

Research Article

Ectoparasite Infestation among Stray Cats around Surabaya Traditional Market, Indonesia

Shifa Fauziyah¹, Abdul Hadi Furqoni^{2*}, Norma Farizah Fahmi³, Adi Pranoto⁴, Pradika Gita Baskara⁴, Lensa Rosdiana Safitri⁵, Zukhaila Salma¹

1) Master Program of Tropical Medicine, Faculty of Medicine, Universitas Airlangga, Tambaksari, Surabaya, 60132, Indonesia

2) Laboratory of Human Genetic, Institute of Tropical Disease, Universitas Airlangga, Mulyorejo, Surabaya, 60115, Indonesia

4) Master Program of Sport Health Science, Faculty of Medicine, Universitas Airlangga, Tambaksari, Surabaya, 60132, Indonesia

5) Statistics Program, Faculty of Science and Technology, Universitas Airlangga, Mulyorejo, Surabaya, 60115, Indonesia

Submitted: 22 January 2020; Accepted: 07 August 2020; Published: 15 December 2020

ABSTRACT

This study was conducted to determine the prevalence of ectoparasite infestation among stray cats around Surabaya traditional markets. A total of 305 stray cats were collected around 17 traditional markets in Surabaya City and were examined for the presence of fleas with a fine-toothed flea comb. Surveys were conducted during May-June 2019. 228 of 305 stray cats (74.75%) were infested with one species of ectoparasite. The average number of *C. felis* in every cat was 2.54, while the number of *F. subrostratus* in every cat was 0.33. Additional data about the gender, pregnancy/ maternity, and bodyweight of every cat were recorded. The result of chi-square test shows that there is a significant difference between gender, pregnancy status, and bodyweight by the occurrence of ectoparasites (p=0.008; p=0.00; p=0.00). A total of 878 ectoparasites consisting of flea and lices, namely *Ctenocephalides felis* (88.27%) as the dominant ectoparasite, followed by *Felicola subrostratus* (11.73%). The highest infection rate (prevalence) of ectoparasite was found in Pucang Market (16.81%), while the lowest prevalence was found in Mulyorejo Market (0.8%). Coinfection was observed in only a few cats (1.63%). Multiple Regression showed that pregnancy is the most influential factor in the occurrence of fleas (p=0.000). These results should be taken into account among health workers to prevent a possible outbreak of zoonotic diseases caused by fleas.

Keywords: Ctenocephalides felis, ectoparasite, Felicola subrostratus, market

INTRODUCTION

Zoonotic infectious diseases caused by bacteria, viruses, and parasites that are transmitted from animals to humans are still some of the major public health problems. Tick fever, mange, leishmaniasis, and ascariasis are the diseases that often infect domestic animals, such as cats and dogs, and have the potential to spread to humans (Colombo *et al.,* 2011). Ectoparasites, as a group of animals in the Arthropoda phylum, cause the manifestation of skin diseases in dogs and cats (Akucewich *et al.,* 2002).

The common cause of skin disorders and anemia is blood-sucking, and the main consultations

Tel.: +62 87850593847

in small animal practice are ectoparasite infestations, especially flea infestations (Dyrden & Rust, 1994). Ctenocephalides felis is a flea that can transmit a tapeworm Dyplidium caninum (Pugh, 1987). Epidemiological surveys were already reported worldwide, but Indonesia is still limited. Only one study that reported ectoparasite distribution in the dogs from Indonesia, showing that Rhipicephalus sanguineus was the most manifested tick (Hadi & Soviana, 2015). Study in the USA also reported Rhipicephalus sanguineus as a predominant tick in dogs with the prevalence of 94.3%, and Amblyomma americanum as a predominant tick in cats with the prevalence of 74% (Burroughs et al., 2016). In addition, studies in the USA showed a high prevalence of ectoparasite in cats caused by fleas (Ctenocephalides felis, Pulex spp., Cediopsylla simplex, and

Medical Analyst, School of Health Science Ngudia Husada Madura, Raden Eddy Martadinata Street, Mlajah, Bangkalan, 69116, Indonesia

^{*}Corresponding author

Email: cocohadi01@gmail.com

^{© 2020,} J. Tropical Biodiversity Biotechnology (CC BY-SA 4.0)

Nosopyllus fasciatus) and ticks (Amblyomma americanum, Ixodes scapularis, Dermacentor variabilis, Rhipicephalus sanguineus, and half of them were still in immature stages (Thomas et al., 2016).

Some studies reported that C. felis is the most common external parasites found on dogs and cats, such as a report from New Zealand that showed mostly cat and dog infected by C.felis (Chandra et al., 2017). This is also supported by studies in Nigeria (Omonijo & Sowemimo, 2017) and Ethiopia (Kumsa et al., 2019). Ctenocephalides felis is known as a blood-feeder and an important vector of various pathogens, most of which are zoonotic such as Yersinia pestis, Rickettsia typhi, R. felis, R. conori, Bartonella clarridgeiae, and B. henselae (Beugnet & Marié, 2009; Boudebouch et al., 2011; Chandra et al., 2017; Lappin & Hawley, 2009; Shaw et al., 2004). Frequent flea species reported from some countries such as in Germany were C. felis, C. canis, and Archaeopsylla erinacei (Visser et al., 2001). A study in Mexico showed both C. felis and C. canis were manifested on dogs and cats (Cruz-Vazquez et al., 2001). Four subspecies were already identified such as C. felis damarensis, C. felis strongylus that were mostly found in East Africa, C. felis orientis that was found in Australia and India, C. felis felis that spread in all continents except Antarctica (Shakya et al., 2019).

Recent studies have certainly shown zoonoses in companion animal (Dantas-Torres & Otranto, 2014; ElSeify et al., 2016; Kumsa et al., 2019; Thomas et al., 2016). However, it needs to elevate knowledge about the prevention and management of companion animals. Companion animals or pets could be a new potential health threat due to the frequent interaction with humans (Diakou et al., 2017). Stray cats are almost found in many locations, including Surabaya as an urban area that is located in the East Java Province, Java Island. Surabaya has many traditional markets to support the daily needs of citizens. Markets were chosen as study areas regarding the possibilities of stray cats living in direct contact with human food. Markets and food courts are often visited by stray cats to support their survival. This different geographical area could lead to a different distribution of flea species. Thus, this study aimed to investigate the infestation of flea among stray cats around Surabaya traditional markets.

MATERIALS AND METHODS

Study Area

The survey was conducted from May to June 2019 in 17 traditional markets in Surabaya. Detail of coordinate locations can be seen in Table 1.

Table 1.	Table 1. Detail of sampling location.							
No	Name of Market	Coordinate						
1	Dinoyo	-7.937004, 112.608421						
2	Gubeng	-7.264635, 112.752541						
3	Pacar Keling	-7.259755, 112.759060						
4	Karang Menjangan	-7.269295, 112.760920						
5	Manyar	-7.280465, 112.762291						
6	Pandegiling	-7.276136, 112.734760						
7	Ngagel	-7.291142, 112.746650						
8	Pucang	-7.283782, 112.753590						
9	Banyu Urip	-7.274693, 112.720839						
10	Simo	-7.267122, 112.713544						
11	Jojoran	-7.272445, 112.766158						
12	Menur	-7.280580. 112.762244						
13	Keputih	-7.289643, 112.799469						
14	Mulyorejo	-7.263779, 112.775044						
15	Blauran	-7.256133, 112.733423						
16	Asemrowo	-7.252092, 112.715279						
17	Indrakila	-7.260296, 112.755938						

Ectoparasite Collection

Random sampling was conducted in each market, in which samples were chosen by surrounding all Each cat was examined for the market areas. presence of ectoparasites by combing their fur using a fine-toothed flea comb for 5 min for each cat (Zakson et al., 1995). Ear swabs were also conducted with an additional time of 5 min. Once the combing was completed, flea combs were placed in a white tray and ectoparasites fell into the tray covered by white paper. Each ectoparasite was then separately placed into a vial bottle filled with 70% ethanol for species identification. Afterward, the vial bottle was labelled with the number of cats, details of location, the name of the collector, and the time of collection. The collectors also recorded the gender, maternity, and bodyweight of each cat. When the cats had been checked, they were marked with a red rope around their neck to avoid double sampling.

Laboratory Examination

Samples were kept in 70% ethanol for identification. Samples were brought to the Laboratory of Animal Histology, Biology Department, Faculty of Science and Technology, Universitas Airlangga. Each sample was immersed in a slightly warm 5% potassium hydroxide (KOH) solution for 10-15 min. Then, samples were placed in 35% alcohol solution for 5 min to adjust pH, then moved to the series of 50, 70, 90, 95, and 100% ethyl alcohol solutions for dehydration for 5 min, respectively. After that, samples were cleared in xylene twice for 5 min to obtain transparency. The processed samples were mounted in Entellan® new 107961 Merck Millipore on microscope slides then they were identified to the under species level а stereomicroscope. Identification was made using the keys of the CDC flea identification key (2019) and the keys in the following references (Bowman et al., 2002; Lewis, 1966; Soulsby, 1982; Wall et al., 1997).

Statistical Analysis

Statistical analysis was done using SPSS IBM version 21. Chi-square test was used to analyze the difference between gender, bodyweight, and pregnancy status by the occurrence of ectoparasite. Significance levels were noted if p-value shows equal to or less than 0.05. Multiple Regression was applied to find out which factors were most influential on the occurrence of ectoparasite. The most influential factor is the factor that has the smallest p-value and the largest odds ratio among the other. Distribution of fleas was also figured out using ArcGIS 10.3 version.

RESULTS AND DISCUSSION

Distribution of ectoparasite that infected stray cats in Surabaya traditional markets

The infection rate of stray cats with ectoparasites from the study area was 74.75% of the 305 cats. A total of 878 ectoparasites were found, consisting of 775 Ctenocephalides felis (88.27%), 103 of Felicola subrostratus (11.73%) shown in Table 2. Almost all (99%) cats have a single infection and co-infection was seen in only five cats (1.63%). Coinfection was found in four study areas namely Pandegiling, Ngagel, Banyu Urip, and Jojoran (Table 3). The value of bodyweight was categorized by cut-off points. Cut-off points of bodyweight were determined by the roc curve. The optimal cut off is 2.87. If bodyweight > 2.87, bodyweight is classified as high. There was a significant relationship between bodyweight and the presence of ectoparasites (p =0.00). There was a significant relationship between the gender of cats and the presence of ectoparasites (p = 0.008). Pregnancy also had a strong relationship with the presence of ectoparasites with a significance level (p = 0.00). All of them were proven by the Chisquare test (Table 4).

Multivariate tests showed that female cats were more highly infected than male cats (P=0.004; OR=2.896). Low Bodyweight was more highly infected than a high bodyweight cat (P=0.005; OR:2.988). A Pregnant cat was more highly infected than an unpregnant cat (P=0.000; OR:6.789). Among three variables, pregnancy factor was the most influential factor in the occurrence of ectoparasite because it had the smallest p-value and larger odds ratio than the other variables. All of

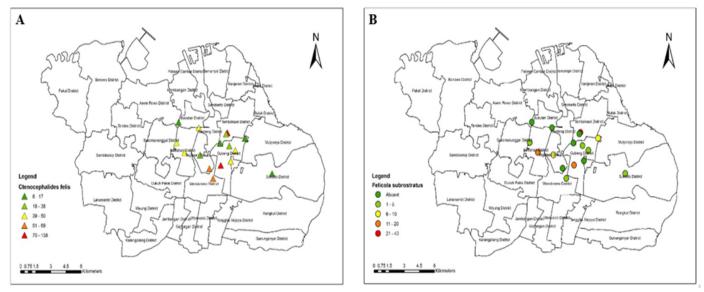


Figure 1. Mapping of *Felicola subrostratus* (A) and *Ctenocephalides felis* (B) distribution using ArcGIS 10.3 version: dark green dot indicates that *Felicola subrostratus* was not found; green dot indicates flea was found from one to five; yellow dot indicates flea was found from six to ten; orange dot indicates flea was found from eleven to twenty; red dot indicates flea was found from twenty-one to forty-three (Source: ArcGIS 10.3 version).

Number	Name of Market	Number of Cats examined	Number of positive cats	Percentage of positive cats (%)	Number of Ectoparasites	Number of <i>C. felis</i>	Percentage of <i>C.feli</i> s(%)	Number of F. subrostratus	Percentage of F.subrostratus
1. 2.	Dinoyo Gubeng	16 12	16 4	100 33.3	61 15	61 15	100 100	0 0	0 0
3.	Pacar Keling	41	30	73.17	159	116	72.59	43	37.06
4.	Karang Menjangan	12	11	91.67	30	29	96.67	1	3.33
5.	Manyar	12	8	66.67	14	13	92.87	1	7.1
6.	Pandegiling	14	13	100	47	38	80.85	9	19.1
7. 8.	Ngagel Pucang	31 48	18 39	58.06 81.25	70 155	69 138	98.57 89.02	1 17	1.43 10.96
9.	Banyu Urip	26	21	80.76	52	41	78.84	11	21,16
10. 11. 12. 13.	Simo Jojoran Menur Keputih	12 16 10 10	8 14 9 6	66.67 81.25 100 70	51 48 46 13	46 47 46 8	90.19 97.91 100 61.5	5 1 0 5	9.8 2.08 0 38.46
15.	Mulyorejo	10	0 2	70 20	13	8	47.05	9	52.95
14. 15.	Blauran	16	2 14	20 100	50	8 50	47.03 100	9	0 0
16.	Asemrowo	8	5	62.5	17	17	100	0	0
17.	Indrakila	10	10	100	33	33	100	0	0
Total	17 markets	305	228	-	878	775		103	-

J. Tropical Biodiversity Biotechnology, vol. 05 (2020), 201 - 210

them were proven by the Multiple binary regression test (Table 5). The distribution of *Felicola subrostratus* in the sampling site was shown in Figure 1A, whereas the distribution of *Ctenocephalides felis* was shown in Figure 1B.

This study was the first report from Surabaya, Indonesia, and it strongly indicated a high infection rate of flea *Ctenocephalides felis* (85.6%) and a low infection rate of *Felicola subrostratus* (14.4%) on the stray cats around traditional markets. Morphology of flea found among stray cat populations show in Figure 2. The average percentage of infection caused by findings are in line with recent worldwide studies that show *C. felis* as predominant species infected stray cats (Chandra *et al.*, 2017; Kumsa *et al.*, 2019; Omonijo & Sowemimo, 2017). Fleas can act as important vectors of diseases and can produce troublesome bites. *Ctenocephalides felis* is the most common nuisance fleas in cats distributed worldwide. This species can lay their eggs up to 25

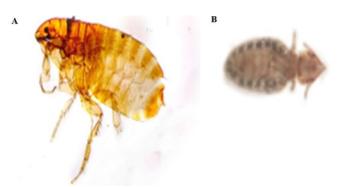


Figure 2. Flea species found among stray cat populations A. *Ctenocephalides felis* and B. *Felicola subrostratus* observed with a stereo microscope with magnification 10x.

J.	Tropical	Biodiversity	Biotechnology, a	vol. 05	(2020), 201	- 210
----	----------	--------------	------------------	---------	-------------	-------

Number	Name of Market	Number of Cats examined	Number of positive cats	Infection rate within all study site (%)	Number of cats with single infection	Percentage of single infection (%)	Number of cats with double infection/ coinfectio	Percentage pf coinfection (%)
1.	Dinoyo	16	16	6.89	16	100	0	0
2.	Gubeng	12	4	1.7	4	100	0	0
3.	Pacar Keling	41	30	12.9	30	100	0	0
4.	Karang Menjangan	12	11	4.74	11	100	0	0
5.	Manyar	12	8	3.44	8	100	0	0
6.	Pandegiling	14	13	6.03	12	92.85	1	7.15
7.	Ngagel	31	18	7.75	17	94.44	1	5.56
8.	Pucang	48	39	16.81	39	100	0	0
9.	Banyu Urip	26	21	9.05	20	95.23	1	4.77
10.	Simo	12	8	3.44	8	100	0	0
11.	Jojoran	16	14	5.6	12	84.61	2	15.39
12.	Menur	10	9	4.3	9	100	0	0
13.	Keputih	10	6	3.01	6	100	0	0
14.	Mulyorejo	10	2	0.8	2	100	0	0
15.	Blauran	16	14	6.89	14	100	0	0
16.	Asemrowo	8	5	2.15	5	100	0	0
17.	Indrakila	10	10	4.3	10	100	0	0
Total		305	228		223	_	5	-

Table 4. Chi-square Test between independent variable and ectoparasite manifestation.

Variable			df	Total	Negative (n=77)		Positive (n=228)		p-value
					Ν	%	n	%	
	Male		1	91	54	59.3	37	40.7	
Gender	Female -	Pregnant	1	134	5	3.7	129	96.3	=0.000
		Unpregnant	1	80	18	22.5	62	77.5	
Bodyweight	Low (< 2.85) High (>= 2.85)			171	72	42.1	99	57.9	=0.000
			1	134	5	3.7	129	96.3	

Table 5. Multiple binary regression model of factors associated with ectoparasite manifestation.

Veriel-1e	Odds	16	95% confide	ence interval	Standard	Devalue
Variable	ratio	df	Lower	Upper	error	P-value
Female vs Male	2.896	1	1.407	5.960	0.368	0.004
Low vs high weight body	2.988	1	1.403	6.354	0.386	0.005
Pregnant vs unpregnant	6.789	1	2.383	19.339	0.534	=0.000

eggs a day during a month so that the prevalence of ectoparasite still exist (Service, 2008).

The high infection rate of Ctenocephalides felis (85.6%) in this study is similar to other studies in Iran (ElSeify et al., 2016); Israel (Salant et al., 2014), and Nigeria (Omonijo & Sowemimo, 2017). The infection rate of this species was reported worldwide and varied, 25,6% in United Kingdom (Abdullah et al., 2019), and 20.68% in Iraq borderline area (Bahrami et al., 2012). In this study, we didn't check DNA samples of flea, while another survey in UK showed that most C. felis contained pathogens such as Bartonella henselae, Bartonella clamidgeiae, Dipylidium caninum. Mycoplasma haemofelis, and Mycoplasma haemocanis (Abdullah et al., 2019). Urban area in Cuernavaca, Mexico, shows infection rate about 92.3% (Cruz-Vazquez et al., 2001), United Kingdom during 2005 was 98.93% (Bond et al., 2007), and Greece was 97.4% (Koutinas et al., 1995). This survey was conducted during dry season, and the findings are in line with other studies showing C. felis as a predominant flea species during all seasons (Akucewich et al., 2002; Chesney, 1995; Clark, 1999) This is also supported by the study result in urban areas in Germany (Liebich et al., 1985; Visser et al., 2001) and Denmark (Kristensen et al., 1978).

Ctenocephalides felis was also reported as an ectoparasite that infected many mammals other than cats and dogs, such as red foxes (Vulpes vulpes), black rats (Rattus rattus), European rabbits (Oryctolagus cuniculus), and brown rats (Rattus novergicus). Meanwhile, in native species, C. felis was known infecting American opossums (Virginia opossum, Didelphis virginianam, Didelphis marsupialis); North American gray foxes (Urocyon cinereoargenteus), and Australian brushtail possums (Trichsuorus vulpecula) (Clark et al., 2018).

Coinfection in five cats that were examined shows the distribution of Felicola subrostratus. This is in line with the survey reported in Greece and UK (Bond et al., 2007; Koutinas et al., 1995). Common coinfection was reported in the studies in Mexico and Germany (Beck et al., 2006; Bond et al., 2007; Cruz-Vazquez et al., 2001). The species infecting found from the investigations on England include Pulex irritans coinfected with C. felis (Bond et al., 2007). The low prevalence of Felicola subrostratus was in line with the previous investigations in Brazil (De Castro & Rafael, 2006; Morales-Malacara & Guerrero, 2007). The prevalence of Felicola subrostratus was higher than in United States which was only 1% (Thomas et al., 2016); Florida roughly 1% (Akucewich et al., 2002), and Thailand (4.2%). On the contrary, this prevalence was less than the investigations conducted by Salant et al. (2014) in Israel (14.4%). Increased prevalence may be because of different habitats between two populations.

This study highlighted the average number of C. felis in every cat was 2.54, while the average number of F. subrostratus was 0.33. The prevalence of F. subrostratus is not common, supported by low prevalence that has been reported from all continents, from Asia (Amin-Babjee, 1978; Eduardo et al., 1977; Mustaffa-Babjee, 1969; Shanta, 1982), Europe (Trotti et al., 1990), and Australia (Coman et al., 1981). Highly infection rate of ectoparasites was more common in female stray cats (62.62%) than male stray cats (37.3%); this finding is supported by the study results from Sahimin (2012) in Kuala Lumpur. Sahimin (2012) also found Ctenocephalides felis, Felicola subrostratus, Heterodoxus spiniger, Haemophysalis bispinosa, and Lynxacarus radovskyi in their survey; and found that female stray cats were more likely to be infested with ectoparasites than in male stray cats (OR 2.8; p<0.004) (Aldemir, 2007). The prevalence of ectoparasite infestation was higher in female than male stray cats (89.3 % and 40%, respectively). This finding is in line with the study in Ismailia city which reported a greater ectoparasitic infestation in female stray dogs (AbuZeid et al., 2015). Although there was no significant association between ectoparasitic infestation with sex, females domestic dogs from Erzurum, Turkey, tended to be more frequently infected by ectoparasites, especially by C. canis (Aldemir, 2007). It is believed some female behavioral factors would be responsible for this tendency, such as confining of female pets during the reproductive period that could favor reinfections by fleas in domestic areas (Aldemir, 2007).

Season and environmental factors affected the various prevalence manifestation of ectoparasite (Dyrden & Rust, 1994). The high prevalence of ectoparasite in this study may be affected by the dry season. Studies from Sahimin (2012) shows high prevalence of ectoparasite during dry season than in rainy season. Insemination and fertilization of flea can be affected by the host's body temperature and the occurrence of food around the host (Dean & Meola, 2002). The optimum temperature for the fertilization of fleas was 38°C, meaning the common temperature of cat and dog (Yue et al., 2002). C. felis has a specific ability that supports it to move from one infected-host to each other with an average jumping speed of 3.6 m/s, jumping height of 13.2 cm, and jumping length of 19.9 cm (Cadiergues et al., 2000). Association between bodyweight and the occurrence of ectoparasite in this study with p-value =0.000 shows the possibility of fleas jumping from one cat to another cat. This specific ability can also lead to the movement of fleas to humans regarding direct contact in traditional markets. The movement

speed of each cat is different from each other and can be affected by some factors, such as pregnancy status. In this study, we found that pregnancy status shows a positive association with the occurrence of flea (p-value=0.000).

Market as a place that provides possible direct contact between flea-infected stray cats and humans must be considered regarding the occurrence of fleaborne diseases. Since C. felis found with high infection rate has been shown to transmit murine typhus and also has been implicated as a vector of plague, Bartonella henselae, which is the etiologic agent of cat scratch disease (Dyrden and Rust, 1994; Jameson et al., 1995; Schrierfer et al., 1994; Sorvillo et al., 1993). This finding should be a baseline for flea management control. Flea allergic dermatitis is the most common nuisance caused by fleas in cats and dogs (Lee et al., 1997). Those fleas can also bite humans and cause heavy inflammation (Youssefi and Rahimi, 2014). Six students from Malaysia were reported to be affected by flea allergic dermatitis (Chin et al., 2010).

The high infection rate of stray cats with ectoparasites was affected by the high temperature and humidity of Surabaya which is 68%-84%, with a temperature of 27.8°C and 30.5°C. Reproductivity of flea will increase in humidity range of 80% and temperature of 27°C (Silverman et al., 1981). The possibility of fleas to infect humans must be a consideration (O'Neal et al., 2014). Serologic examination on stray cats in Yunani showed infection with some pathogens, such as Bartonella henselae (58,8%), Rickettsia spp. (43,2%), Leishmania infatum (6,1%), Ditofilaria immitis (4,7%), and Ehrlichia canis (2%) (Diakou et al., 2017). However, the prevalence of flea-borne disease in stray cats still get limited consideration among health workers due to insufficient information about zoonotic diseases. The distribution of C. felis was mostly not affected by global warming (Roy et al., 2009). This study was also supported by Maina et al. (2016) who have found 37.2% of squirrel and cats were infected with C. felis. Billeter and Metzger (2017) argued the possibility of fleas as a vector of R. typhi, but still not completed with the data distribution in humans so that additional study is important to reveal any association between murine typhus and flea. The lesion caused by cat's paws results in cat scratch disease (CSD) that is brought by C. felis (McElroy et al., 2010), but the prevalence among cats is still unclear. Laboratory studies showed C. felis as the secondary vector of Yersinia pestis, though the efficiency was not as high as Xenopsylla cheopis (Eisen et al., 2008). During the plague investigation in Uganda, Eisen et al. (2008) found that C. felis was the main fleas in rodents. In addition, C. felis is also known as a vector of a flea tapeworm, *Dipyridium* caninum. Humans can be infected if they ingest cysticercoids of *D. caninum*. High prevalence was associated with the occurrence of infected dogs or cats as their pet (Pan American Health Organization, 2003).

The importance of identifying flea in companion animals due to the role of the flea to transmit pathogens to humans with the historical note resulting in human plagues and black death (Bubonic Plague) (Gubler, 2009) and many impacts of the occurrence of flea in the environment such as nuisance, anemia, allergic reactions, and discomfort (Iannino *et al.*, 2017).

CONCLUSION

It can be concluded that the high prevalence of ectoparasites on the stray cats in Surabaya traditional markets must be a consideration among health workers as early mitigation and prevention of vectorborne diseases. Serologic and molecular test for the pathogens in stray cats should be conducted for the early detection of vector-borne zoonotic diseases.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the Insecta Study Group (Association of Biology Student Universitas Airlangga focusing on entomology) for helping the sampling.

REFERENCES

- Abdullah, S., Helps, C., Tasker, S., Newbury, H., Wall, R., 2019, Pathogens in fleas collected from cats and dogs: Distribution and prevalence in the UK, Parasites and Vectors 12, 1–10.
- AbuZeid, A., Nahla, H., Eman, M., Amal, K., Ahmed, A., Hamdy, M., 2015. Studies on ectoparasites of stray dogs in Ismailia City. Egypt. Vet. Med. Soc. Parasitol. J. 11, 115–122.
- Akucewich, L.H., Philman, K., Clark, A., Gillespie, J., Kunkle, G., Nicklin, C.F., Greiner, E.C., 2002, Prevalence of ectoparasites in a population of feral cats from north central Florida during the summer, Vet. Parasitol, 109, 129–139.
- Aldemir, O.S., 2007, Epidemiological study of ectoparasites in dogs from Erzurum region in Turkey, Rev. Med. Vet, (Toulouse), 158, 148– 151.
- Amin-Babjee, S., 1978, Parasites of the domestic cat in Selangor, Malaysia, Kaji. Vet,10, 107–114.

- Bahrami, A.M., Doosti, A., Ahmady-Asbchin, S., 2012, Cat and dogs ectoparasite infestations in Iran and Iraq boarder line area, World Appl. Sci. J. 18, 884–889.
- Beck, W., Boch, K., Mackensen, H., Wiegand, B., Pfister, K., 2006, Qualitative and quantitative observations on the flea population dynamics of dogs and cats in several areas of Germany, Vet. Parasitol,137, 130–136.
- Beugnet, F., Marié, J. Lou, 2009, Emerging arthropod-borne diseases of companion animals in Europe,Vet. Parasitol, 163, 298– 305.
- Billeter, S.A., Metzger, M.E., 2017, Limited Evidence for Rickettsia felis as a Cause of Zoonotic Flea -Borne Rickettsiosis in Southern California, J. Med. Entomol, 54, 4–7.
- Bond, R., Riddle, A., Mottram, L., Beugnet, F., Stevenson, R., 2007, Survey of flea infestation in dogs and cats in the United Kingdom during 2005,Vet. Rec. 160, 503–506.
- Boudebouch, N., Sarih, M., Beaucournu, J.C., Amarouch, H., Hassar, M., Raoult, D., Parola, P., 2011, Bartonella clarridgeiae, *B. henselae* and *Rickettsia felis* in fleas from Morocco, Ann. Trop. Med, Parasitol, 105, 493–498.
- Bowman, D., Hendrix, C., Lindsay, D., Barr, S., 2002, Feline clinical parasitology, 1st ed. Iowa State University Press.
- Burroughs, J.E., Thomasson, J.A., Marsella, R., Greiner, E.C., Allan, S.A., 2016, Ticks associated with domestic dogs and cats in Florida, USA, Exp. Appl. Acarol, 69, 87–95.
- Cadiergues, M.C., Joubert, C., Franc, M., 2000, A comparison of jump performances of the dog flea, *Ctenocephalides canis* (Curtis, 1826) and the cat flea, *Ctenocephalides felis felis* (Bouche, 1835), Vet. Parasitol. 92, 239–241.
- Chandra, S., Forsyth, M., Lawrence, A.L., Emery, D., Šlapeta, J., 2017, Cat fleas (*Ctenocephalides felis*) from cats and dogs in New Zealand: Molecular characterisation, presence of Rickettsia felis and Bartonella clarridgeiae and comparison with Australia, Vet. Parasitol, 234, 25–30.
- Chesney, C., 1995, Species of flea found on cats and dogs in South West England: further evidence of their polyxenous state and implications for flea control, Vet. Res, 136, 356–358.
- Chin, H.C., Ahmad, N.W., Lim, L.H., Jeffery, J., Hadi, A.A., Othman, H., Omar, B., 2010, Infestation with the cat flea, *Ctenocephalides felis felis* (Siphonaptera: Pulicidae) among students in Kuala Lumpur, Malaysia, Southeast Asian J. Trop. Med. Public Health 41, 1331–1334.

- Clark, F., 1999. Prevalence of the cat flea *Ctenochepalides felis* and oocyte development during autumn and winter in Leicester city, United Kingdom, Med. Vet. Entomol, 13, 217 -218.
- Clark, N.J., Seddon, J.M., Šlapeta, J., Wells, K., 2018, Parasite spread at the domestic animal wildlife interface: anthropogenic habitat use, phylogeny and body mass drive risk of cat and dog flea (*Ctenocephalides* spp.) infestation in wild mammals, Parasit. Vectors 11, 8.
- Colombo, F.A., Odorizzi, R.M.F.N., Laurenti, M.D., Galati, E.A.B., Canavez, F., Pereira-Chioccola, V.L., 2011, Detection of *Leishmania* (Leishmania) infantum RNA in fleas and ticks collected from naturally infected dogs, Parasitol, Res. 109, 267–274.
- Coman, B.J., Jones, E.H., Driesen, M.A., 1981, Helminth Parasites and Arthropods of Feral Cats. Aust. Vet. J.,57, 324–327.
- Cruz-Vazquez, C., Gamez, E.C., Fernandez, M.P., Parra, M.R., 2001, Seasonal Occurrence of *Ctenocephalides felis felis* and *Ctenocephalides canis* (Siphonaptera:Pulicidae) Infesting Dogs and Cats in an Urban Area in Cuernavaca, Mexico . J. Med, Entomol, 38, 111–113.
- Dantas-Torres, F., Otranto, D., 2014, Dogs, cats, parasites, and humans in Brazil: Opening the black box, Parasites and Vectors ,7, 1–25.
- De Castro, M.C.M., Rafael, J.A., 2006, Ectoparasitos de cães e gatos da cidade de Manaus, Amazonas, Brasil, Acta Amaz.,36, 535–538.
- Dean, S.R., Meola, R.W., 2002, Factors Influencing Sperm Transfer and Insemination in Cat Fleas (Siphonaptera: Pulicidae) Fed on an Artificial Membrane System, J. Med. Entomol, 39, 475– 479.
- Diakou, A., Di Cesare, A., Accettura, P.M., Barros, L., Iorio, R., Paoletti, B., Frangipane di Regalbono, A., Halos, L., Beugnet, F., Traversa, D., 2017, Intestinal parasites and vector-borne pathogens in stray and freeroaming cats living in continental and insular Greece, PLoS Negl. Trop. Dis, 11, 1–13.
- Dyrden, M., Rust, M.K., 1994, The cat flea: biology, ecology and control, Vet. Parasitol, 52, 1–19.
- Eduardo, S., Selo, E., Tongon, M., Manuel, M., 1977, *Felicola subrostratus* (Nitzch) (Malophaga: Trichodectidae) from a native cat- a Philippine record, Philipp. J. Vet. Med, 16, 69–71.

- Eisen, R.J., Borchert, J.N., Holmes, J.L., Amatre, G., Van Wyk, K., Enscore, R.E., Babi, N., Atiku, L.A., Wilder, A.P., Vetter, S.M., Bearden, S.W., Montenieri, J.A., Gage, K.L., 2008, Early-phase transmission of Yersinia pestis by cat fleas (*Ctenocephalides felis*) and their potential role as vectors in a plague-endemic region of Uganda, Am. J. Trop. Med. Hyg, 78, 949–956.
- ElSeify, M., Aggour, M., Sultan, K., Marey, N., 2016, Ectoparasites in Stray Cats in Alexandria Province, Egypt: A Survey Study, Alexandria J. Vet. Sci, 48, 115.
- Gubler, D., 2009, Vector Borne Diseases, Rev Sci Tech 28, 583-588.
- Hadi, U., Soviana, S., 2015, Prevalence of Ticks and Tick-Borne Diseases in Indonesian Dogs, J. Vet. Sci, Technol, 07.
- Iannino, F., Sulli, N., Maitino, A., Pascucci, I., Pampiglione, G., Salucci, S., 2017, Fleas of dog and cat: Species, biology and flea-borne diseases, Vet. Ital.,53, 277–288.
- Jameson, P., Greene, C., Regnery, R., Dryden, M., Marks, A., Brown, J., Cooper, J., Glaus, B., Greene, R., 1995, Prevalence of bartonella henselae antibodies in pet cats throughout regions of north america, J. Infect. Dis, 172, 1145–1149.
- Koutinas, A.F., Papazahariadou, M.G., Rallis, T.S., Tzivara, N.H., Himonas, C.A., 1995, Flea species from dogs and cats in northern Greece: environmental and clinical implications, Vet. Parasitol, 58, 109–115.
- Kristensen, S., Haarlov, N., Mourier, H., 1978, A study of skin diseases in dogs and cats, patterns of flea infestation in dogs and cats in Denmark, Veterinaermed 30, 401–413.
- Kumsa, B., Abiy, Y., Abunna, F., 2019, Ectoparasites infesting dogs and cats in Bishoftu, central Oromia, Ethiopia, Vet. Parasitol. Reg, Stud. Reports 15, 100263.
- Lappin, M.R., Hawley, J., 2009, Presence of Bartonella species and Rickettsia species DNA in the blood, oral cavity, skin and claw beds of cats in the United States, Vet. Dermatol, 20, 509–514.
- Lee, S.E., Jackson, L.A., Opdebeeck, J.P., 1997, Salivary antigens of the cat flea, *Ctenocephalides felis felis*, Parasite Immunol, 19, 13–19.
- Lewis, R.E., 1966. The Fleas (Siphonaptera) of Egypt, New Records, J. Parasitol, 52, 1167.
- Liebich, A., Brander, R., Hoppenstedt, K., 1985, Occurence of ticks and fleas in dogs and cats in Germany, Prakt Tierazt 66, 817–824.

- Maina, A., Fogarty, C., Krueger, L., Macaluso, K., Odhiambo, A., Nguyen, K., Farris, C., Luce-Fedrow, A., Bennet, S., Jiang, J., 2016, Rickettsial infections among *Ctenocephalides felis* and host animals during a flea-borne rickettsioses outbreak in Orange County, California, PLoS Negl. Trop. Dis, 11.
- McElroy, K.M., Blagburn, B.L., Breitschwerdt, E.B., Mead, P.S., McQuiston, J.H., 2010, Fleaassociated zoonotic diseases of cats in the USA: bartonellosis, flea-borne rickettsioses, and plague, Trends Parasitol, 26, 197–204.
- Morales-Malacara, J.B., Guerrero, R., 2007, A New Species of Parichoronyssus (Acari: Dermanyssoidea : Macronyssidae) from Bats of the Genus Phyllostomus A New Species of Parichoronyssus (Acari : Dermanyssoidea : Macronyssidae) from Bats of the Genus Phyllostomus (Chiroptera : Phyllostomidae), J. Med. Entomol, 1, 8–13.
- Mustaffa-Babjee, A., 1969, Lice and fleas of animals in Malaysia, Malaysian Vet. J. 6, 84.
- O'Neal, D., Church, D., McGreevy, P., Thomson, P., Brodbelt, D., 2014, Prevalence of disorders recorded in cats attending primary-care veterinary practices in England, Vet. J. 202, 286–291.
- Omonijo, A.O., Sowemimo, O.A., 2017, Prevalence of ectoparasites of dogs and cats in Ijero and Moba LGAs, Ekiti State, Nigeria, Niger, J. Parasitol, 38, 278–283.
- Pan American Health Organization, 2003, Zoonoses and communicable diseases common to man and animals 3rd edition: Vol. 3, parasitoses, Washington, D.C.
- Pugh, R.E., 1987, Effects on the development of Dyplidium canium on the host reaction to this parasite in the adult flea (*Ctenocephalides felis*), Parasitol. Res, 73, 171–177.
- Roy, H., Beckmann, B., Comont, R., Hails, R., Harrington, R., Medlock, J., Purse, B., Shortall, C., 2009, Nuisance insects and climate change, Department Environ Food Rural Affairs, London, UK.
- Sahimin, N.B., 2012, Biodiversity and Epidemiology Study of Macroparasites From Stray Cats in Peninsular Malaysia, Master Thesis, Faculty of Science, Institute of Biological Science.
- Salant, H., Mumcuoglu, K.Y., Baneth, G., 2014. Ectoparasites in urban stray cats in Jerusalem, Israel: Differences in infestation patterns of fleas, ticks and permanent ectoparasites, Med. Vet. Entomol, 28, 314–318.

- Schrierfer, M., Sacci, J., Taylor, J., Higgins, J., Azad, A., 1994, Murine typhus updated roles of multiple urban components and second typhuslike rickettsia, J. Med. Entomol, 31, 681 –685.
- Service, M., 2008, Medical entomology for students, fourth edition, Medical Entomology for Students, Fourth Edition.
- Shakya, M., Pradesh, M., Vishwavidyalaya, P.V., Jayraw, A.K., Pradesh, M., Vishwavidyalaya, P.V., Singh, M., Upadhaya, D., 2019, Cat flea (*Ctenocephalides felis felis*) and Oriental cat flea (*Ctenocephalides orientis*) infestation as a emerging nuisance to human population, 1–4.
- Shanta, C., 1982, A revised check list of helminths of domestic animals in West Malaysia, Malaysian Vet, J. 7, 180–193.
- Shaw, S.E., Kenny, M.J., Tasker, S., Birtles, R.J., 2004, Pathogen carriage by the cat flea *Ctenocephalides felis* (Bouché) in the United Kingdom, Vet. Microbiol. 102, 183–188.
- Silverman, J., Rust, M.K., Reierson, D.A., 1981, Influence of temperature and humidity on survival and development of the cat flea, *Ctenocephalides felis* (Siphonaptera: Pulicidae), J. Med. Entomol, 18, 78–83.
- Sorvillo, F., Gondo, B., Emmons, R., Ryan, P., Waterman, S., 1993, A suburban focus endemic typhus in Los Angeles county: association with seropositive domestic cats and opossums. Am. J. Trop. Med. Hyg, 48, 269– 273.

- Soulsby, E.J., 1982, Helminthes, arthropods, and protozoa of domesticated animal, 7th Ed., Bailliene Tindall and Cassel, London, UK.
- Thomas, J.E., Staubus, L., Goolsby, J.L., Reichard, M. V., 2016, Ectoparasites of free-roaming domestic cats in the central United States, Vet. Parasitol, 228, 17–22.
- Trotti, G., Corradini, L., Visconti, S., 1990, Parasitological investigation in a cattery in Ferrara, Parasitologia 32, 42–43.
- Visser, M., Rehbein, S., Wiedemann, C., 2001, Species of flea (Siphonaptera) infesting pets and hedgehogs in Germany, J. Vet. Med. Ser, B 48, 197–202.
- Wall, R., Shaw, S.E., Penaliggon, J., 1997, The prevalence of flea species on cats and dogs in Ireland, Med. Vet. Entomol, 11, 404–406.
- Youssefi, M.R., Rahimi, M.T., 2014, Extreme human annoyance caused by *Ctenocephalides felis felis* (cat flea), Asian Pac. J. Trop. Biomed, 4, 334–336.
- Yue, B., Zou, F., Sun, Q., Li, J., 2002, Mating behaviour of the cat flea, *Ctenocephalides felis* Bouche (Siphonaptera: Pulicidae) and male response to female extract on a artificial feeding system, Entomol, Singapore 9, 29–34.
- Zakson, M., Gregory, L., Endris, R., Shoop, W., 1995, Effect of combing time on cat flea (*Ctenocephalides felis*) recovery from dogs, Vet. Parasitol, 60, 149–153.