Attacus atlas (L.) sericin extract as an effective UV Protectant of Bacillus thuringiensis serotype kurstaki for controlling Spodoptera litura (Fab.)
Nindita Sabila Ningtyas(1), Rahmatullah Rahmatullah(2), Aryo Seto Pandu Wiranto(3), Nadya Sofia Siti Sa’adah(4), Hipny Alwandri(5), Asma’ Asma’(6), Tiara Purti Salsabila(7), Hanindyo Adi(8), Sukirno Sukirno(9*)
(1) Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(6) Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(7) Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(8) Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(9) Entomology Laboratory, Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Bacillus thuringiensis serotype kurstaki is an entomopathogenic bacteria commonly used to control the cutworm Spodoptera litura (Fab.). However, B. thuringiensis has disadvantage of being easily degraded due to exposed sunlight. The objective of this research was to determine the effectiveness of adding A. atlas (L.) cocoon extract as UV protectant B. thuringiensis to the mortality of S. litura. This research formulated 2.5% of the original substance of A. atlas cocoon extract and B. thuringiensis serotype kurstaki strain HD-7 applied from commercial product DiPel-WP®. The formulation was exposed to sunlight for 0, 1, 2, and 3 weeks. The suspension treated for 20 individuals of first instar larvae S. litura shifted into the artificial diet using 3-5 replicates. The scanning electron microscope (SEM) method began from a sample that was vacuumed, sample coated, and observed on SEM with the electron in a certain level probe. This research showed that the mortality of S. litura decreased with the growth of S. litura. The mortality of S. litura achieved 20%-100% mortality after treatments. The A. atlas cocoon extract was effective as UV protectant B. thuringiensis for three weeks of exposure to sunlight. The SEM analysis represented that formulation of B. thuringiensis and A. atlas cocoon extract sunlight exposure for one week has harsher surface than exposed during three weeks.
Keywords
Full Text:
PDFReferences
Ahmad, M., Ghaffar, A. & Rafiq, M., 2013. Host plants of leaf worm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in Pakistan. Asian Journal of Agriculture and Biology, 1(1), pp.23–28.
Baum, J.A. et al., 1999. Bacillus thuringiensis. Natural and recombinant bioinsecticide products. In Methods in Biotechnology. Humana Press, pp. 189–209. doi: 10.1385/0-89603-515-8:189.
Blouch, A. et al., 2020. Comparative Efficacy of Bacillus thuringiensis Commercial Formulations against Leaf Worm, Spodoptera litura Fabricius under Laboratory Conditions. Pakistan Journal of Zoology, 52(2), pp.609–616. doi: 10.17582/journal.pjz/20180619100621.
BPTD, 2011. Strategi Pengendalian Hama Penyakit Tanaman Tembakau. Medan: BPTD PTP Nusantara II.
Cohen, E. et al., 1991. Photoprotection of Bacillus thuringiensis kurstaki from ultraviolet irradiation. Journal of Invertebrate Pathology, 57(3), pp.343–351. doi: 10.1016/0022-2011(91)90138-G.
e Castro, B.M. de C. et al., 2019. Toxicity and cytopathology mediated by Bacillus thuringiensis in the midgut of Anticarsia gemmatalis ( Lepidoptera : Noctuidae ). Scientific Reports, (November 2018), pp.1–10. doi: 10.1038/s41598-019-43074-0.
Fabiani, C. et al., 1996. Treatment of waste water from silk degumming processes for protein recovery and water reuse. , 105, pp.1–9.
Glare, T.R., Jurat-Fuentes, J.L. & O’Callaghan, M., 2017. Basic and Applied Research: Entomopathogenic Bacteria. In Microbial Control of Insect and Mite Pests: From Theory to Practice. Elsevier Inc., pp. 47–67. doi: 10.1016/B978-0-12-803527-6.00004-4.
Hallad, A. et al., 2011. Characterization of resistance of different cry toxins to early and late instar Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.). Karnataka Journal of Agricultural Sciences, 24(3), pp.300–302.
Ignoffo, C.M. et al., 1977. Inactivation of Representative Species of Entomopathogenic Viruses, a Bacterium, Fungus, and Protozoan by an Ultraviolet Light Source. Environmental Entomology, 6(3), pp.411–415. doi: 10.1093/ee/6.3.411.
Kennedy, G.G. & Storer, N.P., 2000. Life Systems of Polyphagous Arthropod Pests in Temporally Unstable Cropping. Annual Review of Entomology, 45, pp.467–493. doi: 10.1146/annurev.ento.45.1.467.
Khetan, S.K., 2001. Microbial Pest Control, New York: Marcel Dekker, Inc.
Lacey, L.A. et al., 2001. Insect pathogens as biological control agents: Do they have a future? Biological Control, 21(3), pp.230–248. doi: 10.1006/bcon.2001.0938.
Obeidat, M., Hassawi, D. & Ghabeish, I., 2004. Characterization of Bacillus thuringiensis strains from Jordan and their toxicity to the Lepidoptera, Ephestia kuehniella Zeller. African Journal of Biotechnology, 3(11), pp.622–626. doi: 10.4314/ajb.v3i11.15029.
Roy, M. et al., 2012. Carbondioxide gating in silk cocoon. Biointerphases, 7(1–4), pp.1–11. doi: 10.1007/s13758-012-0045-7.
Song, F. et al., 2016. Insecticidal activity and histopathological effects of Vip3Aa proteinfrom Bacillus thuringiensis on Spodoptera litura. Journal of Microbiology and Biotechnology, 26(10), pp.1774–1780. doi: 10.4014/jmb.1604.04090.
Sukirno, S. et al., 2021. The effectiveness of Samia ricini Drury (Lepidoptera: Saturniidae) and Attacus atlas L. (Lepidoptera: Saturniidae) cocoon extracts as ultraviolet protectants of Bacillus thuringiensis for controlling Spodoptera litura Fab. (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science, 42(1), pp.255–260. doi: 10.1007/s42690-021-00540-5.
Teera-Arunsiri, A., Suphantharika, M. & Ketunuti, U., 2003. Preparation of Spray-Dried Wettable Powder Formulations of Bacillus thuringiensis-Based Biopesticides. Journal of Economic Entomology, 96(2), pp.292–299. doi: 10.1603/0022-0493-96.2.292.
Vengateswari, G., Arunthirumeni, M. & Shivakumar, M.S., 2020. Effect of food plants on Spodoptera litura (Lepidoptera: Noctuidae) larvae immune and antioxidant properties in response to Bacillus thuringiensis infection. Toxicology Reports, 7, pp.1428–1437. doi: 10.1016/j.toxrep.2020.10.005.
DOI: https://doi.org/10.22146/jtbb.74633
Article Metrics
Abstract views : 2191 | views : 1339Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)