New Record of Arbuscular Mycorrhizal Fungi (AMF) Association with Kebar Grass (Biophytum petersianum Klotzsch.) in the Grassland Area of Kebar, Tambrauw Regency, West Papua, Indonesia

Suharno Suharno(1*), Irma Rahayu(2), Rosye H. R. Tanjung(3), Supeni Sufaati(4)

(1) Department of Biology, Faculty of Mathematics and Natural Sciences, Cenderawasih University. Jl. Kamp Wolker, Perumnas 3 Waena, Jayapura 99351, Papua, Indonesia; Magister Program of Biology, Faculty of Mathematics and Natural Sciences, Cenderawasih ­University, Jayapura
(2) Student of Magister Program in Biology, Faculty of Mathematics and Natural Sciences, Cenderawasih ­University, Jayapura
(3) Magister Program of Biology, Faculty of Mathematics and Natural Sciences, Cenderawasih ­University, Jayapura
(4) Department of Biology, Faculty of Mathematics and Natural Sciences, Cenderawasih University. Jl. Kamp Wolker, Perumnas 3 Waena, Jayapura 99351, Papua, Indonesia
(*) Corresponding Author


Arbuscular mycorrhizal fungi (AMF) are an important form of symbiosis between fungi and plants in an ecosystem. One of the medicinal plants used by the people in West Papua is kebar grass (Biophytum petersianum Klotzsch.). This study aims to determine the AMF association in the rhizosphere of B. petersianum in grasslands. Survey method was used in this study. The presence of AMF was observed by examining root colonization and spore diversity. The results showed that the percentage of AMF colonization in roots was between 46.7–90.0% with an average of 71.66%. Meanwhile, the number of spores found in the plant rhizosphere averaged 119.8 spores per 10 grams of soil sample. There were 18 species of AMF dominated by the genus Glomus (7 species), Acaulospora (3 species), while the genus Claroideoglomus, Entrophospora, Gigaspora, and Scutellospora were dominated each with 2 species. This finding is the first record on the presence of AMF on B. petersianum in West Papua.


AMF; B. petersianum; characteristics of chemical soil; symbiosis

Full Text:



Aguilera, P. et al., 2015. Diversity of arbuscular mycorrhizal fungi in acidic soils and their contribution to aluminum phytotoxicity alleviation. In: S.K. Panda, F. Baluska (eds.), Aluminum Stress Adaptation in Plants, Signaling and Communication in Plants 24, pp.203–228. doi: 10.1007/978-3-319-19968-9_11.

Barceló, M. et al., 2020. The abundance of arbuscular mycorrhiza in soils is linked to the total length of roots colonized at ecosystem level. PLoS ONE, 15(9), e0237256. doi: 10.1371/journal.pone.0237256.

Brundrett, M. et al., 1996. Working with mycorrhizas in forestry and agriculture. ACIAR. Canbera. Australia. doi: 10.13140/2.1.4880.5444.

Carrenho, R. et al., 2007. The effect of different soil properties on arbuscular mycorrhizal colonization of peanuts, sorghum and maize. Acta Bot. Bras., 21(3), pp.723–730. doi: 10.1590/S0102-33062007000300018.

Casazza, G. et al., 2017. The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia subacaulis. PLoS ONE, 12(2), e0171866. doi: 10.1371/journal.pone.0171866.

Coughlan, A. P. et al., 2000. Soil pH-Induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Canadian Journal of Forest Research, 30, p.10. doi: 10.1139/x00-090.

Cuenca, G. & Lovera, M., 2010. Seasonal variation and distribution at different soil depths of arbuscular mycorrhizal fungi spores in a tropical sclerophyllous shrubland. Botany, 88, pp.54-64. doi: 10.1139/B09-100.

Duc, N. H. et al., 2021. Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata (L.) and induce major changes in polyphenol profiles under salt stresses. Front. Plant Sci., 11, 612299. doi: 10.3389/fpls.2020.612299.

Eviati & Sulaeman, 2009. Chemical analysis of soil, plants, water and fertilizer. Balai Penelitian Tanah. Bogor.

Furrazola, E. et al., 2015. Functionality of arbuscular mycorrhizal fungi in three plant communities in the Managed Floristic Reserve San Ubaldo-Sabanalamar, Cuba. Int. J. Trop. Biol, 63(2), pp.341–356.

Giovannetti, M. et al., 2006. At the root of the wood wide web; self recognition and non-self incompatibility in mycorrhizal networks. Plant Signal. Behav., 1(1), pp.1–5. doi: 10.4161/psb.1.1.2277.

Giovannetti, M. et al., 2010. Fungal spore germination and pre-symbiotic mycelial growth–physiological and genetic aspects. In Mycorrhizas : Physiology and Function. London: Springer Science+Business Media B.V. pp.3–32. doi: 10.1007/978-90-481-9489-6_1.

Inngjerdingen, K.T. et al., 2006. A complement fixing polysaccharide from Biophytum petersianum Klotzsch, a medicinal plant from Mali, West Africa. Biomacromolecules, 7(1), pp.48–53. doi: 10.1021/bm050330h.

Inngjerdingen, M. et al., 2008. Pectic polysaccharides from Biophytum petersianum Klotzsch, and their activation of macrophages and dendritic cells. Glycobiology, 18(12), pp.1074-1084. doi: 10.1093/glycob/cwn090.

Kartikasari, S. N. et al., 2012. Ecology of Papua, Indonesian ecology series. Vol VI. Second Printing. Yayasan Obor, Jakarta. [Indonesian].

Kayadoe, M. et al., 2012. Pengaruh penggunaan rumput kebar (Biophytum petersianum Klotzch) dalam konsentrasi berdasarkan kandungan protein kasar 19% terhadap penampilan kelinci. Sains Peternakan, 10(2), pp.64–68. doi: 10.20961/sainspet.v10i2.4850.

Kivlin, S. N. et al., 2011. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 43(11), pp.2294–2303. doi: 10.1016/j.soilbio.2011.07.012.

Kormanik, P. P. & Mc.Graw, A.–C., 1984. Quantification of vesicular–arbuscular mycorrhizae in plant roots. In Methods and principles of mycorrhizal research (N.C. Schenck, Ed). Minnesota: The American Phytopathological Society. pp. 37–45.

Kumar, A. et al., 2021. Ethno-medicinal and AMF diversity conservation aspects of some weeds of Himachal Pradesh, India. Journal of Research in Weed Science, 4(1), pp. 43–56. doi: 10.26655/JRWEEDSCI.2021.1.4.

Mouzou, A. P. et al., 2009. Effects du decocte de Biophytum petersianum Klotzsh (Oxalidaceae), sur le calcium libre intracellulaire dans les cellules musculaires. Int. J. Biol. Chem. Sci., 3(4), pp.834–839. doi: 10.4314/ijbcs.v3i4.47190.

Rohyadi, A. et al., 2004. Effects of pH on mycorrhizal colonization and nutrient uptake in cowpea under conditions that minimise confounding effects of elevated available aluminium. Plant Soil, 260, pp.283–290. doi: 10.1023/B:PLSO.0000030183.87228.0b.

Sambodo, P. et al., 2018. Subchronic toxicity test of kebar grass extract of nHexane (Biophytum petersianum Klotzcch) on weight, ADG, and vital organ of Rat (Rattus norvegicus). J. Foof Pharm. Sci., 6, pp. 14-16. doi: 10.14499/jfps.

Schenck, N. C. & Perez, Y., 1990. Mannual for the identification of VA mycorrhizal fungi. Gainesville, USA: Synergitis Publication.

Schüßler, A. & Walker, C., 2010. The Glomeromycota. A species list with new families and new genera. With correction on July 2011. [online]. The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University.

Sembiring, B. & Darwati, I., 2013. Kebar grass (Biophytum petersianum) as a fertility enhancer. Warta Penelitian dan Pengembangan Tanaman Industri, 19(2), pp. 15–18. (In Indonesian).

Smith, S. E. & Read, D., 2008. Mycorrhizal symbiosis. Third Edition. New York: Academic Press, Elsevier.

Sorensen, K. W., 1993. Indonesian peat swamp forests and their role as a carbon sink. Chemosphere, 27(6), pp. 1065-1082. doi: 10.1016/0045-6535(93)90068-G.

Souza, T., 2015. Handbook of arbuscular mycorrhizal fungi. Switzerland: Springer International Publishing.

Suharno, et al., 2014. Keragaman makrofungi di Distrik Warmare Kabupaten Manokwari, Papua Barat. Jurnal Biologi Papua, 6(1), pp.136–144. (in Indonesian).

Suharno, et al., 2015. Keragaman fungi mikoriza arbuskula pada tumbuhan pokem [Setaria italica (L.) Beauv.] dengan metode traping. Jurnal Biologi Papua, 7(2). pp.68–77.

Suharno, et al., 2016. Presence of arbuscular mycorrhizal fungi on fern from tailing deposition area of gold mine in Timika, Indonesia. International Journal of Environmental Bioremediation & Biodegradation, 4, pp.1–7. doi: 10.12691/ijebb-4-1-1.

Suharno, et al., 2018. Arbuscular mycorrhizal fungi associated with Wati (Piper methysticum), a medicinal plant from Merauke Lowland, Papua, Indonesia. Biosaintifika: Journal of Biology & Biology Education, 10(2), pp.260–266. doi: 10.15294/biosaintifika.v10i2.14303.

Suharno, et al., 2020. Fungi mikoriza arbuskula mempercepat rehabilitasi lahan tambang. Yogyakarta: UGM Press.

Suharno, et al., 2021. The growth response of pokem (Setaria italica L.) inoculated with arbuscular mycorrhizal fungi (AMF) from tailings area. Journal of Degraded and Mining Lands Management, 8(4), pp.2873-2880. doi: 10.15243/jdmlm.2021.084.2873.

Sun, R.-T., et al. 2021. A review of the interaction of medicinal plants and arbuscular mycorrhizal fungi in the rhizosphere. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 12454. doi: 10.15835/NBHA49312454.

Sun, X.-G. & Tang, M., 2012. Comparison of four routinely used methods for assessing root colonization by arbuscular mycorrhizal fungi. Botany, 90(11), pp.1073–1083. doi: 10.1139/b2012-084.

Tao, L. et al., 2004. Arbuscular mycorrhizas in a valley-type savanna in southwest China. Mycorrhiza, 14, pp.323–327. doi: 10.1007/s00572-003-0277-y.

Trisilawati, O. et al., 2019. Application of AMF (Arbuscular Mycorrhizal Fungi) and organic fertilizer to increase the growth, biomass and bioactive content of Centella. IOP Conf. Series: Earth and Environmental Science, 292, pp.012067. doi: 10.1088/1755-1315/292/1/012067.

Tuheteru, F. D. et al., 2019. Arbuscular mycorrhizal fungi associated with adaptive plants in gold mines tailing. Biodiversitas, 20, pp.3398-3404. doi: 10.13057/biodiv/d201137.

Unitly, A. J. A. & Inara, C., 2011. The potential of kebar grass (Biophytum petersianum Klotzch) in improving reproductive performance. Prosiding Seminar Nasional Pengembangan Pulau–Pulau Kecil Tahun 2011, pp. 329–333 (in Indonesian).

Vierheilig, H. et al., 2005. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol. Plant, 125, pp.393–404. doi: 10.1111/j.1399-3054.2005.00564.x.

von Rintelen, K. et al., 2017. A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian Countries. Research Ideas and Outcomes, 3, e20860. doi: 10.3897/rio.3.e20860.

Wang, F. Y. & Shi, Z. Y., 2008. Biodiversity of arbuscular mycorrhizal fungi in China : a Review. Adv. Environ. Biol, 2(1), pp.31–39.

Warren, M. et al., 2017. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance Manag, 12, pp.12. doi: 10.1186/s13021-017-0080-2.

Xu, M. et al., 2017. Land use alters arbuscular mycorrhizal fungal communities and their potential role in carbon sequestration on the Tibetan Plateau. Nature: Scietific Report, 7, pp.3067. doi: 10.1038/s41598-017-03248-0.

Zhang, M. et al., 2021. Molecular diversity and distribution of arbuscular mycorrhizal fungi at different elevations in Mt. Taibai of Qinling Mountain. Front. Microbiol, 12, pp.609386. doi: 10.3389/fmicb.2021.609386.


Article Metrics

Abstract views : 2654 | views : 2251


  • There are currently no refbacks.

Copyright (c) 2022 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)