Effect of Carbon Source Variations on Growth, Physiological Stress, and Saponin Levels of Talinum paniculatum Gaertn. Adventitious Roots
Nindi Novia Erin(1), Arif Yachya(2), Alfinda Novi Kristanti(3), Djarot Sugiarso(4), Yosephine Sri Wulan Manuhara(5*)
(1) Biology Department, Faculty of Science and Technology, Universitas Airlangga
(2) Biology Department, Faculty of Math and Science, Adi Buana PGRI University
(3) Chemistry Department, Faculty of Science and Technology, Universitas Airlangga
(4) Chemistry Department, Faculty of Science and Data Analytics, Institute Technology of Sepuluh Nopember
(5) Biology Department, Faculty of Science and Technology, Universitas Airlangga
(*) Corresponding Author
Abstract
Monosaccharide and disaccharide as carbon sources can affect the production of secondary metabolites. The study aims to determine the effect of variations in carbon sources on growth, physiological stress, and saponin levels of the adventitious roots of Talinum paniculatum Gaerthn. Adventitious roots are subculture in liquid MS medium treated with various sugars: 3% sucrose, 3% glucose, 3% fructose, 3% lactose, 3% maltose, 3% dextrose, sucrose + fructose (1.5% + 1.5%), sucrose + glucose (1.5% + 1.5%), glucose + fructose (1.5% + 1.5%), sucrose + dextrose (1.5% + 1.5%) for 6 weeks. The results of this study show that the 3% fructose treatment produces the highest fresh and dry biomass, which are 1.30 g and 0.23 g compared to the control. The morphology of adventitious roots in the treatment of carbon source variation is not different from the control treatment. The highest MDA (malondialdehyde) levels are found in the sucrose + fructose treatment (1.5% + 1.5%). Meanwhile, the highest proline levels are found in the 3% maltose treatment. Saponin levels analyzed using thin layer chromatography show the data in the form of color intensity and stain area based on ImageJ software analysis. The 3% fructose treatment shows the highest color intensity and stain area compared to the control. Variations in carbon sources affect physiological stress, biomass, and saponin levels of adventitious roots of T. paniculatum, but do not effect on root morphology.
Keywords
Full Text:
PDFReferences
Bates, L.S., Waldren, R.P. & Teare, I.D., 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), pp.205-207. doi:10.1007/BF00018060
Baque, M.A. et al., 2013. Production of Biomass and Bioactive Compounds by Adventitious Root Suspension Cultures of Morinda citrifolia (L.) In A Liquid-Phase Airlift Balloon-Type Bioreactor. In Vitro Cell. Dev. Biol.- Plant, 49(6). doi: 10.1007/s11627-013-9555-3
Baque, M.A., Murthy, H.N. & Paek, K.Y., 2014. Adventitious Root Culture of Morinda citrifolia in Bioreactors for Production of Bioactive Compounds. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology, 1st edition. Heidelberg: Springer Science and Business Media Dordrecht. pp.186-223. doi: 10.1007/978-94-017-9223-3
Cui, X-H, Murthy, H.N. & Paek, K-Y., 2014. Production of Adventitious root Biomass and Bioactive Compouns from Hypericum perforatum L. Trough Large Scale Bioreactor Cultures. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer Dordrecht. pp. 167-184. doi: 10.1007/978-94-017-9223-3
Esfandiari, E., Shekari, F. & Esfandiari, M., 2007. The Effect of salt stress on antioxidant enzymes, activity and lipid peroxidation on the wheat seedling. Not. Bot. Hort. Agrobot. Cluj., 35. doi: 10.15835/nbha351251
Faizal, A. & Sari, A.V., 2019. Enhancement of saponin accumulation in adventitious root culture of Javanese ginseng (Talinum paniculatum Gaertn.) through methyl jasmonate and salicylic acid elicitation. African Journal of Biotechnology, 18(6), pp.130-135. doi: 10.5897/AJB2018.16736
Fuentes, G. et al., 2005. Exogenous sucrose can decrease in vitro photosynthesis but improve field survival and growth of coconut (Cocos nucifera L.) in vitro plantlets. In Vitro Cellular and Developmental Biology - Plant, 41(1), pp.69-76. doi: 10.1079/IVP2004597
George, E.F., 1993. Plant propagation by tissue culture. Part 1: The technology 2nd ed., Exegetics limited.
Hu, X.Y. et al., 2003. Activation of plasma membrane NADPH oxidase and generation of H2O2 mediate the induction of PAL activity and saponin synthesis by endogenous elicitor in suspension-cultured cells of Panax ginseng. Acta Botanica Sinica, 45(12), pp.1434-1441.
Ibrahim, H.A. & Abdellatif, Y.M.R., 2016. Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress. Annals of Agricultural Sciences, 61(2), pp.267-274. doi: 10.1016/j.aoas.2016.05.002
Ikhtimami, A., 2012. Pengaruh periode subkultur terhadap kadar saponin akar rambut tanaman ginseng jawa (Talinum paniculatum Gaertn.). Universitas Airlangga.
Lerbret, A. et al., 2005. Influence of homologous disaccharides on the hydrogen-bond network of water: Complementary Raman scattering experiments and molecular dynamics simulations. Carbohydrate Research, 340(5), pp.881-7 doi: 10.1016/j.carres.2005.01.036
Lestari, S.R. et al., 2017. Biomass and flavonoid production of Gynura procumbens (Lour.) Merr. axillary shoots culture induced by sucrose and erythrose 4-phosphate. Scholars Academic Journal of Biosciences, 5(4).
Luo, Y. et al., 2010. Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage. Biologia Plantarum, 54(3), pp.495-501 doi: 10.1007/s10535-010-0087-y
Manuhara, Y.S.W., Kristanti, A.N. & Utami, E.S.W., 2015. Optimization of culture conditions of Talinum paniculatum Gaertn.adventitious roots in balloon type bubble bioreactor using aeration rate and initial inoculum density. Asian Journal of Biological Sciences, 8(2), pp.83-92 doi: 10.3923/ajbs.2015.83.92
Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, pp.473-497.
Nagella, P. & Murthy, H.N., 2014. Production of whitanolides from cell and organ culture of Withania somnifera (L.) Dunal, InProduction of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer Dordrecht. pp.167-184. doi: 10.1007/978-94-017-9223-3
Noviyanti, R. et al., 2017. Biomass and flavonoid production of Gynura procumbensadventitious roots induced by sucrose, phenylalanine and tyrosine. Bioscience Research 14(4), pp. 934-941.
Peixoto, P.H.P. et al., 1999. Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Revista Brasileira de Fisiologoia Vegetal, 11(3), pp.137-143
Percival, G.C. & Fraser, G.A., 2005. Use of sugars to improve root growth and increase transplant success of birch (Betula pendula Roth.). Journal of Arboriculture, 31(2), pp.66-72. doi: 10.48044/jauf.2005.008
Praveen, N. & Murthy, H.N., 2012. Synthesis of withanolide A depends on carbon source and medium pH in hairy root cultures of Withania somnifera. Industrial Crops and Products, 35(1), pp.241-243. doi: 10.1016/j.indcrop.2011.07.009
Sami, F. et al., 2016. Role of sugars under abiotic stress. Plant Physiology and Biochemistry, 109, pp.54-61. doi: 10.1016/j.plaphy.2016.09.005
Scott, J.D., 1995. Sugar Transport in Strawberry Fruit: Uptake Competition, and Developmental Changes in Invertase Levels. Oregon State University.
Solim, M.H., 2017. Peningkatan Produksi Biomassa dan Saponin Akar Adventif Talinum paniculatum Gaertn. Dalam Bioreaktor Bergelembung Tipe Balon Sistem Batch dan Continous. Universitas Airlangga.
Stahl, E., 1985. Analisis Obat Secara Kromatografi dan Mikroskopi, Bandung: Institut Teknologi Bandung.
Thanh, N.T., Murthy, H.N. & Paek, K.Y., 2014. Ginseng cell culture for production of ginsenoside. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer Dordrecht. pp.167-184. doi: 10.1007/978-94-017-9223-3
Uozumi, N. et al., 1991. Fed-batch culture of hairy root using fructose as a carbon source. Journal of Fermentation and Bioengineering, 72(6), pp.457-460. doi: 10.1016/0922-338X(91)90054-K
Wang, Y. & Weathers, P.J., 2007. Sugars proportionately affect artemisinin production. Plant Cell Reports, 26(7), pp.1073-1081. doi: 10.1007/s00299-006-0295-2
Widiyani, T., 2006. Efek antifertilitas ekstrak akar som Jawa (Talinum paniculatum Gaertn.) pada mencit (Mus musculus L.) jantan. Bul. Penel. Kesehatan. 34(3).
Yachya, A., 2012. Pengaruh Laju Aerasi Dan Kerapatan Inokulum Terhadap Biomassa Dan Kandungan Saponin Kultur Akar Rambut Ginseng Jawa Dalam Bioreaktor Tipe Balon. Universitas Airlangga.
Yang, S.H., Wang, L.J. & Li, S.H., 2007. Ultraviolet-B irradiation-induced freezing tolerance in relation to antioxidant system in winter wheat (Triticum aestivum L.) leaves. Environmental and Experimental Botany, 60(3), pp.300-307. doi: 10.1016/j.envexpbot.2006.12.003
Yee, W., 2015. Feasibility of various carbon sources and plant materials in enhancing the growth and biomass productivity of the freshwater microalgae Monoraphidium griffithii NS16. Bioresource Technology, 196, pp.1-8. doi: 10.1016/j.biortech.2015.07.033
Yusuf, M. et al., 2021. Glucose modulates copper induced changes in photosynthesis, ion uptake, antioxidants and proline in Cucumis sativus plants. Carbohydrate Research, 501, pp.108271. doi: 10.1016/j.carres.2021.108271
Zuo, G. et al., 2009. Total saponins of Panax ginseng induces K562 cell differentiation by promoting internalization of the erythropoietin receptor. American Journal of Chinese Medicine, 37(4), pp.747-57. doi: 10.1142/S0192415X09007211
DOI: https://doi.org/10.22146/jtbb.69359
Article Metrics
Abstract views : 1521 | views : 1042Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)