DNA Barcode of Barred Mudskipper (Periophthalmus argentilineatus Valenciennes, 1837) from Tekolok Estuary (West Nusa Tenggara, Indonesia) and Their Phylogenetic Relationship with Other Indonesian Barred Mudskippers

https://doi.org/10.22146/jtbb.59702

Febrina Amaliya Rha'ifa(1), Deiandra Jasmine Audrea(2), Lukman Hakim(3), Tuty Arisuryanti(4*)

(1) Faculty of Biology, Universitas Gadjah Mada
(2) Faculty of Biology, Universitas Gadjah Mada
(3) Faculty of Biology, Universitas Gadjah Mada
(4) Faculty of Biology, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Barred mudskipper (Periophthalmus argentilineatus) has a potency to be developed as protein for human consumption and ornamental fish. The fish also has an important role in mangrove ecosystems. Nevertheless, many barred mudskippers have been considered a cryptic species. Therefore, accurate identification is needed to clarify species identification of the barred mudskipper using DNA barcoding.  This research aimed to identify barred mudskippers from Tekolok Estuary (East Lombok, West Nusa Tenggara, Indonesia) using COI mitochondrial gene as a DNA barcode and analyze genetic relationship with other barred mudskippers from several regions of Indonesia recorded in GenBank. This study used a PCR method with universal primers FishF2 and FishR2.  The data was then analysed using DNASTAR, BLAST, Mesquite, MEGA, DnaSP, BEAST, GenAlEx, and NETWORK. The results revealed that barred mudskipper from Tekolok Estuary has been verified as Periophthalmus argentilineatus. The results also exhibited that P. argentilineatus from Tekolok Estuary has a close genetic relationship to P.argentilineatus from Tukad Bilukpoh (Jembrana, Bali).  In addition, phylogenetic analysis showed that P.argentilineatus from Indonesia consisted of two clades with a genetic distance of approximately 6.64%. This analysis revealed evidence of the cryptic diversity of P.argentilineatus from Indonesia. Further detailed studies are needed to clarify whether Indonesian P.argentilineatus should be categorized into more than one species or single species with several subspecies.


Keywords


barred mudskipper; cryptic diversity; DNA barcode; polymorphism

Full Text:

PDF


References

Agorreta, A. Mauro, D.S. Schliewen, U. Van Tassell, J.L. Kovacic, M. Zardoya, R. & Ruber, L. 2013, Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies, Molecular Phylogenetics and Evolution, 69(3), pp.619-633.

Arisuryanti, T. Wei, N.-W.V. & Austin, C. 2016, Molecular evidence for determination cryptic species of Indonesian swamp eel populations using denaturing gradient gel electrophoresis (DGGE), AIP Conference Proceedings, 1744, 020060.

Arisuryanti, T. Hasan, R.L. & Koentjana, J.P. 2018, Genetic identification of two mudskipper species (Pisces: Gobiidae) from Bogowonto Lagoon (Yogyakarta, Indonesia) using COI mitochondrial gene as a DNA barcoding marker, AIP Conference Proceedings, 2002, 020068.

Arisuryanti, T. Hasan, R.L. Ayu, K.L. Ratman, N. & Hakim, L. 2019, Genetic identification of freshwater fish species through DNA barcoding from Lake Lebo Taliwang, West Nusa Tenggara, Journal of Tropical Biodiversity and Biotechnology, 4(3), pp. 107-112.

Delrieu-Trottin, E. Liggins, L. Trnski, T. Williams, J.T. Neglia V. Rapu-Edmunds, C. Planes, E. & Saenz-Agudelo, P. 2018, Evidence of cryptic species in the blenniid Cirripectes alboapicalis species complex, with zoogeographic implications for the South Pacific, ZooKeys, 810, pp. 127-138.

Elderkin, C.L. Clewing, C. Ndeo, O.W. & Albrecht, C. 2016, Molecular phylogeny and DNA barcoding confirm cryptic species in the African freshwater oyster Etheria elliptica Lamarck, 1807 (Bivalvia: Etheriidae), Biological Journal of the Linnaean Society, 118, pp. 369-381.

Elviana, S. & Sunarni, 2018, Komposisi dan kelimpahan jenis ikan glodok kaitannya dengan kandungan bahan organik di Perairan Estuari Kabupaten Merauke [The composition and abundance of mudskipper in relation to the content of organic matter in the estuary waters of Merauke Regency], Jurnal Agrikan, 11(2), pp. 38-43.

Eschmeyer, W. N. 2019, ‘Catalog of Fishes: Genera, Species, References’, viewed 1 December 2019, from http://research.calacademy.org/research/ichthyology/ catalog/fishcatmain.asp

Dahruddin, H. A. Hutama, F. Busson, S. Sauri, R. Hanner, P. Keith, R. Hadiaty & N. Hubert. 2017, Revisiting the ichthyodiversity of Java and Bali through DNA barcodes: taxonomic coverage, identification accuracy, cryptic diversity and identification of exotic species. Molecular Ecology Resources, 17 (2), pp.288-299

Darriba, D. Taboada, G.L. Doallo, R. & Posada, D. 2012, jModelTest 2: more models, new heuristics and parallel computing, Nature Methods, 9(8), p. 772.

Froese, R. & Pauly, D. 2004, ‘Fishbase’, in a Global Information System on Fishes, viewed 1 December 2019, from http://www.fishbase.org.

Healey, A.J.E. McKeown, N.J. Taylor, A.L. Provan, J. Sauer, W. Gouws, G. & Shaw, P.W. 2018, Cryptic species and parallel genetic structuring in Lethrinid fish: Implications for conservation and management in the southwest Indian Ocean, Ecology and Evolution, 8(4), pp. 2182-2195.

Hebert, P.D. Cywinska, A. Ball, S.L. & deWaard, J.R. 2003, Biological identifications through DNA barcodes. Proceedings of Biological Society B: Biological Sciences, 270(1512), pp. 313-321.

Kon, T. Yoshino, T. Mukai, T. & Nishida, M. 2007, DNA sequences identify numerous cryptic species of the vertebrate: a lesson from the gobioid fish Schindleria. Molecular Phylogenetics and Evolution, 44(1), pp.53-62.

Kumar, S. Stecher, G. Li, M. Knyaz, C. & Tamura, K. 2018, MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, pp.1547-1549.

Lee, H.J. Martinez, C.A. Hertzberg, K.J. Hamilton, A.L. & Graham, J.B. 2005, Burrow air phase maintenance and respiration by the mudskipper Scartelaos histophorus (Gobiidae: Oxudercinae). The Journal of Experimental Biology, 208, pp.167-177.

Leys, M. Keller, I. Räsänen, K. Gattolliat, J. L. & Robinson, C. T. 2016, Distribution and population genetic variation of cryptic species of the Alpine mayfly Baetis alpinus (Ephemeroptera: Baetidae) in the Central Alps. BMC Evolutionary Biology, p. 16, 77.

Maddison, W. P. & Maddison, D. R. 2018, ‘Mesquite: a modular system for evolutionary analysis Version 3.51’, viewed at http://www.mesquiteproject.org

Nelson, J. S. 2016, Fishes of the World. 5th ed. John Wiley & Sons, Inc. New Jersey.

Peakall, R. & Smouse, P.E. 2012, GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19), pp. 2537-2539.

Polgar, G. Zane, L. Babbucci, M. Barbisan, F. Partarnello, T. Ruber, L. & Papetti, C. 2014, Phylogeography and demographic history of two widespread Indo-Pacific mudskippers (Gobiidae: Periophthalmus). Molecular Phylogenetics and Evolution, 73, pp.161-176.

Rambaut, A. 2019, ‘FigTree v 1.4.4.’ viewed at http://tree.bio.ed.ac.uk/software/figtree/

Rathipriya, A. Marx, K.K. & Jeyashakila, R. 2019, Molecular identification and phylogenetic relationship of flying fishes of Tamil Nadu coast for fishery management purposes. Mitochondrial DNA Part A, 30(3), pp. 500-510.

Rozas, J. Rerrer-Matta, A. Sanchez-DelBarrio, J.C. Guirao-Rico, S. Librado, P. Ramos-Onsins, S.E. & Sanchez-Gracia, A. 2017, DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 13(12), pp.3299-3302.

Shelley, J.J. Swearer, S.E. Adams, M. Dempster, T. Le Feuvre, M.C. Hammer, M.P. & Unmack, P.J. 2018, Cryptic biodiversity in the freshwater fishes of the Kimberley endemism hotspot, northwestern Australia, Molecular Phylogenetics and Evolution, 127, pp.843-858.

Suchard, M.A. Lemey, P. Baele, G. Ayres, D.L. Drummond, A.J. & Rambaut, A. 2018, Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1), vey016.

Thacker, C.E. 2003, Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei), Molecular Phylogenetics and Evolution, 26, pp.354-368

Thacker, C.E. & M.A. Hardman, 2005, Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei), Molecular Phylogenetics and Evolution, 37(3), pp. 858-871.

Tronteli, P. & Fiser, C. 2009, Perspectives: cryptic species diversity should not be trivialised, Systematics and Biodiversity, 7, pp.1-3.

Vanhove, M.P.M. A.N. Economou, S. Zogaris, M.H.D. Larmuseau, S. Giakoumi, E. Kalogianni, F.A.M. Volckaert & T. Huyse, 2012, Phylogenetics & biogeography of the Balkan 'sand Gobies' : vulnerable species in need taxonomic revision, Biological Journal of the Linnean Society, 105, pp.73-91.

Ward, R.D. Zemlak, T.S. Innes, B.H. Last, P.R. & Hebert, P.D. 2005, DNA barcoding Australia's fish species, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1462), pp.1847-57.

Yudhistira, A. & Arisuryanti, T. 2019, Preliminary findings of cryptic diversity of the giant tiger shrimp (Penaeus monodon Fabricius, 1798) in Indonesia inferred from COI mitochondrial DNA, Genetika, 51(1), pp.251-260.

Zemlak, T.S. Ward, R.D. Connell, A.D. Holmes, B.H. & Hebert, P.D. 2009, DNA barcoding reveals overlooked marine fishes, Molecular Ecology Resources, 9 Suppl s1, pp.237-242.



DOI: https://doi.org/10.22146/jtbb.59702

Article Metrics

Abstract views : 3241 | views : 2369

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)