Coconut husk to reducing sugar conversion using combined ultrasound and surfactant aided subcritical water

https://doi.org/10.22146/jrekpros.69231

Saiyyidah Tus Zuhroh(1), Akbarningrum Fatmawati(2), Arief Widjaja(3*)

(1) Sepuluh Nopember Institute of Technology (ITS) Jl. Teknik Kimia, Keputih, Kec. Sukolilo, Kota SBY, Jawa Timur 60111, Indonesia
(2) Sepuluh Nopember Institute of Technology (ITS) Jl. Teknik Kimia, Keputih, Kec. Sukolilo, Kota SBY, Jawa Timur 60111, Indonesia
(3) Sepuluh Nopember Institute of Technology (ITS) Jl. Teknik Kimia, Keputih, Kec. Sukolilo, Kota SBY, Jawa Timur 60111, Indonesia
(*) Corresponding Author

Abstract


The first purpose of this study was to investigate the effect of operating variables and surfactant concentration in subcritical water to after ultrasonic process on the sugar-producing yield from coconut husk. The second purpose was to obtain the optimum operating condition of the subcritical water process. The sonication before the subcritical water process was done by dispersing 40 mesh coconut husk powder in water at  60°C,  and  35  kHz. The effect of sonication time was studied by comparing the material crystallinity and composition after being treated for 30 minutes. In this research, the optimization was done by using a Box-Behnken response surface methodology (RSM) experimental design with 3 factors (temperature, time, and surfactant concentration). The designed lower and upper levels were 130°C and 170°C, 40, and 80 minutes, as well as 1 and 3% (w). The results showed that the quadratic response surface model predicted the maximum reducing sugar yield to be 12.0%, which was achieved at the optimum condition of 170°C, 77.5 minutes, and 2.3% SDS surfactant addition. The experiment run at the obtained optimum condition resulted in a reducing sugar yield of 11.7%, which was close to that obtained from the model prediction.

Keywords


sonication; subcritical water; surfactant; lignocellulose; box behnken

Full Text:

PDF


References

Abaide ER, Tres MV, Zabot GL, Mazutti MA. 2019. Reasons for processing of rice coproducts: Reality and expectations. doi:10.1016/j.biombioe.2018.11.032.

Bussemaker MJ, Zhang D. 2013. Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. doi:10.1021/ie3022785.

Cardenas-Toro FP, Forster-Carneiro T, Rostagno MA, Petenate AJ, Maugeri Filho F, Meireles MAA. 2014. Integrated supercritical fluid extraction and subcritical water hydrolysis for the recovery of bioactive compounds from pressed palm fiber. Journal of Supercritical Fluids. 93:42– 48. doi:10.1016/j.supflu.2014.02.009.

Chang KL, Chen XM, Han YJ, Wang XQ, Potprommanee L, Ning Xa, Liu Jy, Sun J, Peng YP, Sun Sy, Lin YC. 2016. Synergistic effects of surfactant-assisted ionic liquid pretreatment rice straw. Bioresource Technology. 214:371–375. doi:10.1016/j.biortech.2016.04.113.

Edenhofer O, Kalkuhl M. 2011. When do increasing carbon taxes accelerate global warming? A note on the green paradox. Energy Policy. 39(4):2208–2212. doi:10.1016/j. enpol.2011.01.020.

Escobar JC, Lora ES, Venturini OJ, Yáñez EE, Castillo EF, Al-mazan O. 2009. Biofuels: Environment, technology and food security. doi:10.1016/j.rser.2008.08.014.

Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R. 2010. Hemicelluloses for fuel ethanol: A review. Bioresource Technology. 101(13):4775–4800. doi:10.1016/j.biortech.2010.01.088.

Gurgel LVA, Pimenta MTB, da Silva Curvelo AA. 2014. Enhancing liquid hot water (lhw) pretreatment of sugarcane bagasse by high pressure carbon dioxide (hp-co2). Industrial Crops and Products. 57:141–149. doi:https://doi. org/10.1016/j.indcrop.2014.03.034.

Hapsari F, Prasetyo I, Budhijanto W. 2015. Evaluasi Efek Pretreatment Ultrasonik pada Proses Hidrolisis Enzimatis Ampas Tahu. Jurnal Rekayasa Proses. 9(2):31–36. doi:10.22146/jrekpros.31036.

Jiang L, Hu S, Sun Ls, Su S, Xu K, He Lm, Xiang J. 2013. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresource Technology. 146:254–260. doi: 10.1016/J.BIORTECH.2013.07.063.

Jönsson LJ, Martín C. 2016. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. doi:10.1016/j.biortech.2015.10.0 09.

Ju YH, Huynh LH, Kasim NS, Guo TJ, Wang JH, Fazary AE. 2011. Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. Carbohydrate Polymers. 83(2):591–599. doi:10.1016/j.carbpol.2010.08.022.

Liang J, Chen X, Wang L, Wei X, Wang H, Lu S, Li Y. 2017. Subcritical carbon dioxide-water hydrolysis of sugarcane bagasse pith for reducing sugars production. Bioresource Technology. 228:147–155. doi:10.1016/j.biortech.2016.12.080.

Miller GL. 1959. Use of dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry. (3):426–428. doi:10.1021/ac60147a030.

Muharja M, Fadhilah N, Nurtono T, Widjaja A. 2020. Enhancing enzymatic digestibility of coconut husk using nitrogen-assisted subcritical water for sugar production. Bulletin of Chemical Reaction Engineering & Catalysis. 15(1):84–95. doi:10.9767/bcrec.15.1.5337.84-95.

Muharja M, Junianti F, Ranggina D, Nurtono T, Widjaja A. 2018. An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk. Bioresource Technology. 249:268–275. doi:10.1016/j.biortech.2017.10.024.

Muharja M, Umam DK, Pertiwi D, Zuhdan J, Nurtono T, Widjaja A. 2019. Enhancement of sugar production from coconut husk based on the impact of the combination of surfactant-assisted subcritical water and enzymatic hydrolysis. Bioresource Technology. 274:89–96. doi:10.1016/j.biortech.2018.11.074.

Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN. 2006. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: Relationship between lignin structure, extraction conditions, and antioxidant activity. Journal of Agricultural and Food Chemistry. 54(16):5806–5813. doi:10.1021/ jf0605392.

Prado JM, Forster-Carneiro T, Rostagno MA, Follegatti- Romero LA, Maugeri Filho F, Meireles MAA. 2014. Obtaining sugars from coconut husk, defatted grape seed, and pressed palm fiber by hydrolysis with subcritical water. Journal of Supercritical Fluids. 89:89–98. doi:10.1016/j.supflu.2014.02.017.

Prado JM, Lachos-Perez D, Forster-Carneiro T, Rostagno MA. 2016. Sub and supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: A review. doi:10.1016/j.fbp.2015.11.004.

Qing Q, Yang B, Wyman CE. 2010. Impact of surfactants on pretreatment of corn stover. Bioresource Technology. 101(15):5941–5951. doi:10.1016/j.biortech.2010.03.003.

Saha BC, Cotta MA. 2008. Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol.Biomass and Bioenergy. 32(10):971–977. doi:10.1016/j.biombioe.2008.01.014.

Sangian HF, Kristian J, Rahma S, Dewi HK, Puspasari DA, Agnesty SY, Gunawan S, Widjaja A. 2015. Preparation of Reducing Sugar Hydrolyzed from High-Lignin Coconut Coir Dust Pretreated by the Recycled Ionic Liquid [mmim][dmp] and Combination with Alkaline. Bulletin of Chemical Reaction Engineering & Catalysis. 10(1). doi: 10.9767/bcrec.10.1.7058.8-22.

Sangian HF, Widjaja A. 2017. Effect of pretreatment method on structural changes of coconut coir dust. doi:10.15376/biores.12.4.8030-8046.

Subhedar PB, Gogate PR. 2014. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrasonics Sonochemistry. 21(1):216–225. doi:10.1016/j.ultson ch.2013.08.001.

Vedovatto F, Ugalde G, Bonatto C, Bazoti SF, Treichel H, Mazutti MA, Zabot GL, Tres MV. 2021. Subcritical water hydrolysis of soybean residues for obtaining fermentable sugars. Journal of Supercritical Fluids. 167:105043. doi:10.1016/j.supflu.2020.105043.

Wongsorn C, Kangsadan T, Kongruang S, Burapatana V, Pripanapong P. 2010. Ultrasonic pretreatment enhanced the enzymatic hydrolysis of rice straw. ICCCE 2010 - 2010 International Conference on Chemistry and Chemical Engineering, Proceedings. p. 20–23. doi:10.1109/ICCCENG.2010.5560352.

Xu F, Shi YC, Wang D. 2013. Towards understanding structural changes of photoperiod-sensitive sorghum biomass during sulfuric acid pretreatment. Bioresource Technology. 135:704–709. doi:10.1016/J.BIORTECH.2012.08.141.

Yin J, Hao L, Yu W, Wang E, Zhao M, Xu Q, Liu Y. 2014. Enzymatic hydrolysis enhancement of corn lignocellulose by supercritical CO2 combined with ultrasound pretreatment. Cuihua Xuebao/Chinese Journal of Catalysis. 35(5):763–769. doi:10.1016/s1872-2067(14)60040-1.

Zhang K, Johnson L, Vara Prasad PV, Pei Z, Wang D. 2015. Big bluestem as a bioenergy crop: A review. doi:10.1016/j.rser.2015.07.144.

Zhao Y, Lu WJ, Wang HT. 2009. Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology. Chemical Engineering Journal. 150(2-3):411–417. doi:10.1016/j.cej.2009.01.026.

Zhu G, Zhu X, Fan Q, Wan X. 2011. Production of reducing sugars from bean dregs waste by hydrolysis in subcritical water. Journal of Analytical and Applied Pyrolysis. 90(2):182–186. doi:10.1016/j.jaap.2010.12.006.



DOI: https://doi.org/10.22146/jrekpros.69231

Article Metrics

Abstract views : 1081 | views : 890

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 The authors

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Rekayasa Proses  (print ISSN 1978-287X; online ISSN 2549-1490) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada. View website statistics.