Region of Nuclear Ribosomal DNA (ITS2) and Chloroplast DNA (rbcL and trnL-F) as A Suitable DNA Barcode for Identification of Zingiber loerzingii Valeton From North Sumatera, Indonesia
Eko Prasetya(1*), Lazuardi Lazuardi(2), Fauziyah Harahap(3), Yuanita Rachmawati(4), Yusnaeni Yusuf(5), Said Iskandar Al Idrus(6), Puji Prastowo(7)
(1) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, 20221, North Sumatra, Indonesia
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, 20221, North Sumatra, Indonesia
(3) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, 20221, North Sumatra, Indonesia
(4) Department of Biology, Faculty of Sciences and Technology, Islamic State University Sunan Ampel Surabaya, Surabaya, 60237, East Java, Indonesia
(5) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Makasar, Makasar, Indonesia, 90224, South Sulawesi, Indonesia
(6) Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, 20221, North Sumatra, Indonesia
(7) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, 20221, North Sumatra, Indonesia
(*) Corresponding Author
Abstract
Zingiber loerzingii Valeton is one of the species in the Zingiberaceae family found throughout Aceh and North Sumatra, Indonesia, with slimy flowers, yellowish white color, and dark orange stamens. Z. loerzingii is endemic in North Sumatra with a very limited distribution. The International Union for Conservation of Nature and Natural Resources classifies this plant into the vulnerable ones category. This study aims to examine the potential of DNA barcoding from nuclear DNA (ITS2) and DNA chloroplasts (rbcL and trnL-F) to identify Z. loerzingii plants. The research sample was obtained from two main distribution areas of Z. loerzingii in North Sumatra, Indonesia, namely Sibolangit Nature Reserve and Tangkahan Conservation Forest. The results showed that all the DNA barcode markers used were able to classify Z. loerzingii into the same group in the phylogenetic analysis. ITS marker is the most effective marker for classifying Zingiberaceae species compared to rbcL and trnL-F markers. The ITS2 marker has the lowest level of intraspecific and intraspecific genetic distance overlap compared to the rbcL and trnL-F markers. This research is expected to provide information related to the DNA barcode of Z. loerzingii in an effort to conserve this rare plant.
Keywords
Full Text:
PDFReferences
Bhagwat, R.M. et al., 2015. Two New Potential Barcodes to Discriminate Dalbergia Species. PLOS ONE, 10(11), e0142965. doi: 10.1371/journal.pone.0142965.
Chen, J. et al., 2014. Testing DNA barcodes in closely related species of Curcuma (Zingiberaceae) from Myanmar and China. Molecular Ecology Resources, 15(2), pp.337–348. doi: 10.1111/1755-0998.12319.
Chen, J. et al., 2015. Testing DNA barcodes in closely related species of Curcuma (Zingiberaceae) from Myanmar and China. Molecular Ecology Resources, 15(2), pp.337–348. doi: 10.1111/1755-0998.12319.
Costion, C. et al., 2011. Plant DNA Barcodes Can Accurately Estimate Species Richness in Poorly Known Floras. PLoS ONE, 6(11), e26841. doi: 10.1371/journal.pone.0026841.
Cui et al., 2019. Comparative and Phylogenetic Analyses of Ginger (Zingiber officinale) in the Family Zingiberaceae Based on the Complete Chloroplast Genome. Plants, 8(8), 283. doi: 10.3390/plants8080283.
Davis, J.I. et al., 2004. A Phylogeny of the Monocots, as Inferred from rbcL and atpA Sequence Variation, and a Comparison of Methods for Calculating Jackknife and Bootstrap Values. Systematic Botany, 29(3), pp.467–510. doi: 10.1600/0363644041744365.
Dong, W. et al., 2015. ycf1, the most promising plastid DNA barcode of land plants. Scientific Reports, 5(1), p.8348. doi: 10.1038/srep08348.
Elbadri, G.A.A. et al., 2002. Intraspecific variation in Radopholus similis isolates assessed with restriction fragment length polymorphism and DNA sequencing of the internal transcribed spacer region of the ribosomal RNA cistron. International Journal for Parasitology, 32(2), pp.199–205. doi: 10.1016/S0020-7519(01)00319-8.
Ferguson, J.W.H., 2002. On the use of genetic divergence for identifying species. Biological Journal of the Linnean Society, 75(4), pp.509–516. doi: 10.1046/j.1095-8312.2002.00042.x.
Givnish, T.J. et al., 2010. Assembling the Tree of the Monocotyledons: Plastome Sequence Phylogeny and Evolution of Poales 1. Annals of the Missouri Botanical Garden, 97(4), pp.584–616. doi: 10.3417/2010023.
Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series, 41(41), pp.95–98.
Hebert, P.D.N. et al., 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), pp.313–321. doi: 10.1098/rspb.2002.2218.
Hollingsworth, M.L. et al., 2009. Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Molecular Ecology Resources, 9(2), pp.439–457. doi: 10.1111/j.1755-0998.2008.02439.x.
Jatoi, S.A., Kikuchi, A. & Watanabe, K.N., 2007. Genetic diversity, cytology, and systematic and phylogenetic studies in Zingiberaceae. Genes, Genomes and Genomics, 1(1), pp.56–62.
Julius, A. & Suleiman, M., 2008. Preliminary molecular phylogeny of Bornean Plagiostachys (Zingiberaceae) based on DNA sequence data of internal transcribed spacer (ITS). Journal of Tropical Biology and Conservation, 4(1), pp.67–80.
Kala, C.P., 2005. Ethnomedicinal botany of the Apatani in the Eastern Himalayan region of India. Journal of Ethnobiology and Ethnomedicine, 1. doi: 10.1186/1746-4269-1-11.
Kool, A. et al., 2012. Molecular Identification of Commercialized Medicinal Plants in Southern Morocco. PLoS ONE, 7(6), e39459. doi: 10.1371/journal.pone.0039459.
Kress, W.J. et al., 2001. Unraveling the Evolutionary Radiation of the Families of the Zingiberales Using Morphological and Molecular Evidence R. Olmstead, ed. Systematic Biology, 50(6), pp.926–944. doi: 10.1080/106351501753462885.
Kress, W.J., Prince, L.M. & Williams, K.J., 2002. The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. American Journal of Botany, 89(10), pp.1682–1696. doi: 10.3732/ajb.89.10.1682.
Kress, W.J. et al., 2005. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences, 102(23), pp.8369–8374. doi: 10.1073/pnas.0503123102.
Kress, W.J. & Erickson, D.L., 2007. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE, 2(6), e508. doi: 10.1371/journal.pone.0000508.
Kress, W.J. et al., 2015. DNA barcodes for ecology, evolution, and conservation. Trends in Ecology & Evolution, 30(1), pp.25–35. doi: 10.1016/j.tree.2014.10.008.
Larsen, K. et al., 1999. Gingers of Peninsular Malaysia and Singapore, Borneo: Natural History Publications.
Li, D.-Z. et al., 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences, 108(49), pp.19641–19646. doi: 10.1073/pnas.1104551108.
Meier, R. et al., 2006. DNA Barcoding and Taxonomy in Diptera: A Tale of High Intraspecific Variability and Low Identification Success. Systematic Biology, 55(5), pp.715–728. doi: 10.1080/10635150600969864.
Meyer, C.P. & Paulay, G., 2005. DNA Barcoding: Error Rates Based on Comprehensive Sampling. PLoS Biology, 3(12), p.e422. doi: 10.1371/journal.pbio.0030422.
Miller, P., 1754. The Gardeners Dictionary, London: Rivington.
Muse, S. V, 2000. Examining rates and patterns of nucleotide substitution in plants. Plant Molecular Biology, 42, pp.25–43. doi: https://doi.org/10.1023/A:1006319803002.
Newmaster, S.G. et al., 2013. DNA barcoding detects contamination and substitution in North American herbal products. BMC Medicine, 11(1), 222. doi: 10.1186/1741-7015-11-222.
Ngamriabsakul, C., Newman, M.F. & Cronk, Q.C.B., 2004. The Phylogeny of Tribe Zingibereae (Zingiberaceae) Based on ITS (nrDNA) and trnL-F (cpDNA) Sequences. Edinburgh Journal of Botany, 60(3), pp.483–507. doi: 10.1017/S0960428603000362.
Nurainas & Ardiyani, M., 2019. Zingiber loerzingii. The IUCN Red List of Threatened Species 2019, e.T117465518A124284822. doi: 10.2305/IUCN.UK.2019-2.RLTS.T117465518A124284822.en.
Ounjai, S. et al., 2016. Multi Chloroplast Genes for Species Identification in Bar-HRM Analysis of Taxonomical Complex Medicinal Plants Group (Zingiberaceae). Chiang Mai Journal of Science, 44(4), pp.1311–1321.
Pedersen, L.B., 2004. Phylogenetic analysis of the subfamily Alpinioideae (Zingiberaceae), particularly Etlingera Giseke, based on nuclear and plastid DNA. Plant Systematics and Evolution, 245(3–4), pp.239–258. doi: 10.1007/s00606-004-0126-2.
Pino-Bodas, R. et al., 2013. Species delimitation in Cladonia (Ascomycota): a challenge to the DNA barcoding philosophy. Molecular Ecology Resources,13(6), pp.1058-1068. doi: 10.1111/1755-0998.12086.
Piredda, R. et al., 2011. Prospects of barcoding the Italian wild dendroflora: oaks reveal severe limitations to tracking species identity. Molecular Ecology Resources, 11(1), pp.72–83. doi: 10.1111/j.1755-0998.2010.02900.x.
Ratnasingham, S. & Hebert, P.D.N., 2007. BARCODING: bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7(3), pp.355–364. doi: 10.1111/j.1471-8286.2007.01678.x.
Ren, Y. et al., 2019. Analysis of Zingiberaceae in E’mei Area Using ITS2 Sequences. Chinese Journal of Experimental Traditional Medical Formulae, 24, pp.217–223.
Rugayah, R. et al., 2017. Tumbuhan Langka Indonesia : 50 Jenis Tumbuhan Terancam Punah, Jakarta: LIPI Press.
Sabu, M., 2006. Zingiberaceae and Costaceae of South India, Kerala, India: Indian Association for Angiosperm Taxonomy.
Saha, K. et al., 2020. DNA barcoding of selected Zingiberaceae species from North-East India. Journal of Plant Biochemistry and Biotechnology, 29(3), pp.494–502. doi: 10.1007/s13562-020-00563-y.
Särkinen, T. et al., 2012. How to Open the Treasure Chest? Optimising DNA Extraction from Herbarium Specimens. PLoS ONE, 7(8), e43808. doi: 10.1371/journal.pone.0043808.
Shearer, T.L. & Coffroth, M.A., 2008. DNA BARCODING: Barcoding corals: limited by interspecific divergence, not intraspecific variation. Molecular Ecology Resources, 8(2), pp.247–255. doi: 10.1111/j.1471-8286.2007.01996.x.
Shi, L.-C. et al., 2011. Testing the potential of proposed DNA barcodes for species identification of Zingiberaceae. Journal of Systematics and Evolution, 49(3), pp.261–266. doi: 10.1111/j.1759-6831.2011.00133.x.
Smith, J.F., Kress, W.J. & Zimmer, E.A., 1993. Phylogenetic Analysis of the Zingiberales Based on rbcL Sequences. Annals of the Missouri Botanical Garden, 80(3), p.620. doi: 10.2307/2399850.
Stoeckle, M.Y. et al., 2011. Commercial Teas Highlight Plant DNA Barcode Identification Successes and Obstacles. Scientific Reports, 1(1), p.42. doi: 10.1038/srep00042.
Taberlet, P. et al., 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17(5), pp.1105–1109. doi: 10.1007/BF00037152.
Takano, A. & Nagamasu, H., 2007. Myxochlamys (Zingiberaceae), a new genus from Borneo. Acta Phytotaxonomica et Geobotanica, 58(1), pp.19–32. doi: https://doi.org/10.18942/apg.KJ00004609388.
Tamura, K., Stecher, G. & Kumar, S., 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11 F. U. Battistuzzi, ed. Molecular Biology and Evolution, 38(7), pp.3022–3027. doi: 10.1093/molbev/msab120.
Tan, W.H., Chai, L.C. & Chin, C.F., 2020. Efficacy of DNA barcode internal transcribed spacer 2 (ITS 2) in phylogenetic study of Alpinia species from Peninsular Malaysia. Physiology and Molecular Biology of Plants, 26(9), pp.1889–1896. doi: 10.1007/s12298-020-00868-1.
Theerakulpisut, P. et al., 2012. Phylogeny of the genus Zingiber (Zingiberaceae) based on nuclear ITS sequence data. Kew Bulletin, 67(3), pp.389–395. doi: 10.1007/s12225-012-9368-2.
Theilade, I., 1999. A synopsis of the genus Zingiber (Zingiberaceae) in Thailand. Nordic Journal of Botany, 19(4), pp.389–410. doi: 10.1111/j.1756-1051.1999.tb01220.x.
Theodoridis, S. et al., 2012. DNA barcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent Çeşme‐Karaburun Peninsula (Turkey). Molecular Ecology Resources, 12(4), pp.620–633. doi: 10.1111/j.1755-0998.2012.03129.x.
Tushar et al., 2010. Ethnomedical uses of Zingiberaceous plants of Northeast India. Journal of Ethnopharmacology, 132(1), pp.286–296. doi: 10.1016/J.JEP.2010.08.032.
Valeton, T., 1918. Zingiber loerzingii. Bulletin du Jardin Botanique de Buitenzorg II, 27, p.146.
Vinitha, M.R. et al., 2014. Prospects for discriminating Zingiberaceae species in India using DNA barcodes. Journal of Integrative Plant Biology, 56(8), pp.760–773. doi: 10.1111/jipb.12189.
Williams, K.J., Kress, W.J. & Manos, P.S., 2004. The phylogeny, evolution, and classification of the genus Globba and tribe Globbeae (Zingiberaceae): appendages do matter. American Journal of Botany, 91(1), pp.100–114. doi: 10.3732/ajb.91.1.100.
Yao, H. et al., 2010. Use of ITS2 Region as the Universal DNA Barcode for Plants and Animals B. Hansson, ed. PLoS ONE, 5(10), p.e13102. doi: 10.1371/journal.pone.0013102.
Zakaria, Z.A. et al., 2011. Zingiber zerumbet (L.) Smith: A review of its ethnomedicinal, chemical, and pharmacological uses. Evidence-based Complementary and Alternative Medicine, 2011. doi: 10.1155/2011/543216.
Záveská, E. et al., 2012. Phylogeny of Curcuma (Zingiberaceae) based on plastid and nuclear sequences: Proposal of the new subgenus Ecomata. TAXON, 61(4), pp.747–763. doi: 10.1002/tax.614004.
Zhang, D., Duan, L. & Zhou, N., 2014. Application of DNA barcoding in Roscoea (Zingiberaceae) and a primary discussion on taxonomic status of Roscoea cautleoides var. pubescens. Biochemical Systematics and Ecology, 52, pp.14–19. doi: 10.1016/j.bse.2013.10.004.
DOI: https://doi.org/10.22146/jtbb.76956
Article Metrics
Abstract views : 1008 | views : 635Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)