Biostimulant Activity of Sargassum sp. Extracts on Early Growth of Zea mays L. and the Phytohormones Content Analysis

https://doi.org/10.22146/jtbb.69178

Fauziatul Fitriyah(1), Muhammad Abdul Aziz(2), Sri Wahyuni(3), Hana Fadila(4), Insyiah Meida Luktyansyah(5), Sulastri Sulastri(6), Priyono Priyono(7), Siswanto Siswanto(8*)

(1) Indonesian Research Institute for Biotechnology and Bioindustry, Jl. Taman kencana no 1, Bogor, Jawa Barat, Indonesia 16128
(2) Indonesian Research Institute for Biotechnology and Bioindustry, Jl. Taman kencana no 1, Bogor, Jawa Barat, Indonesia 16128
(3) Indonesian Research Institute for Biotechnology and Bioindustry, Jl. Taman kencana no 1, Bogor, Jawa Barat, Indonesia 16128
(4) Indonesian Research Institute for Biotechnology and Bioindustry, Jl. Taman kencana no 1, Bogor, Jawa Barat, Indonesia 16128
(5) PT Pupuk Kalimantan Timur, Jl. James Simanjuntak No.1, Guntung, Bontang Utara, Kota Bontang, Kalimantan Timur, Indonesia 75314
(6) PT Pupuk Kalimantan Timur, Jl. James Simanjuntak No.1, Guntung, Bontang Utara, Kota Bontang, Kalimantan Timur, Indonesia 75314
(7) Indonesian Research Institute for Biotechnology and Bioindustry, Jl. Taman kencana no 1, Bogor, Jawa Barat, Indonesia 16128
(8) Indonesian Research Institute for Biotechnology and Bioindustry, Jl. Taman kencana no 1, Bogor, Jawa Barat, Indonesia 16128
(*) Corresponding Author

Abstract


Seaweed has been gaining global interest in agriculture for the development of marine-based plant biostimulants. This research aimed to study the effect of three different liquid extracts of Sargassum sp., acidic, alkaline, and water extract, on the germination and early growth of maize and to evaluate the phytohormones content responsible for the growth. Phytohormones content including Indole-3-acetic acid (IAA), gibberellins (GA), kinetin and zeatin were analyzed using high-performance liquid chromatography (HPLC) and bioassay was performed twice on maize. Parameters observed on the bioassay were germination percentage, number of roots, shoot length, shoot weight and root weight under 4 different concentrations with 0.5; 1.5; 3.5; and 5% in the first bioassay and 3.5% concentration in the second bioassay. Both bioassays following randomized complete design and the data were analyzed using one-way ANOVA using post hoc test of Duncan Multiple Range Test (DMRT) at error probability of 5% in Genestat software. Phytohormones content in the seaweed extract indicated that alkaline extract was rich in IAA, gibberellin, and zeatin content, while water extract showed the highest kinetin content. The first bioassay indicated that lower concentration of the seaweed extracts gave better growth in all extracts, therefore a 3.5% concentration was chosen for the second bioassay with higher replication for each treatment. The second bioassay confirmed alkaline extract resulted in the highest germination while the highest seedling height, number of roots, shoot and root weight were resulted from acidic extract treatment. In conclusion, Sargassum sp. extracts obtained from acidic, alkaline, and water-based extraction methods, were able to improve the shoot and root growth of maize plants. The acidic extract showed the highest growth promotion among other extracts with the lowest phytohormones content.

 


Keywords


early growth; maize; liquid extract; germination; plant growth regulator; Sargassum sp.

Full Text:

PDF


References

Aydin, A., Kant, C., & Turan, M., 2012. Humic acid application alleviates salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr J Agric Res., 7(7), pp.1073–1086. doi: 10.5897/AJAR10.274

Barendse, G.W.M., 1987. High Performance Liquid Chromatography of Gibberellins. In High Performance Liquid Chromatography in Plant Sciences. London: Springer-Verlag. pp.1-28.

Craigie, J.S., 2011. Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), pp.371–393. doi: 10.1007/s10811-010-9560-4

EL Boukhari, M. et al., 2020. Trends in seaweed extract based biostimulants: manufacturing process and beneficial effect on soil-plant systems. Plants, 9, pp.1-23. doi: 10.3390/plants9030359

Flórez-Fernández, N. et al., 2018. Potential of intensification techniques for the extraction and depolymerization of fucoidan. Algal Research, 30, pp.128-148. doi: 10.1016/j.algal.2018.01.002

Goñi, O. et al., 2016. Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: same seaweed but different. J. Agric. Food Chem., 64, pp.2980–2989. doi: 10.1021/acs.jafc.6b00621

Hernández-Herrera, R.M. et al., 2014. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J. Appl. Phycol., 26, pp.619–628. doi: 10.1007/s10811-013-0078-4

Jannin, L. et al., 2013. Brassica napus Growth is Promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed Extract: Microarray Analysis and Physiological Characterization of N, C, and S Metabolisms. Journal of Plant Growth Regulation, 32(1), pp.31–52. doi: 10.1007/s00344-012-9273-9

Khan, W. et al., 2011. Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. J. Appl. Phycol., 23, pp.409–414. doi: 10.1007/s10811-010-9583-x

Kucera, B., Cohn, M.A., & Leubner-Metzger, G., 2005. Plant hormone interactions during seed dormancy release and germination. Seed Science Research, 15(4), pp.281-307. doi: 10.1079/SSR2005218

Mahmoud, S.H. et al., 2019. Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Annals of Agricultural Sciences, 64(2), pp.167–175. doi: 10.1016/j.aoas.2019.11.002

Marais, M.F. & Joseleau, J.P., 2001. A fucoidan fraction from Ascophyllum nodosum. Carbohydr. Res., 336, pp.155–159. doi: 10.1016/s0008-6215(01)00257-9

Putra, S.M. et al., 2017. Pengaruh biostimulan terhadap pertumbuhan vegetatif tanaman tebu varietas PSJT-941. Menara Perkebunan, 85(1), pp.37–43. doi: 10.22302/iribb.jur.mp.v85i1.241

Rayorath, P. et al., 2008. Extracts of the brown seaweed Ascophyllum nodosum induce gibberellic acid (GA 3)-independent amylase activity in barley. Journal of Plant Growth Regulation, 27, pp.370–379. doi: 10.1007/s00344-008-9063-6

Roussos, P.A., Denaka, N.K., & Damvakaris, T., 2009. Strawberry fruit quality attributes after application of plant growth stimulating compounds. Sci Hortic (Amsterdam), 119, pp.138–146. doi: 10.1016/j.scienta.2008.07.021

Sangha, J.S. et al., 2014. Seaweeds (macroalgae) and their extracts as contributors of plant productivity and quality: the current status of our understanding. In Advances in Botanical Research: Sea Plants. London, Elsevier Ltd. pp. 189-219. doi: 10.1016/B978-0-12-408062-1.00007-X

Santoso, D. et al., 2011. The effects of seaweed fertilizer on the growth and productivity of upland rice, maize and oil palm grown in green house. Menara Perkebunan, 79(2), pp.64–69. doi: 10.22302/iribb.jur.mp.v79i2.61

Sari, D.A. et al., 2019. Peningkatan hasil panen kedelai (Glycine max L.) varietas Wilis melalui aplikasi biostimulan tanaman. Menara Perkebunan, 87(1), pp.1–10. doi: 10.22302/iribb.jur.mp.v87i1.295

Sasikala, M. et al., 2016. Effect of seaweed extract (Sargassum tenerrimum) on seed germination and growth of tomato plant (Solanum lycopersicum). International Journal of ChemTech Research, 9(9), pp.285–293.

Sharma, H.S.S. et al., 2013. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol., pp.1-26. doi: 10.1007/s10811-013-0101-9

Shukla, P.S. et al., 2016. Carrageenans from red seaweeds as promoters of growth and elicitors of defense response response in plants. Front. Mar. Sci., 3, p.81. doi: 10.3389/fmars.2016.00081

Shukla, P.S. et al., 2019. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science, 1, pp.1–22. doi: 10.3389/fpls.2019.00655

Sivasankari, S. et al., 2006. Effect of seaweed extract on the growth and biochemical constituents of Vigna sinensis. Bioresour. Technol., 97, pp.1745–1751. doi: 10.1016/j.biortech.2005.06.016

Stengel, D.B. & Connan, S., 2015. Marine algae: A source of biomass for biotechnological applications. In Natural Products from Marine Algae: Methods and Protocols. Newyork: Springer, pp.1-38. doi: 10.1007/978-1-4939-2684-8_1

Sumera, F.C. & Cajipe, G.J.B., 1981. Extraction and Partial Characterization of Auxin-Like Substances from Sargassum polycystum C. Ag. Botanica marina, 24(3), pp.157-164. doi: 10.1515/botm.1981.24.3.157

Sunarpi, H. et al., 2021. Phytohormone content in brown macroalgae Sargassum from Lombok coast, Indonesia. IOP Conference Series: Earth and Environmental Science, 712(1), pp.8–13. doi: 10.1088/1755-1315/712/1/012042

Ugena, L. et al., 2018. Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of Arabidopsis germination and rosette growth. Frontiers in Plant Science 9, pp.9-17. doi: 10.3389/fpls.2018.01327

Van Oosten, M.J. et al. 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agr., 4 (5), pp.1-12. doi: 10.1186/s40538-017-0089-5

Yamakawa, T. et al, 1979. Stability of indole-3-acetic acid to autoclaving, aeration and light illumination. Agricultural and Biological Chemistry, 43(4), pp.879-880. doi: 10.1080/00021369.1979.10863551



DOI: https://doi.org/10.22146/jtbb.69178

Article Metrics

Abstract views : 859 | views : 597

Refbacks



Copyright (c) 2022 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)