Utilization of Big Data Analysis Through Public Video, Virus Data Cooperation, and Social Media as the Surveillance to COVID-19 in Indonesia
Achmad Maulana Sirojjudin(1*)
(1) Department of Communication Studies, Faculty of Social and Political Sciences, University of Indonesia
(*) Corresponding Author
Abstract
This article discusses Big Data's use as a surveillance tool for the spread of Corona Virus Disease 2019 (COVID-19), both in Indonesia and the world. In Indonesia, the range of COVID-19 is increasingly sporadic, causing mass panic and Indonesia's geographical characteristics, which will be difficult when this spread could not control quickly. Researchers are conducting several studies to overcome this pandemic, including supervision, features, handling, mobility, patient interaction, treatment evaluation, and the biological structure. These studies become data and lead to Big Data. This article explores how to use Big Data analysis to monitor the spread of COVID-19 as a communication process that reflects mediated communication as a form of mobility and spatial relationships in communication practices. The method used in this article is a literature review and uses meta-synthesis techniques as its analysis. The literature sources used are articles in highly reputable international journals. Based on the reports, various ways to monitor the virus's spread, through public video data, GPS, and social media tracking, trace the patient's movement. Big Data can also provide data collaboration for viruses and pathogens for further research as digital mediated communication is anchored by the diversity of places and the mobility of people, data, and objects.
Keywords
Full Text:
PDFReferences
Adhinata, F. D., Ikhsan, M., & Wahyono, W. (2020). People counter on CCTV video using histogram of oriented gradient and Kalman filter methods. Jurnal Teknologi Dan Sistem Komputer, 8(3), 222–227. https:// doi.org/10.14710/jtsiskom.2020.13660
Al-Saggaf, Y., & Islam, M. Z. (2015). Data Mining and Privacy of Social Network Sites’ Users: Implications of the Data Mining Problem. Science and Engineering Ethics, 21(4), 941–966. https://doi.org/10.1007/s11948-014-9564-6
Arditi, D. (2019). Music Ev erywhere: Setting a Digital Music Trap. Critical Sociology, 45(4–5), 617–630. https://doi. org/10.1177/0896920517729192
Asih, D., Teofilus, Sutrisno, T. F. C. W., & Yoana, C. (2020). The effectiveness of social media based on photo and video sharing towards online purchase intention. Jurnal Siasat Bisnis, 24(2), 179–186. https://doi. org/10.20885/jsb.vol24.iss2.art7
Athanesious, J. J., Chakkaravarthy, S. S., Vasuhi, S., & Vaidehi, V. (2019). Trajectory based abnormal event detection in video traffic surveillance using general potential data field with spectral clustering. Multimedia Tools and Applications, 78(14), 19877–19903. https://doi.org/10.1007/s11042-019-7332-y
Bansal, S., Chow ell, G., Simonsen, L., Vespignani, A., & Viboud, C. (2016). Big Data for Infectious Disease Surveillance and Modeling. Journal of Infectious Diseases, 214(suppl 4), S375–S379. https://doi. org/10.1093/infdis/jiw400
Bowman, L., Baras, A., Bombien, R., Califf, R. M., Chen, Z., Gale, C. P., Gaziano, J. M., Grobbee, D. E., Maggioni, A. P., Muse, E. D., Roden, D. M., Schroeder, S., Wallentin, L., & Casadei, B. (2020). Understanding the use of observational and randomized data in cardiovascular medicine. European Heart Journal, 1–8. https://doi.org/10.1093/ eurheartj/ehaa020
Cahya, G. H. (2020). COVID-29 “could infect some 70,000” before Ramadan. In The Jakarta Post (p. 4).
Chakraborty, G. (2019). Evolving profiles of financial risk management in the era of digitization: The tomorrow that began in the past. Journal of Public Affairs. 20(2). https://doi.org/10.1002/pa.2034
Cohen, J. E. (2014). Studying Law Studying Surveillance. Surveillance&Society, 13(1), 91–101. https://doi.org/10.24908/ss.v13i1.5160
Conteh, M.-A., Goldstein, S. T., Wurie, H. R., Gidudu, J., Lisk, D. R., Carter, R. J., Seward, J. F., Hampton, L. M., Wang, D., Andersen, L. E., Arvay, M., Schrag, S. J., Dawson, P., Fombah, A. E., Petrie, C. R., Feikin, D. R., Russell, J. B. W., Lindblad,
R., Kargbo, S. A. S., Mahon, B. E. (2018). Clinical Surveillance and Evaluation of Suspected Ebola Cases in a Vaccine Trial During an Ebola Epidemic: The Sierra Leone Trial to Introduce a Vaccine Against Ebola. The Journal of Infectious Diseases, 217(suppl_1), S33–S39. https:// doi.org/10.1093/infdis/jiy061
Couldry, N., & Mejias, U. A. (2019). Data Colonialism: Rethinking Big Data’ s Relation to the Contemporary Subject. Television & New Media, 20(4), 336–349. https://doi.org/10.1177/1527476418796632
de Orellana, P. (2019). Retrieving how diplomacy writes subjects, space and time: a methodological contribution. European Journal of International Relations , 2 (2), 469-494. https://doi. org/10.1177/1354066119868514
Diallo, A. O., Kiemtoré, T., Bicaba, B. W., Medah, I., Tarbangdo, T. F., Sanou, S., Soeters, H. M., Novak, R. T., & Aké, H. F. (2019). Development and Implementation of a Cloud-Based Meningitis Surveillance and Specimen Tracking System in Burkina Faso, 2018. The Journal of Infectious Diseases,
220(Supplement_4), S198–S205. https://doi.org/10.1093/infdis/jiz376
Frith, J. (2017). Big Data, Technical Com m unic ation, and the Sm art City. Journal of Business and Technical Communication, 31(2), 168–187. https://doi. org/10.1177/1050651916682285
Global Biodefense. (2020). COVID-19 | SARS-CoV-2 Coronavirus Portal. https:// globalbiodefense.com/novel-coronavirus- covid-19-portal/
Guo, L., Vargo, C. J., Pan, Z., Ding, W., & Ishwar, P. (2016). Big Social Data Analytics in Journalism and Mass Communication. Journalism & Mass Communic ation Quarterly, 93(2), 332–359. https://doi. org/10.1177/1077699016639231
Güvenç Paltun, B., Mamitsuka, H., & Kaski, S. (2019). Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches. Briefings in Bioinformatics, 00(November), 1–14. https://doi.org/10.1093/bib/bbz153
Hasri, M. I. A., & Santosa, P. B. (2018). The use of Location Based Instagram Data for Tourism Potential Analysis in Kabupaten Gunung Kidul. JGISE: Journal of Geospatial Information Science and Engineering, 1(1). https://doi.org/10.22146/jgise.38469
Helles, R., & Ørmen, J. (2020). Big data and explanation: Reflections on the uses of big data in media and communication research. European Journal of Communication, 35(3), 290–300. https:// doi.org/10.1177/0267323120922088
Henwood, A. F. (2020). Coronavirus disinfection in histopathology. Journal of Histotechnology, 00(00), 1–3. https://doi.or g/10.1080/01478885.2020.1734718
Hu, X., Yuan, Y., Zhu, X., Yang, H., & Xie, K. (2019). Behavioral responses to pre- planned road capacity reduction based on smartphone GPS trajectory data: A functional data analysis approach. Journal of Intelligent Transportation Systems, 23(2), 133–143. https://doi.org/10.1080/15472450.2018.1488133
Huiberts, E. (2020). Watching Disaster News Online and Offline: Audiences Experiencing News about Far-away Disasters in a Postbroadcast Society. Television & New Media, 21(1), 41–59. https://doi.org/10.1177/1527476418821328
Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, 104(3), 246–251. https://doi. org/10.1016/j.jhin.2020.01.022
Kraidy, M. M. (2018). Terror, Territoriality, Temporality: Hypermedia Events in the Age of Islamic State. Television & New Media, 19(2), 170–176. https://doi. org/10.1177/1527476417697197
Leal, L. G., David, A., Jarvelin, M.-R., Sebert, S., Männikkö, M., Karhunen, V., Seaby, E., Hoggart, C., & Sternberg, M. J. E. (2019). Identification of disease-associated loci using machine learning for genotype and network data integration. Bioinformatics, 35(24), 5182–5190. https://doi.org/10.1093/bioinformatics/btz310
Leary, H., & Walker, A. (2018). Meta-Analysis and Meta-Synthesis Methodologies: Rigorously Piecing Together Research. TechTrends, 62(5), 525–534. https://doi. org/10.1007/s11528-018-0312-7
Lehtiniemi, T., & Haapoja, J. (2020). Data agency at stake: MyData activism and alternative frames of equal participation. New Media & Society, 22(1), 87–104. https:// doi.org/10.1177/1461444819861955
Lim, M. (2017). Freedom to hate: social media, algorithmic enclaves, and the rise of tribal nationalism in Indonesia. Critical Asian Studies, 49(3), 411–427. https://doi.org/10.1080/14672715.2017.1341188
Madianou, M. (2019). The Biometric Assemblage: Surveillance, Experimentation, Profit, and the Measuring of Refugee Bodies. Television & New Media, 20(6), 581–599. https://doi.org/10.1177/1527476419857682
Madianou, M., & Miller, D. (2013). Polymedia: Towards a new theory of digital media in interpersonal communication. International Journal of Cultural Studies, 16(2), 169–187. https://doi.org/10.1177/1367877912452486
Madjido, M., Espressivo, A., Maula, A. W., Fuad, A., & Hasanbasri, M. (2019). Health Information System Research Situation in Indonesia: A Bibliometric Analysis. Procedia Computer Science, 161, 781–787. https://doi.org/10.1016/j.procs.2019.11.183
Mann, M., & Daly, A. (2019). (Big) Data and the North- in -South: Australia’s Informational Imperialism and Digital Colonialism. Television & New Media, 20(4), 379–395.https://doi.org/10.1177/1527476418806091
Maras, M.-H., & Wandt, A. S. (2019). Enabling mass surveillance: data aggregation in the age of big data and the Internet of Things. Journal of Cyber Policy, 4(2), 160–177. https://doi.org/10.1080/23738871.2019.1590437
Massie, R. G. A. (2019). Akses Pelayanan Kesehatan yang Tersedia pada Penduduk Lanjut Usia W ilay ah P erkotaan di Indonesia. Jurnal Penelitian dan Pengembangan Pelayanan Kesehatan, 46–56. https://doi.org/10.22435/jpppk.v3i1.130
McMahon, A., Buyx, A., & Prainsack, B. (2019). Big Data Governance Needs More Collective Responsibility: The Role of Harm Mitigation in the Governance of Data Use in Medicine and Beyond. Medical Law Review, 0(0), 1–28. https://doi. org/10.1093/medlaw/fwz016
Miller, A. C., Peterson, R. A., Singh, I., Pilewski, S., & Polgreen, P. M. (2019). Improving State-Level Influenza Surveillance by Incorporating Real-Time Smartphone- Connect ed Thermomet er Reading s Across Different Geographic Domains. Open Forum Infectious Diseases. https://doi. org/10.1093/ofid/ofz455
Nakano, D., & Muniz Jr., J. (2018). Writing the literature review for empirical papers. Production , 28 . https://doi. org/10.1590/0103-6513.20170086
Nielsen, R. K., & Schrøder, K. C. (2014). The Relative Importance of Social Media for Accessing, Finding, and Engaging with News. Digital Journalism, 2(4), 472–489. https://doi.org/10.1080/21670811.2013.872420
Nugroho, A. P., Shalih, S. M., Purwantana, B., Sutiarso, L., Radi, Markumningsih, S., Masithoh, R. E., Yun, J. H., Kim, K. U., Yeo, I. C., & Lee, D. G. (2019). Development of GPS-based Tracking System to Evaluate the Effectiveness of Tillage using Four- wheel Tractor. IOP Conference Series: Earth and Environmental Science, 355, 1-26. https://doi.org/10.1088/1755-1315/355/1/012014
Orisa, M., Auliasari, K., & El Maghfiroh, R. (2019). TEKNOLOGI MOTION-BASED TRACKING UNTUK PENGEMBANGAN APLIKASI KEAMANAN. Jurnal Teknologi Informasi Dan Terapan, 4(2), 119–124. https://doi.org/10.25047/jtit.v4i2.69
Perlman, S. (2020). Another Decade, Another Coronavirus. New England Journal of Medicine, 382(8), 760–762. https://doi. org/10.1056/NEJMe2001126
Poom, A., Järv, O., Zook, M., & Toivonen, T. (2020). COVID-19 is spatial: Ensuring that mobile Big Data is used for social good. Big Data & Society, 7(2), 1-7. https://doi. org/10.1177/2053951720952088
Roy, N. (2019). Reviewing ocean governance in Asia. Asian Journal of Comparative Pol itic s , 5 (4), 437-448. https ://d oi. org/10.1177/2057891119883127
Sagala, J. P., Candradewi, I., & Harjoko, A. (2020). Penggunaan Deteksi Gerak untuk P engurangan Ukuran Data Rekaman Video Kamera CCTV. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 10(1), 99. https:// doi.org/10.22146/ijeis.35983
Sapountzi, A., & Psannis, K. E. (2018). Social networking data analysis tools & challenges. Future Generation Computer S ystems , 86 , 893–913. https://doi. org/10.1016/j.future.2016.10.019
Schofield, P. N., Kulka, U., Tapio, S., & Grosche, B. (2019). Big data in radiation biology and epidemiology; an overview of the historical and contemporary landscape of data and biomaterial archives. International Journal of Radiation Biology, 95(7), 861–878. https://doi.org/10.1080/09553002.2019.1589026
Shao, Z., Cai, J., & Wang, Z. (2018). Smart Monitoring Cameras Driven Intelligent Processing to Big Surveillance Video Data. IEEE Transactions on Big Data, 4(1), 105–116. https://doi.org/10.1109/TBDATA.2017.2715815
Simonsen, L., Gog, J. R., Olson, D., & Viboud, C. (2016). Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally Relevant Systems. Journal of Infectious Diseases, 214(suppl 4), S380– S385. https://doi.org/10.1093/infdis/jiw376
Sinapuelas, I. C., & Ho, F. N. (2019). Information exchange in social networks for health care. Journal of Consumer Marketing, 36(5), 692–702. https://doi.org/10.1108/JCM-12-2017-2470
Singh, N. (2019). Big data technology: developments in current research and emerging landscape. Enterprise Information Systems, 13(6), 801–831. https://doi.org/10.1080/17517575.2019.1612098
Skare, E . (2019). Digital Surv eillance/ Militant Resistance: Categorizing the “Proto-state Hacker.” Television & New Media, 20(7), 670–685. https://doi. org/10.1177/1527476418793509
Strang, K. D., & Sun, Z. (2017). Analyzing Relationships in Terrorism Big Data Using Hadoop and Statistics. Journal of Computer Information Systems, 57(1), 67–75. https:// doi.org/10.1080/08874417.2016.1181497
Subudhi, B. N., Rout, D. K., & Ghosh, A. (2019). Big data analytics for video surveillance. Multimedia Tools and Applications, 78(18), 26129–26162. https://doi.org/10.1007/s11042-019-07793-w
Vavliakis, K. N., Symeonidis, A. L., & Mitkas, P. A. (2013). Event identification in web s o c ial m ed ia thro ugh nam ed entity recognition and topic modeling. Data & Knowledge Engineering, 88, 1–24. https:// doi.org/10.1016/j.datak.2013.08.006
Wahyuri, W., Athiyah, U., Puspitasari, I., & Nita, Y. (2019). Clustering of Drug Sampling Data to Determine Drug Distribution Patterns with K-Means Method: Study on Central Kalimantan Province, Indonesia. Journal of Information Systems Engineering and Business Intelligence, 5(2), 208. https://doi.org/10.20473/jisebi.5.2.208-218
Wijaya, S. P., Christyono, Y., & Sukiswo, S. (2010). Alat Pelacak Lokasi Berbasis GPS Via Komunikasi Seluler. Transmisi: Jurnal Ilmiah Teknik Elektro, 12(2), 82–86. https://doi.org/https://doi.org/10.12777/ transmisi.12.2.82-86
Witjas-Paalberends, E. R., van Laarhoven, L. P. M., van de Burgwal, L. H. M., Feilzer, J., de Swart, J., Claassen, E., & Jansen, W. T. M. (2018). Challenges and best practices for big data-driven healthcare innovations conducted by profit–non- profit partnerships – a quantitative prioritization. International Journal of Healthcare Management, 11(3), 171–181. https://doi.org/10.1080/20479700.2017.1 371367
Wong, A., Ho, S., Olusanya, O., Antonini, M. V., & Lyness, D. (2020). The use of social media and online communications in times of pandemic COVID-19. Journal of the Intensive Care Society, 175114372096628. https://doi.org/10.1177/1751143720966280
Wu, D., & Lambert, J. H. (2020). Engineering Systems and Risk Analytics. Risk Analysis, 40 (1), 1–7. https://doi.org/10.1111/risa.13433
Wu, J., Li, H., Lin, Z., & Goh, K.-Y. (2017). How big data and analytics reshape the wearable device market – the context of e-health. International Journal of Production Research, 55(17), 5168–5182. https://doi.or g/10.1080/00207543.2015.1059521
Xie, Z. (2021). Mobile communicating place and place-inscribed communicative mobilities: Shaping alternative consumer cultures in mobile media communication. Mobile Media & Communication, 9(1), 51–77. https://doi.org/10.1177/2050157920927451
Yeung, K. (2017). ‘Hypernudge’’: Big Data as a mode of regulation by design.’ Information, Communication & Society, 20(1), 118–136. https://doi.org/10.1080/1369118X.2016.1186713
Yulianto, B., & Layona, R. (2017). An Implement at ion of Locat ion Based Service (LBS) for Community Tracking. ComTech: Computer, Mathematics and Engineering Applications, 8(2), 69. https:// doi.org/10.21512/comtech.v8i2.3749
Zeng, D., Chen, H., Lusch, R., & Li, S.-H. (2010). Social Media Analytics and Intelligence. IEEE Intelligent Systems, 25(6), 13–16. https://doi.org/10.1109/MIS.2010.151
Zetino, J., & Mendoza, N. (2019). Big Data and Its Utility in Social Work: Learning from the Big Data Revolution in Business and Healthcare. Social Work in Public Health, 34(5), 409–417. https://doi.org/10.1080/19371918.2019.1614508
Zhao, S., Cao, P., Gao, D., Zhuang, Z., Cai, Y., Ran, J., Chong, M. K. C., Wang, K., Lou, Y., Wang, W., Yang, L., He, D., & Wang, M. H. (2020). Serial interval in determining the estimation of reproduction number of the novel coronavirus disease (COVID-19) during the early outbreak. Journal of Travel Medicine, 1–7. https://doi.org/10.1093/jtm/ taaa033
Zhuang, W., & Ismail, M. (2012). Cooperation in wireless communication networks. IEEE Wireless Communications , 19(2), 10–20. https://doi.org/10.1109/MWC.2012.6189408
DOI: https://doi.org/10.22146/jsp.56491
Article Metrics
Abstract views : 4096 | views : 3696Refbacks
Copyright (c) 2021 Jurnal Ilmu Sosial dan Ilmu Politik
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.