An Extensive Review on Production, Purification, and Bioactive Application of Different Classes of Bacteriocin

https://doi.org/10.22146/jtbb.72735

Manovina Manoharan(1*), Thamarai Selvi Balasubramaniam(2)

(1) Department of Microbiology, Sri Ramakrishna College of Arts and Science, Coimbatore-641006, Tamil Nadu, India
(2) Department of Microbiology, Sri Ramakrishna College of Arts and Science, Coimbatore-641006, Tamil Nadu, India
(*) Corresponding Author

Abstract


Lactic Acid Bacteria (LAB) synthesize various metabolites during their growth phase and are Generally Recognized as­­ Safe (GRAS) and Qualified Presumption of Safety (QPS). Ribosomally synthesized Antimicrobial Peptides (AMP) or Bacteriocins from the genera of Lactic Acid Bacteria and other prokaryotic genera are cationic, heat-stable, amphiphilic and the membrane permeabilizing peptides built with an excess amount of lysyl and arginyl residues. Antimicrobial compounds produced by LAB depend on the physical and biological conditions of microbial culture. Different classes of bacteriocin are produced by both Gram-positive and Gram-negative bacteria. The production of bacteriocin is influenced by various environmental factors. Bacteriocin has a wide variety of applications in various fields.   The application spectrum of bacteriocins can be expanded in various domains such as food processing, biomedical, and personal care due to the increase in the number of newly discovered bacteriocins. Bacteriocins acquire a wide spectrum of antimicrobial activity with minimal level of cytotoxicity. In addition, bacteriocins were studied for their anticancer activity against different cancer cell lines. Selective binding of bacteriocins (cationic) towards cancer cells (anionic) increases the cytotoxicity of cancer cells. Bacteriocin peptides initiate necrosis by communicating with the cell surface which selectively targets and kills the cells with tumor formation and does not cause any damage to the normal healthy cells. In this review, the bacteriocins synthesized from lactic acid bacteria along with their interaction with cancer cell lines and other applications are discussed along with a few examples of other bioactive compounds produced by LAB.

 


Keywords


antimicrobial peptides; bacteriocin; cancer cell; lactic acid bacteria

Full Text:

PDF


References

Abdi-Ali, A. et al., 2004. Cytotoxic effects of pyocin S2 produced by Pseudomonas aeruginosa on the growth of three human cell lines. Canadian journal of microbiology, 50(5), pp.375–381. doi: 10.1139/w04-019

Abriouel, H. et al., 2003. A simple method for semi-preparative-scale production and recovery of enterocin AS-48 derived from Enterococcus faecalis subsp. liquefaciens A-48-32. Journal of microbiological methods, 55(3), pp.599–605. doi: 10.1016/s0167-7012(03)00202-1

Ahmad, V. et al., 2017. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. International journal of antimicrobial agents, 49(1), pp.1–11. doi: 10.1016/j.ijantimicag.2016.08.016

Ahmadi, S., 2017. The apoptotic impact of nisin as a potent bacteriocin on the colon cancer cells. Microbial pathogenesis, 111, pp.193–197. doi: 10.1016/j.micpath.2017.08.037

Alvarez-Sieiro, P et al., 2016. Bacteriocins of lactic acid bacteria: extending the family. Applied microbiology and biotechnology, 100(7), pp.2939–2951. doi: 10.1007/s00253-016-7343-9

Ananou, S. et al., 2005. Control of Staphylococcus aureus in sausages by enterocin AS-48. Meat science, 71(3), pp.549–556. doi: 10.1016/j.meatsci.2005.04.039

Andersland, K. et al., 2010. Peptide pheromone plantaricin a produced by Lactobacillus plantarum permeabilizes liver and kidney cells. The Journal of membrane biology, 235(2), pp.121–129. doi: 10.1007/s00232-010-9263-4

Ankaiah, D. et al., 2017. Probiotic characterization of Enterococcus faecium por1: cloning, over expression of Enterocin-A and evaluation of antibacterial, anti-cancer properties. Journal of Functional Foods, 38, pp. 280–292.

Bagenda, D.K. & Yamazaki, K., 2007. Application of bacteriocins in food preservation and safety, Food, 1, pp. 137–148.

Beaulieu, L., 2005. Production, purification et caracterisation de la pediocine PA-1 naturelle et de ses formes recombinantes: Contribution a la mise en evidence d’une nouvelle activite biologique (French and English text).

Beaulieu, L. et al., 2006. An improved and simplified method for the large-scale purification of pediocin PA-1 produced by Pediococcus acidilactici. Biotechnology and applied biochemistry, 43(Pt 2), pp.77–84. doi: 10.1042/BA20050041

Begde, D. et al., 2011. Immunomodulatory efficacy of nisin--a bacterial lantibiotic peptide. Journal of peptide science: an official publication of the European Peptide Society, 17(6), pp.438–444. doi: 10.1002/psc.1341

Branen, J.K. & Davidson, P.M., 2004. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. International journal of food microbiology, 90(1), pp.63–74. doi: 10.1016/s0168-1605(03)00172-7

Bray, F. et al., 2021. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 127(16), pp.3029–3030. doi: 10.1002/cncr.3358

Callewaert, R. & De Vuyst, L., 1999. Expanded bed adsorption as a unique unit operation for the isolation of bacteriocins from fermentation media. Bioseparation, 8(1-5), pp.159–168.

Callewaert, R. et al., 1999. Characterization and production of amylovorin L471, a bacteriocin purified from Lactobacillus amylovorus DCE 471 by a novel three-step method. Microbiology (Reading, England), 145 (Pt 9), pp.2559–2568. doi: 10.1099/00221287-145-9-2559

Caplice, E. & Fitzgerald, G.F., 1999. Food fermentations: role of microorganisms in food production and preservation. International journal of food microbiology, 50(1-2), pp.131–149. doi: 10.1016/s0168-1605(99)00082-3

Carolissen-Mackay, V., Arendse, G. & Hastings, J.W., 1997. Purification of bacteriocins of lactic acid bacteria: problems and pointers. International journal of food microbiology, 34(1), pp.1–16. doi: 10.1016/s0168-1605(96)01167-1

Carr, F.J., Chill, D. & Maida, N., 2002. The lactic acid bacteria: a literature survey. Critical reviews in microbiology, 28(4), pp.281–370. doi: 10.1080/1040-840291046759

Chabner, B.A. & Roberts, T.G.Jr., 2005. Timeline: Chemotherapy and the war on cancer. Nature Reviews Cancer, 5(1), pp.65–72. doi: 10.1038/nrc1529

Chan, S.C. et al., 1998. Microscopic observations of the different morphological changes caused by anti-bacterial peptides on Klebsiella pneumoniae and HL-60 leukemia cells. Journal of peptide science: an official publication of the European Peptide Society, 4(7), pp.413–425. doi: 10.1002/(SICI)1099-1387(199811)4:7%3C413::AID-PSC160%3E3.0.CO;2-W

Chu, H.L. et al., 2015. Novel antimicrobial peptides with high anticancer activity and selectivity. PloS one, 10(5), e0126390. doi: 10.1371/journal.pone.0126390

Cintas, L.M. et al., 2001. Review: Bacteriocins of Lactic Acid Bacteria. Food Science and Technology International, 7(4), pp.281–305. doi: 10.1106/R8DE-P6HU-CLXP-5RYT.

Cleveland, J. et al., 2001. Bacteriocins: safe, natural antimicrobials for food preservation. International journal of food microbiology, 71(1), pp.1–20. doi: 10.1016/s0168-1605(01)00560-8

Cotter, P.D., Hill, C. & Ross, R.P. 2005. Bacteriocins: developing innate immunity for food. Nature reviews Microbiology, 3(10), pp.777–788. doi: 10.1038/nrmicro1273

Deegan, L.H. et al., 2006. Bacteriocins : Biological tools for bio-preservation and shelf-life extension, 16(9), pp. 1058–1071. doi: 10.1016/j.idairyj.2005.10.026

Dobrzyńska, I. et al., 2005. Changes in electric charge and phospholipids composition in human colorectal cancer cells. Molecular and cellular biochemistry, 276(1-2), pp.113–119. doi: 10.1007/s11010-005-3557-3

Drider, D. et al., 2006. The continuing story of class IIa bacteriocins. Microbiology and molecular biology reviews: MMBR, 70(2), pp.564–582. doi: 10.1128/MMBR.00016-05

Dufour, A. et al., 2000. IS1675, a novel lactococcal insertion element, forms a transposon-like structure including the lacticin 481 lantibiotic operon. Journal of bacteriology, 182(19), pp.5600–5605. doi: 10.1128/JB.182.19.5600-5605.2000

Elotmani, F. et al., 2002. Characterization of anti-Listeria monocytogenes bacteriocins from Enterococcus faecalis, Enterococcus faecium, and Lactococcus lactis strains isolated from Raïb, a Moroccan traditional fermented milk. Current microbiology, 44(1), pp.10–17. doi: 10.1007/s00284-001-0067-8

Fagundes, P.C. et al., 2016. The four-component aureocin A70 as a promising agent for food biopreservation. International journal of food microbiology, 237, pp.39–46. doi: 10.1016/j.ijfoodmicro.2016.08.017

Fimland, G. et al., 2005. Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. Journal of peptide science: an official publication of the European Peptide Society, 11(11), pp.688–696. doi: 10.1002/psc.699

Fuska, J. et al., 1979. Effect of colicin E3 on leukemia cells P388 in vitro. Experientia, 35(3), pp.406–407. doi: 10.1007/BF01964380

Ghanbari, M. & Jami, M., 2013. Lactic Acid Bacteria and Their Bacteriocins: A Promising Approach to Seafood Biopreservation, in M. Kongo (ed.), Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes, IntechOpen, London. doi:10.5772/50705.

Gillor, O., Etzion, A. & Riley, M. A., 2008. The dual role of bacteriocins as anti- and probiotics. Applied microbiology and biotechnology, 81(4), pp.591–606. doi: 10.1007/s00253-008-1726-5

Gordon, Y.J., Romanowski, E.G. & McDermott, A.M., 2005. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Current eye research, 30(7), pp.505–515. doi: 10.1080/02713680590968637

Güzel-Seydim, Z.B. et al., 2000. Determination of organic acids and volatile flavor substances in kefir during fermentation. Journal of Food composition and Analysis, 13(1), pp.35–43. doi: 10.1006/jfca.1999.0842

Hanchi, H. et al., 2018. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Frontiers in microbiology, 9, pp.1791. doi: 10.3389/fmicb.2018.01791

Hetz, C. et al., 2002. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proceedings of the National Academy of Sciences of the United States of America, 99(5), pp.2696–2701. doi: 10.1073/pnas.052709699

Hoskin, D.W. & Ramamoorthy, A., 2008. Studies on anticancer activities of antimicrobial peptides. Biochimica et biophysica acta, 1778(2), pp.357–375. doi: 10.1016/j.bbamem.2007.11.008

Jack, R.W., Tagg, J.R. & Ray, B., 1995. Bacteriocins of gram-positive bacteria. Microbiological reviews, 59(2), pp.171–200. doi: 10.1128/mr.59.2.171-200.1995

Jeevaratnam et al., 2005a. Biological preservation of foods–Bacteriocins of lactic acid bacteria. Indian J. Biotechnol,4.

Kamarajan, P. et al., 2015. Nisin ZP, a Bacteriocin and Food Preservative, Inhibits Head and Neck Cancer Tumorigenesis and Prolongs Survival. PloS one, 10(7). doi: 10.1371/journal.pone.0131008

Kim, R., Emi, M. & Tanabe, K. 2006. Role of mitochondria as the gardens of cell death. Cancer chemotherapy and pharmacology, 57(5), pp.545–553. doi: 10.1007/s00280-005-0111-7

Lao, Y. et al., 2014. Application of proteomics to determine the mechanism of action of traditional Chinese medicine remedies. Journal of ethnopharmacology, 155(1), pp.1–8. doi: 10.1016/j.jep.2014.05.022

Laxminarayan, R. et al., 2013. Antibiotic resistance-the need for global solutions. The Lancet. Infectious diseases, 13(12), pp.1057–1098. doi: 10.1016/S1473-3099(13)70318-9

Leal-Sánchez, et al., 2002. Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Applied and environmental microbiology, 68(9), pp.4465–4471. doi: 10.1128/AEM.68.9.4465-4471.2002

Leroy, F. et al., 2003. The stimulating effect of a harsh environment on the bacteriocin activity by Enterococcus faecium RZS C5 and dependency on the environmental stress factor used. International journal of food microbiology, 83(1), pp.27–38. doi: 10.1016/s0168-1605(02)00316-1

Lewies, A. et al., 2018. The antimicrobial peptide nisin Z induces selective toxicity and apoptotic cell death in cultured melanoma cells. Biochimie, 144, pp.28–40. doi: 10.1016/j.biochi.2017.10.009

Li, C. et al., 2002. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. Journal of biotechnology, 93(1), pp.27–34. doi: 10.1016/s0168-1656(01)00377-7

Loessner, M. et al., 2003. A pediocin-producing Lactobacillus plantarum strain inhibits Listeria monocytogenes in a multispecies cheese surface microbial ripening consortium. Applied and environmental microbiology, 69(3), pp.1854–1857. doi: 10.1128/AEM.69.3.1854-1857.2003

Lopetuso, L.R. et al., 2019. Bacteriocins and Bacteriophages: Therapeutic Weapons for Gastrointestinal Diseases? International journal of molecular sciences, 20(1), pp.183. doi: 10.3390/ijms20010183

Maher, S. & McClean, S., 2006. Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochemical pharmacology, 71(9), pp.1289–1298. doi: 10.1016/j.bcp.2006.01.012

Mahrous, A.H. et al., 2013. Study Bacteriocin Production and Optimization Using New Isolates of Lactobacillus spp. Isolated from Some Dairy Products under Different Culture Conditions. Food and Nutrition Sciences, 4(3), pp.342-356. doi: 10.4236/fns.2013.43045.

Martín, R. et al., 2015. Surface glycosaminoglycans protect eukaryotic cells against membrane-driven peptide bacteriocins. Antimicrobial agents and chemotherapy, 59(1), pp.677–681. doi: 10.1128/AAC.04427-14

Martínez, J.M. et al., 1998. Generation of polyclonal antibodies of predetermined specificity against pediocin PA-1. Applied and environmental microbiology, 64(11), pp.4536–4545. doi: 10.1128/AEM.64.11.4536-4545.1998

Mokoena, M.P., 2017. Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Molecules (Basel, Switzerland), 22(8), pp.1255. doi: 10.3390/molecules22081255

Nattress, F.M., Yost, C.K. & Baker, L.P., 2001. Evaluation of the ability of lysozyme and nisin to control meat spoilage bacteria. International journal of food microbiology, 70(1-2), pp.111–119. doi: 10.1016/s0168-1605(01)00531-1

Ndlovu, B., et al., 2015. Screening, identification and characterization of bacteriocins produced by wine-isolated LAB strains. Journal of applied microbiology, 118(4), pp.1007–1022. doi: 10.1111/jam.12752

Norouzi, Z. et al., 2018. Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. Microbial pathogenesis, 123, pp.183–189. doi: 10.1016/j.micpath.2018.07.006

Olaoye, O.A. & Ntuen, I.G., 2011. Spoilage and preservation of meat: a general appraisal and potential of lactic acid bacteria as biological preservatives. International Research Journal of Biotechnology, 2(1), pp.33–46.

Onwuakor, C.E. et al., 2014. Effect of Varied Culture Conditions on Crude Supernatant (Bacteriocin) Production from Four Lactobacillus Species Isolated from Locally Fermented Maize (Ogi). American Journal of Microbiological Research, 2(5), pp.125-130.

Osbelt, L., 2020. Influence of the intestinal microbiota composition on the individual susceptibility towards enteric infections in healthy individuals and hematological patients. Otto-von-Guericke Universität Magdeburg. doi: 10.25673/35695.

Ovchinnikov, K.V. et al., 2016. Novel Group of Leaderless Multipeptide Bacteriocins from Gram-Positive Bacteria. Applied and environmental microbiology, 82(17), pp.5216–5224. doi: 10.1128/AEM.01094-16

Paiva, A.D. et al., 2012. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology (Reading, England), 158(Pt 11), pp.2851–2858. doi: 10.1099/mic.0.062190-0

Paiva, A.D., Breukink, E. & Mantovani, H.C., 2011. Role of lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrobial agents and chemotherapy, 55(11), pp.5284–5293. doi: 10.1128/AAC.00638-11

Papagianni, M., 2003. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnology advances, 21(6), pp.465–499. doi: 10.1016/s0734-9750(03)00077-6

Parada, J.L. et al., 2007. Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Brazilian Archives of Biology and Technology, 50(3), pp.521–542. doi: 10.1590/S1516-89132007000300018

Parente, E. & Ricciardi, A., 1999. Production, recovery and purification of bacteriocins from lactic acid bacteria. Applied microbiology and biotechnology, 52(5), pp.628–638. doi: 10.1007/s002530051570

Patton, G.C. & van der Donk, W.A., 2005. New developments in lantibiotic biosynthesis and mode of action. Current opinion in microbiology, 8(5), pp.543–551. doi: 10.1016/j.mib.2005.08.008

Pereira Da Costa, M. & Conte-Junior, C.A., 2015. Chromatographic methods for the determination of carbohydrates and organic acids in foods of animal origin, Comprehensive Reviews in Food Science and Food Safety, 14(5), pp.586–600. doi: 10.1111/1541-4337.12148

Porta, C. et al., 2015. Renal effects of targeted anticancer therapies. Nature reviews. Nephrology, 11(6), pp.354–370. doi: 10.1038/nrneph.2015.15

Preet, S. et al., 2015. Effect of nisin and doxorubicin on DMBA-induced skin carcinogenesis--a possible adjunct therapy. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 36(11), pp.8301–8308. doi: 10.1007/s13277-015-3571-3

Reddy, J.R. 2008. The Influence of The Leader Sequence on Antimicrobial Activity of Leucocin A, An Antilisterial Bacteriocin Produced by Leuconostoc Gelidum UAL 187-22. University of KwazuluNatal.

Riedl, S. et al., 2011. In search of a novel target - phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochimica et biophysica acta, 1808(11), pp.2638–2645. doi: 10.1016/j.bbamem.2011.07.026

Rilla, N., Martínez, B. & Rodríguez, A., 2004. Inhibition of a methicillin-resistant Staphylococcus aureus strain in Afuega'l Pitu cheese by the nisin Z-producing strain Lactococcus lactis subsp. lactis IPLA 729. Journal of food protection, 67(5), pp.928–933. doi: 10.4315/0362-028x-67.5.928

Roberts, R.F. & Zottola, E.A., 1993. Shelf-life of pasteurized process cheese spreads made from cheddar cheese manufactured with a nisin-producing starter culture. Journal of dairy science, 76(7), pp.1829–1836. doi: 10.3168/jds.S0022-0302(93)77515-3

Rodali, V.P. et al., 2013. Biosynthesis and potential applications of bacteriocins’, Journal of Pure and Applied Microbiology, 7(4), pp. 2933–2945.

Rodr, E. et al., 2000. Diversity of bacteriocins produced by lactic acid bacteria isolated from raw milk’, 10. doi: 10.1016/S0958-6946(00)00017-0

Rodríguez, J. M. et al., 2003. Heterologous production of bacteriocins by lactic acid bacteria. International journal of food microbiology, 80(2), pp.101–116. doi: 10.1016/s0168-1605(02)00153-8

Ross, R.P., Morgan, S. & Hill, C., 2002. Preservation and fermentation: past, present and future. International journal of food microbiology, 79(1-2), pp.3–16. doi: 10.1016/s0168-1605(02)00174-5

Sand, S.L. et al., 2007. The bacterial peptide pheromone plantaricin A permeabilizes cancerous, but not normal, rat pituitary cells and differentiates between the outer and inner membrane leaflet. The Journal of membrane biology, 216(2-3), pp.61–71. doi: 10.1007/s00232-007-9030-3

Sand, S.L. et al., 2010. Plantaricin A, a peptide pheromone produced by Lactobacillus plantarum, permeabilizes the cell membrane of both normal and cancerous lymphocytes and neuronal cells. Peptides, 31(7), pp.1237–1244. doi: 10.1016/j.peptides.2010.04.010

Sand, S.L. et al., 2013. Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins. Biochimica et biophysica acta, 1828(2), pp.249–259. doi: 10.1016/j.bbamem.2012.11.001

Schenkel, L. C. & Bakovic, M. 2014. Formation and regulation of mitochondrial membranes. International journal of cell biology,709828. doi: 10.1155/2014/709828

Schöbitz et al., 2006. Bacteriocin like substance production by Carnobacterium piscicola in a continuous system with three culture broths. Study of antagonism against Listeria monocytogenes on vacuum packaged salmon. Brazilian Journal of Microbiology - Braz J Microbiol. 37. doi:10.1590/S1517-83822006000100010.

Schweizer, F., 2009. Cationic amphiphilic peptides with cancer-selective toxicity. European journal of pharmacology, 625(1-3), pp.190–194. doi : 10.1016/j.ejphar.2009.08.043

Seo, M. D. et al., 2012. Antimicrobial peptides for therapeutic applications: a review. Molecules (Basel, Switzerland), 17(10), pp.12276–12286. doi: 10.3390/molecules171012276

Siegel, R.L., Miller, K.D. & Jemal, A., 2019. Cancer statistics, 2019. CA: a cancer journal for clinicians, 69(1), pp.7–34. doi: 10.3322/caac.21551

Silva, C., Silva, S. & Ribeiro, S.C., 2018. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Frontiers in microbiology, 9, pp.594. doi: 10.3389/fmicb.2018.00594

Smolarczyk, R. et al., 2010. Anticancer effects of CAMEL peptide. Laboratory investigation; a journal of technical methods and pathology, 90(6), pp.940–952. doi: 10.1038/labinvest.2010.58

Sok, M., Sentjurc, M., & Schara, M. 1999. Membrane fluidity characteristics of human lung cancer. Cancer letters, 139(2), pp.215–220. doi: 10.1016/s0304-3835(99)00044-0

Soltani, S. et al., 2021. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS microbiology reviews, 45(1). doi: 10.1093/femsre/fuaa039

Sugrue, I. et al., 2020. Actinomyces Produces Defensin-Like Bacteriocins (Actifensins) with a Highly Degenerate Structure and Broad Antimicrobial Activity. Journal of bacteriology, 202(4). doi: 10.1128/JB.00529-19

Turner, D.L. et al., 1999. Solution structure of plantaricin C, a novel lantibiotic. European journal of biochemistry, 264(3), pp.833–839. doi: 10.1046/j.1432-1327.1999.00674.x

Van Kraaij, C. et al., 1999. Lantibiotics: biosynthesis, mode of action and applications. Natural product reports, 16(5), pp.575–587. doi: 10.1039/a804531c

Van Reenen et al., 2003. Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. International journal of food microbiology, 81(1), pp.29–40. doi: 10.1016/s0168-1605(02)00164-2

Van Staden, A.D.P., 2015. In vitro and in vivo characterization of amyloliquecidin, a novel two-component lantibiotic produced by Bacillus amyloliquefaciens. Stellenbosch: Stellenbosch University.

Vaucher, R.A., Teixeira, M.L. & Brandelli, A., 2010. Investigation of the cytotoxicity of antimicrobial peptide P40 on eukaryotic cells. Current Microbiology, 60(1), pp.1-5 doi: 10.1007/s11274-013-1575-y

Villarante, K.I. et al., 2011. Purification, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilactici K2a2-3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cells’, World Journal of Microbiology and Biotechnology, 27(4), pp. 975–980. doi: 10.1007/s11274-010-0541-1

Yang, R. & Ray, B., 1994. Factors influencing production of bacteriocins by lactic acid bacteria’, Food Microbiology, 11(4), pp. 281–291. doi: 10.1006/fmic.1994.1032

Yi, H. et al., 2013. Effect of exogenous factors on bacteriocin production from Lactobacillus paracasei J23 by using a resting cell system. International journal of molecular sciences, 14(12), pp.24355–24365. doi: 10.3390/ijms141224355

Zacharof, M.P. & Lovitt, R.W., 2012. Bacteriocins Produced by Lactic Acid Bacteria a Review Article. APCBEE Procedia, 2, pp.50–56. doi: 10.1016/j.apcbee.2012.06.010

Zainodini, N. et al., 2018. Nisin Induces Cytotoxicity and Apoptosis in Human Asterocytoma Cell Line (SW1088). Asian Pacific journal of cancer prevention: APJCP, 19(8), pp.2217–2222. doi: 10.22034/APJCP.2018.19.8.2217

Zhao, H. et al., 2006. Interaction of the antimicrobial peptide pheromone Plantaricin A with model membranes: implications for a novel mechanism of action. Biochimica et biophysica acta, 1758(9), pp.1461–1474. doi: 10.1016/j.bbamem.2006.03.037



DOI: https://doi.org/10.22146/jtbb.72735

Article Metrics

Abstract views : 2602 | views : 2097

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)