Indonesia. With their versatile characteristics, merbau and matoa wood are used in many industries such as furniture, music instrument, and many other specialty products. However, wood processing industries can emit up to 60% of the residue. In this study, the usage of both merbau and matoa sawdust wastes as solid fuel was studied using response surface methodology (RSM). merbau and matoa sawdust are sieved to get the desired particle size (-20+50 mesh). Two kinds of the sawdust are then mixed in various compositions (70, 50, and 30% merbau). The mixed sawdust is then mixed with varied sticky starch solutions (1, 5, and 10%) to be formed in pellets with various moulding compression force (50, 100, and 150 kg/cm²). The pellets are then analyzed for its characteristics such as ash, moisture contents, and calorific value to be compared with its initial conditions. A full three-level factorial design under RSM was applied to explain the correlation between independent and dependent variables. The results show that statistically, merbau content, binder content, and compressive force showed relatively significant effects on the studied responses (ash content, moisture content, and calorific value). In addition, ANOVA analysis proved that each variable has significant effects on the responses that are confirmed by practically zero P-value. The coefficient of determinations (R²) are all above 0.96 and the normal probability plots confirm that the proposed models adequate the experimental results.
Keywords: biomass waste; densification; merbau; matoa; RSM
A B S T R A K
Merbau (Intsia bijuga) dan matoa (Pometia pinnata Forster) adalah dua di antara sumber biomassa potensial yang berasal dari Papua Barat, Indonesia. Dengan karakteristiknya yang serbaguna, merbau dan matoa digunakan di banyak industri seperti furnitur, alat musik, dan banyak produk khusus lainnya. Namun, industri pengolahan kayu dapat menghasilkan hingga 60% residu. Di Pada penelitian ini, pemanfaatan limbah serbuk gergaji merbau dan matoa sebagai bahan bakar padat dipelajari dengan menggunakan response surface method (RSM). Serbuk gergaji merbau dan matoa diayak untuk mendapatkan ukuran partikel yang diinginkan (-20+50 mesh). Dua jenis serbuk gergaji kemudian dicampur dalam berbagai komposisi (70, 50, dan 30% merbau). Serbuk gergaji yang sudah tercampur kemudian dicampur dengan bahan perekat yang bervariasi larutan pati (1, 5, dan 10%) untuk dibentuk dalam pelet dengan berbagai gaya tekan cetakan (50, 100, dan 150 kg/cm²). Pelet kemudian dianalisis karakteristiknya seperti abu, kadar air, dan nilai kalor untuk dibandingkan dengan kondisi awalnya. Sebuah desain RSM tiga faktorial penuh diterapkan untuk menjelaskan korelasi antara variabel independen dan variabel terikat. Secara statistik, hasil penelitian menunjukkan bahwa kadar merbau, kadar pengikat, dan gaya tekan menunjukkan efek yang relatif signifikan pada respons yang dipelajari (abu kadar air, kadar air, dan nilai kalor). Selain itu, analisis ANOVA membuktikan bahwa masing-masing variabel memiliki efek signifikan pada tanggapan yang dikonfirmasi oleh nilai P yang mendekati nol. Koefisien determinasi (R²) seluruhnya berada di atas 0,96 dan grafik probabilitas normal mengonfirmasi bahwa model yang diusulkan cukup sesuai dengan hasil eksperimen.
Kata kunci: limbah biomassa; densifikasi; merbau; matoa; RSM
Keywords
Full Text:
PDFReferences
Agarry, S. E., and Ogunleye, O. O., 2012, Factorial designs application to study enhanced bioremediation of soil artificially contaminated with weathered bonny light crude oil through biostimulation and bioaugmentation strategy, J. Environ. Prot., 3(08), 748
Alakangas, E., 2011, European standards for fuel specification and classes of solid biofuels, in: Solid Biofuels for Energy, Springer, London. pp. 21-41
Alakangas, E., 2015, Quality guidelines for wood fuels in Finland (Vol. VTT-M-04712-15), VTT Technical Research Centre of Finland
Arzola, N., Gómez, A., and Rincón, S., 2012, The effects of moisture content, particle size and binding agent content on oil palm shell pellet quality parameters, Ing. Invest., 32(1), 24-29
Bazargan, A., Rough, S. L., and McKay, G, 2014, Compaction of palm kernel shell biochars for application as solid fuel, Biomass Bioenergy, 70, 489-497
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., and Escaleira, L. A., 2008, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76(5), 965-977
BPS, 2015, Statistics of Forestry Production
BPS, 2017, Papua Barat Province in Figures, Manokwari
European Commission, 2006, Integrated Pollution Prevention and Control, Reference Document on Best Available Techniques for Large Combustion Plants, European Commission, Brussels
Dunlap, R. E., and Jorgenson, A. K., 2012, Environmental problems, The Wiley‐Blackwell Encyclopedia of Globalization, New Jersey, pp. 1-8. DOI: 10.1002/9780470670590.wbeog174
FAO, 1990, The potential use of wood residues for energy generation. Retrieved from http://www.fao.org/docrep/t0269e/ t0269e08.htm
Feng, Q., Zhang, J., Zhang, X., and Wen, S., 2015, Proximate analysis based prediction of gross calorific value of coals: a comparison of support vector machine, alternating conditional expectation and artificial neural network, Fuel Process. Technol., 129, 120-129.
Ministry of Environment and Forestry, 2015, Ministry of Environment and Forest Statistic 2014.
Heede, R., 2014, Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, Climatic Change, 122 (1-2), 229-241.
Henderson, J. E., Joshi, O., Parajuli, R., and Hubbard, W. G., 2017, A regional assessment of wood resource sustainability and potential economic impact of the wood pellet market in the US South, Biomass Bioenergy, 105, 421-427.
Kaliyan, N., and Morey, R. V., 2009, Factors affecting strength and durability of densified biomass products, Biomass Bioenergy, 33(3), 337-359.
Kampa, M., and Castanas, E. 2008, Human health effects of air pollution, Environ Pollut., 151(2), 362-367.
Liu, Z., Mi, B., Jiang, Z., Fei, B., and Cai, Z, 2016, Improved bulk density of bamboo pellets as biomass for energy production, Renewable Energy, 86, 1-7.
Maran, J. P., and Manikandan, S, 2012, Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntia ficus-indica) fruit, Dyes and Pigm., 95(3), 465-472.
Miranda, T., Montero, I., Sepúlveda, F. J., Arranz, J. I., Rojas, C. V., and Nogales, S., 2015, A review of pellets from different sources, Materials, 8(4), 1413-1427.
Patabang, D., 2013, Karakteristik termal briket arang serbuk gergaji kayu meranti, Jurnal Mekanikal, 4(2), 410-415
Poddar, S., Kamruzzaman, M., Sujan, S., Hossain, M., Jamal, M., Gafur, M., and Khanam, M, 2014, Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: Higher heating value, Fuel, 131, 43-48.
Rahayuningsih, E., Pamungkas, M. S., Olvianas, M., and Putera, A. D. P., 2018, Chlorophyll extraction from suji leaf (Pleomele angustifolia Roxb.) with ZnCl2 stabilizer, J. Food Sci. Technol., 55(3), 1028-1036.
Rizal Mubarok, M., and Wayan Susila, I., 2015, Pengaruh variasi perekat tetes tebu terhadap karakteristik briket bioarang dari limbah gergaji kayu mahoni, Jurnal Teknik Mesin , 4(1), 1-7
Satmoko, M. E. A., Saputro, D. D., and Budiyono, A., 2013, Karakterisasi briket dari limbah pengolahan kayu sengon dengan metode cetak panas, Journal of Mechanical Engineering Learning, 2(1), 1-6
Sinha, K., Saha, P. D., and Datta, S., 2012, Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind, Ind. Crops Prod., 37(1), 408-414.
Soleimani, M., Tabil, X. L., Grewal, R., and Tabil, L. G., 2017, Carbohydrates as binders in biomass densification for biochemical and thermochemical processes, Fuel, 193, 134-141.
Stelte, W., Sanadi, A. R., Shang, L., Holm, J. K., Ahrenfeldt, J., and Henriksen, U. B., 2012, Recent developments in biomass pelletization–A review, BioResources, 7(3), 4451-4490.
Sutapa, J., and Irawati, D., 2013, Konversi Limbah Serbuk Gergaji Kayu Akasia (Acacia Mangium Willd) ke Briket Arang dan Arang Aktif, Research Report, Universitas Gadjah Mada, Yogyakarta
Tilman, D., Socolow, R., Foley, J. A., Hill, J., Larson, E., Lynd, L., Pacala, S., Reilly, J., Searchinger, T., and Somerville, C., 2009, Beneficial biofuels—the food, energy, and environment trilemma. Science, 325(5938), 270-271.
Vedaraman, N., Sandhya, K., Charukesh, N., Venkatakrishnan, B., Haribabu, K., Sridharan, M., and Nagarajan, R., 2017, Ultrasonic extraction of natural dye from Rubia Cordifolia, optimisation using response surface methodology (RSM) & comparison with artificial neural network (ANN) model and its dyeing properties on different substrates, Chem. Eng. Process. - Process Intensification, 114, 46-54.
Wang, T., Li, Y., Zhang, J., Zhao, J., Liu, Y., Sun, L., Liu, B., Mao, H., Lin, Y., and Li, W., 2018, Evaluation of the potential of pelletized biomass from different municipal solid wastes for use as solid fuel, Waste Management, 74, 260-266.
Wattananoi, W., Khumsak, O., and Worasuwannarak, N., 2011, Upgrading of biomass by torrefaction and densification process, Paper presented at the Clean Energy and Technology (CET), 2011 IEEE First Conference on on Clean Energy and Technology (CET)
Wood-database, Merbau, Retrieved from https://www.wood-database.com/merbau/
Woodsolutions, Taun, Retrieved from https://www.woodsolutions.com.au/wood-species/taun
Yudanto, A., and Kusumaningrum, K.. 2009, Pembuatan Briket Bioarang dari Arang Serbuk Gergaji Kayu Jati, Bachelor Thesis, Universitas Diponegoro, Semarang.
DOI: https://doi.org/10.22146/jrekpros.66024
Article Metrics
Abstract views : 8577 | views : 1485Refbacks
- There are currently no refbacks.
Copyright (c) 2021 The authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.